JPS62187861A - Manufacture of toner for development of electrostatically charged image - Google Patents

Manufacture of toner for development of electrostatically charged image

Info

Publication number
JPS62187861A
JPS62187861A JP61031398A JP3139886A JPS62187861A JP S62187861 A JPS62187861 A JP S62187861A JP 61031398 A JP61031398 A JP 61031398A JP 3139886 A JP3139886 A JP 3139886A JP S62187861 A JPS62187861 A JP S62187861A
Authority
JP
Japan
Prior art keywords
particles
particle size
toner
classification
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61031398A
Other languages
Japanese (ja)
Other versions
JPH0713759B2 (en
Inventor
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61031398A priority Critical patent/JPH0713759B2/en
Priority to GB08609394A priority patent/GB2174621B/en
Priority to FR868605538A priority patent/FR2580831B1/en
Publication of JPS62187861A publication Critical patent/JPS62187861A/en
Priority to US07/173,046 priority patent/US4782001A/en
Priority to SG62/91A priority patent/SG6291G/en
Priority to HK713/91A priority patent/HK71391A/en
Publication of JPH0713759B2 publication Critical patent/JPH0713759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To efficiently obtain a particle group which has a fine particle size distribution by using a specific classifying means. CONSTITUTION:The section of a side wall has shapes 32 and 51 and the bottom surface is rectangular and divided into three by classifying fences like knife-edge type classifying edges 27 (39) and 28 (40) fixed to or fitted in the bottom surface in parallel at specific intervals. A raw material supply nozzle 26 which has an opening in a classifying chamber is provided on a vertical wall 32 almost opposite the rising start point of a curved wall 51 and a counder block 30 which is folded downward in the prolongation direction of the base tangent of the nozzle to draw an elliptic arc is projected on the vertical side wall 32; and the upper part of the classifying chamber is formed in an upright rectangular cylinder shape and a knife-edge type air intake edge 29 (41) is provided lengthwise at the center of a top wall, which is provided with intake pipes 24 and 25 having aperture in the classifying chamber.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、効率よく結着樹脂を有する固体粒子の粉砕・
分級を行って所定の粒度を有する静電荷像現像用トナー
を得るための製造方法に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention provides efficient pulverization and pulverization of solid particles having a binder resin.
The present invention relates to a manufacturing method for obtaining an electrostatic image developing toner having a predetermined particle size by performing classification.

〔従来技術〕[Prior art]

電子写真法、静電写真法、静電印刷法の画像形成方法で
は静電荷像を現像するためにトチ−が使用される。− 最終製品が微細粒子であることが要求される静電荷像現
像用トナーの製造に於ける原料固体粒子を粉砕、分級し
て最終製品を得る工程については、従来、第5図のフロ
ーチャートにより示される方法が一般に採用されている
。その方法は1例えば結着樹脂1着色剤等の所定材料を
溶融混練し、冷却して固化させた後粉砕し、粉砕された
固体粒子群を原料の粉砕物とした場合、粉砕物は、第1
分級機に連続的又は逐次供給されて分級され、分級され
た規定粒度以上の粗粒子群を主成分とする粗粉体は粉砕
機に送って粉砕された後、再度第1分級機に循環される
。他の規定粒径範囲内の粒子及び規定粒径以下の粒子を
主成分とする粉体は第2分級機に送られ、規定粒度を有
する粒子群を主成分とする中粉体と規定粒度以下の粒子
群を主成分とする細粉体とに分級される、というのもの
である。
In image forming methods such as electrophotography, electrostatic photography, and electrostatic printing, a torch is used to develop an electrostatic image. - The process of pulverizing and classifying raw material solid particles to obtain the final product in the production of toner for electrostatic image development, where the final product is required to be fine particles, has conventionally been shown in the flowchart of FIG. This method is generally adopted. The method is 1. For example, when predetermined materials such as a binder resin 1 and a coloring agent are melt-kneaded, cooled to solidify, and then pulverized, and the pulverized solid particles are used as a pulverized raw material, the pulverized material is 1
The coarse powder, which is continuously or sequentially supplied to the classifier and classified, and whose main component is coarse particles with a specified particle size or more, is sent to the crusher and crushed, and then circulated to the first classifier again. Ru. Other powders whose main components are particles within the specified particle size range and particles below the specified particle size are sent to the second classifier, which separates medium powder whose main component is particles with the specified particle size and smaller than the specified particle size. This is because it is classified into a fine powder whose main component is a group of particles.

そして、この従来方法の下での具体例として、粉砕され
た粒子からなる固体粒子群から、所定の@量平均粒子径
(粒子径について、例えばコールタエレクトロニクス社
(米国)製のコールタカウンターによる測定結果の表現
方法であって、重量平均粒子径で表現される。以下これ
を単に「平均粒径」という、)を有していて、微粉域を
除いたもの、即ち、例えば平均粒径が10〜15ILm
であり且つ5ILm以下の粒子が1%以下である粒子群
を得るについては。
As a specific example under this conventional method, from a solid particle group consisting of pulverized particles, a predetermined amount average particle diameter (for example, a Coulter Counter manufactured by Coulter Electronics Inc. (USA) is used) It is a method of expressing measurement results, and is expressed as a weight average particle diameter (hereinafter simply referred to as "average particle diameter"), excluding the fine powder region, that is, for example, the average particle diameter is 10~15ILm
In order to obtain a particle group in which the number of particles of 5 ILm or less is 1% or less.

粗粉域を除去するための分級機構を備えた衝撃式粉砕機
或いはジェット粉砕機等で所定の平均粒径まで粉砕して
分級し、粗粉体を除去した後の粉砕物を別の分級機にか
け、微粉体を除去して所望の中粉体を得ている。
Grind and classify the powder to a predetermined average particle size using an impact crusher or jet crusher equipped with a classification mechanism to remove the coarse powder, and then pass the crushed product after removing the coarse powder to another classifier. The fine powder is removed to obtain the desired medium powder.

このような従来の方法については1問題点として、粗粉
体を除去する分級機構を備えた粉砕機による処理と、微
粉体を除去する分級機による処理とが別工程で行われる
ことから工程の数が多く、操作が複雑であることの他、
長時間運転の場合は発熱を伴ったり、粉体に避けがたい
付着等が多く生じてしまうことがある。
One problem with such conventional methods is that the process using a pulverizer equipped with a classification mechanism to remove coarse powder and the process using a classifier to remove fine powder are performed in separate steps. In addition to being large in number and complicated to operate,
In the case of long-term operation, heat generation may occur, and unavoidable adhesion to powder may occur.

また、粗粉体を除去する目的の分級機構については本来
、ある粒度以上の粒子群だけを粉砕機に送ることが目的
であるが、従来の分級機は滞留時間が数分間と非常に長
いため、粗粉域を除去後において粒子群の一部が相互に
凝集したり、あるいは粗粒子に微粒子が付着して再度。
In addition, the original purpose of the classification mechanism for removing coarse powder is to send only particles of a certain particle size or above to the crusher, but conventional classifiers have a very long residence time of several minutes. After removing the coarse powder area, some of the particles may coagulate with each other, or fine particles may adhere to the coarse particles and cause the problem to occur again.

粉砕機に戻されるために過粉砕が生じる傾向がある。そ
のため粉砕効率の低下、次工程の微粉域を除去するため
の分級機においての収率低下等の現象を引きおこすとい
う問題点がある。ま縦 た、就中の微粉体を除去する目的の第2の分簡機につい
ては、極微粒子で構成される凝集物が生じることがあり
、凝集物を微粉体として除去することは困難である。そ
の場合かかる凝集物は最終製品に混入するところとなり
、その結果精緻な粒度分布の製品を得ることが難しくな
るとともに凝集物はトナー中で解壊して極微粒子となっ
て画像品質を低下させる原因となる。こうしたことから
従来方式の下で精緻な粒度分布を有する所望の製品を得
ることができたとしても工程が繁雑になりまた分級収率
の低下を引きおこし、結局生産効率が悪く、コスト高の
ものになることが避けられない、この傾向は、所定の粒
度が少さくなればなる程顕著になる。
There is a tendency for over-grinding to occur as it is returned to the crusher. This causes problems such as a decrease in pulverization efficiency and a decrease in yield in a classifier for removing the fine powder region in the next step. Moreover, in the case of the second disintegrating machine, which is intended to remove especially fine powder, aggregates composed of extremely fine particles may be formed, and it is difficult to remove the aggregates as fine powder. . In that case, such aggregates will be mixed into the final product, making it difficult to obtain a product with a precise particle size distribution, and the aggregates will disintegrate in the toner and become extremely fine particles, causing a reduction in image quality. Become. For this reason, even if it is possible to obtain a desired product with a precise particle size distribution using the conventional method, the process becomes complicated and the classification yield decreases, resulting in poor production efficiency and high costs. This tendency becomes more pronounced as the predetermined particle size becomes smaller.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の静電荷像現像用トナーの製造方法に於
ける前述の各種問題点を解決してなる・ものであって、
その目的は、精緻な粒度分布を有する静電荷像現像用ト
ナーを効率良く生成する製造方法を提供することにある
。本発明の他の目的は小粒径(例えば2〜8gm)の品
質の良いトナーを効率良く製造する方法を提供すること
にある。
The present invention solves the various problems described above in the conventional method for producing toner for developing electrostatic images, and includes:
The purpose is to provide a manufacturing method for efficiently producing an electrostatic image developing toner having a precise particle size distribution. Another object of the present invention is to provide a method for efficiently producing a high quality toner having a small particle size (for example, 2 to 8 gm).

〔発明の構成、効果〕[Structure and effect of the invention]

本発明は、結着樹脂9着色剤および各種添加剤からなる
混合物を溶融混練し、溶融混合物を冷却後、粉砕により
生成した固体粒子群からM緻な所定の粒度分布を有する
微細粒子製品(トナーとして使用される)を短時間に効
率的に製造する方法に関するものである。
The present invention melt-kneads a mixture consisting of a binder resin, 9 colorants, and various additives, cools the molten mixture, and then pulverizes the resulting solid particles. The present invention relates to a method for efficiently manufacturing products in a short period of time.

本発明の方法は、粉砕物を原料とするものであって、第
1図はその方法の概要を示すフローチャートである。即
ち、本発明の方法は、原料を多分割分級域に送って少な
くとも3種の粒径区分即ち、大粒径区分(粗粒子を主成
分とする粗粉体)、中粒径区分(規定内粒径の粒子を主
成分とする中粉体)、そして小粒径区分(規定粒径以下
の粒子を主成分とする細粉体)に分級し、大粒径区分の
粒子群は適宜の粉砕手段に′より粉砕し、新たに導入さ
れる原料と共に前記多分割分級域に再循環せしめて前記
と同様の分級処理にかける。中粒径区分の規定内粒径の
粒子群と小粒径区分の規定粒径以下の粒子群は、前記多
分割分級域から適宜の取り出し手段によりそれぞれ取り
出す、取り出される中粒径区分からの粒子群は至適な粒
度分布のものであって、そのままトナーとして使用可能
である。他方取り出される小粒径区分の粒子群は溶融工
程に循環して再利用してもよい。
The method of the present invention uses pulverized material as a raw material, and FIG. 1 is a flow chart showing an overview of the method. That is, the method of the present invention sends the raw material to a multi-division classification zone and divides it into at least three particle size categories, namely, large particle size category (coarse powder mainly composed of coarse particles), medium particle size category (coarse powder mainly composed of coarse particles), and medium particle size category (coarse powder mainly composed of coarse particles). The particles in the large particle size category are divided into medium-sized powder (mainly composed of particles with a specified particle size) and small particle size category (fine powder whose main component is particles with a specified particle size or less), and the particles in the large particle size category are crushed as appropriate. The raw material is pulverized by a means 1, and is recycled to the multi-division classification zone together with the newly introduced raw material, where it is subjected to the same classification process as described above. Particles with particle diameters within the specified range of the medium particle size category and particles with a particle size below the specified particle size of the small particle size category are respectively taken out from the multi-divided classification area by appropriate extraction means. The group has an optimal particle size distribution and can be used as a toner as is. On the other hand, the particles in the small particle size category taken out may be recycled to the melting process and reused.

前記多分割分級域を提供する手段としては、例えば第2
図又は第3図に示す形式の多分割分級機を具体例の1つ
として例示し得る。第2図及び第3図において、側壁断
面は32.51で示される形状を成し、底面は、長方形
であって、長手方向に底部を底面に所定間隔で平行にり
3分画されている。湾曲1!!51のほぼ直立始点に対
向する垂直壁32上の部分に分級室に開口する原料供給
ノズル26を設け、該ノズルの底部接線の延長方向に対
して下方に折り曲げて長楕円孤を描いた形のコアンダブ
ロック30を垂直側壁32上に突設し、分級室上部は直
立角筒形状を成し、頂壁中央に長手方向にナイフリッヂ
型の人気エッチ29(または41)を設け、更に前記頂
壁には分級室に開口する人気管24.25を設ける。分
級エッヂ27(または39)、28(または40)の位
置は、多分割分級域の室の規模により、又、被処理原料
の種類により異る。−また室底面には、それぞれの分画
域に対応させて室内に開口する排出管21゜22.23
を設ける。排出管21,22.23はそれぞれバルブ手
段の如き開閉手段を具備していても良い。
As the means for providing the multi-divided classification area, for example, a second
A multi-division classifier of the type shown in the figure or FIG. 3 may be exemplified as one specific example. In FIGS. 2 and 3, the side wall cross section has a shape shown by 32.51, and the bottom surface is rectangular and is divided into three parts parallel to the bottom surface at predetermined intervals in the longitudinal direction. . Curved 1! ! A raw material supply nozzle 26 that opens into the classification chamber is provided on a portion of the vertical wall 32 facing the substantially upright starting point of the nozzle 51, and is bent downward with respect to the extension direction of the bottom tangent of the nozzle to form a long elliptical arc shape. A Coanda block 30 is provided protrudingly on the vertical side wall 32, the upper part of the classification chamber forms an upright rectangular tube shape, and a knife ridge type etching 29 (or 41) is provided in the longitudinal direction at the center of the top wall, and furthermore, on the top wall. A popular tube 24,25 is provided which opens into the classification chamber. The positions of the classification edges 27 (or 39), 28 (or 40) vary depending on the size of the chamber of the multi-divided classification zone and the type of raw material to be processed. - Also, on the bottom of the chamber, there are exhaust pipes 21, 22, 23 that open into the chamber corresponding to each fraction area.
will be established. The discharge pipes 21, 22, 23 may each be provided with opening/closing means such as valve means.

分級エッヂ27(または39)、28(または40)は
、エッヂ部をL方にして室内空間に突出するように設け
、又入気エッヂ29(または40)はエッヂ部を下方に
して頂壁から室内空間に設けるのが通常であるが、中粒
径区分の粒子群をごく限られた粒径範囲のものにしよう
とする場合1分級エッヂ28と入気エッヂ29を第3図
に40.41として示すように、固定位置はそのままに
しておき、前者については立上り部、後者については垂
下部をそれぞれ気流の外側に来るように傾けてもよい、
原料供給ノズル26を介しての分級室内への原料の供給
は、原料の種類に応じた検定曲線に従って行う。
The classification edges 27 (or 39), 28 (or 40) are provided so as to project into the indoor space with the edge portion facing L, and the inlet edge 29 (or 40) is provided with the edge portion facing downward from the top wall. It is usually installed in an indoor space, but if you want to make the particle group of the medium particle size category into a very limited particle size range, the 1 classification edge 28 and the inlet edge 29 are set as 40.41 in Fig. 3. As shown in , the fixed position may be left as is, and the rising part for the former and the hanging part for the latter may be tilted so that they are on the outside of the airflow, respectively.
The raw material is supplied into the classification chamber via the raw material supply nozzle 26 according to a verification curve depending on the type of raw material.

以とのように構成してなる多分割分級域での原料の分級
操作は例えば次のようにして行う。
The classification operation of raw materials in the multi-division classification zone configured as described above is carried out, for example, as follows.

即ち、原料供給ノズル26から粉体原料を供給させると
、コアンダ効果により粉体はコアンダブロック30の作
用と、その際流入する空気の如き気体の作用とにより湾
曲線35を描いて移動し、それぞれの粒径の大小に応じ
て、大きい粒子(粗粒子)は気流の外側、すなわち分級
エッヂ28の外側の分画、中間の粒子(規定内粒径の粒
子)は分級エッヂ28と27の間の分画、小さい粒子(
規定粒径以下の粒子)は分級エッヂ27の内側の分画に
分割され、大きい粒子は排出口21より、中間の粒子は
排出口??より、小さい粒子は排出口23よりそれぞれ
排出される。
That is, when a powder raw material is supplied from the raw material supply nozzle 26, the powder moves in a curved line 35 due to the Coanda effect and the action of gas such as air flowing in at that time, and each Depending on the particle size of fraction, small particles (
(particles with a specified particle size or less) are divided into fractions inside the classification edge 27, with large particles going through the outlet 21 and intermediate particles going through the outlet 21. ? Smaller particles are discharged from the discharge port 23, respectively.

k、述の方法を実施するには、′a常相互の機器をパイ
プの如き連通手段等で連結してなる一体装置システムを
使用するのが通常であり、そうした装置の好ましい例を
第4図に示す、第4図に示す一体装置は、3分割分級機
2(第2図又は第3図に示される形式のもの、詳細は先
に説明のとおりである。)、粉砕機3、捕集す・イタロ
ン4.捕集サイクロン5.定量供給a6、振動フィーダ
ー7、捕集サイクロン8、捕集サイクロン9を連通手段
で連結してなるものである。
In order to carry out the method described above, it is usual to use an integrated device system in which mutual devices are connected through communication means such as pipes, and a preferred example of such a device is shown in Fig. 4. The integrated device shown in FIG. 4 consists of a three-part classifier 2 (of the type shown in FIG. 2 or 3, the details of which are as explained above), a crusher 3, and a collector. Su Italon 4. Collection cyclone 5. A fixed quantity supply a6, a vibrating feeder 7, a collection cyclone 8, and a collection cyclone 9 are connected by a communication means.

この装置において、いわゆる粉砕物原料は、開閉バルブ
1t−備えた原料供給導管31を介して捕集サイクロン
5に送られ、ついで定量供給機6に送り込まれ、ついで
振動フィーダー7を介し、原料供給ノズル26により3
分割分級機z内に導入される。導入、に際しては、捕集
サイクロン4.8及び/又は9の吸引力を利用して粉砕
物を3分割分級機z内に吸引導入し得る。
In this device, the so-called pulverized raw material is sent to a collection cyclone 5 through a raw material supply conduit 31 equipped with an on-off valve 1t, then fed into a quantitative feeder 6, and then via a vibrating feeder 7 to a raw material supply nozzle. 3 by 26
It is introduced into the dividing classifier z. At the time of introduction, the pulverized material can be sucked and introduced into the three-part classifier z using the suction force of the collection cyclone 4.8 and/or 9.

吸引導入の場合は、システムのシール性が加圧式導入よ
りも厳密には要求されないので好ましい、吸引導入に際
しては、粒子の比重および粒径によって変動するが、通
常50〜200m/秒の流速で3分割分級機2内に粉砕
物を導入すると1分級精度および分級効率の点で好まし
い。分級機2の分級域を構成する大きさは通常(10〜
50cm)X (10〜50cm)なので、粉砕物はO
,1〜0.01秒以下の瞬時に3種以上の粒子群に分給
し得る。そして、3分割分級@2により、大きい粒子(
粗粒子)、中間の粒子(規定内粒子径の粒子)、小さい
粒子(規定粒径以下の粒子)に分割される。
In the case of suction introduction, the sealing performance of the system is not required to be as strict as in pressurized introduction, so it is preferable. Introducing the pulverized material into the dividing classifier 2 is preferable in terms of classification accuracy and classification efficiency. The size of the classification area of classifier 2 is usually (10~
50cm)X (10~50cm), so the crushed material is
, can be distributed to three or more types of particle groups instantly within 1 to 0.01 seconds. Then, by 3-part classification @2, large particles (
It is divided into coarse particles), intermediate particles (particles with a specified particle size), and small particles (particles with a specified particle size or less).

その後、大きい粒子は、排出導管21を通って捕集サイ
クロン4に送られ、ついで粉砕4113に送られて粉砕
され原料供給導管31を介して新たに導入される粉体原
料と共に捕集サイクロン5に送られ、ついで定量供給機
に送られ前述と同様にして分級処理に付される。中間の
粒子べく回収される。小さい粒子は、排出導管23を介
して系外に排出され捕集サイクロン8で補修され、つい
で規定外微小粉81として回収される。捕集サイクロン
4,8.9は、粉砕原料をノズル26を介して分級域に
吸引導入するための吸引減圧手段としての働きもしてい
る。
Thereafter, the large particles are sent to the collection cyclone 4 through the discharge conduit 21 and then sent to the crusher 4113 to be crushed and sent to the collection cyclone 5 together with the powder raw material newly introduced via the raw material supply conduit 31. Then, it is sent to a quantitative feeder and subjected to classification processing in the same manner as described above. Intermediate particles are collected. Small particles are discharged out of the system via the discharge conduit 23, repaired by the collection cyclone 8, and then recovered as non-standard fine powder 81. The collection cyclones 4, 8, 9 also function as suction and pressure reduction means for suctioning and introducing the pulverized raw material into the classification area through the nozzle 26.

粉砕4113には、衝撃式粉砕機、ジェット粉砕機等が
使用できる。即ち、衝撃式粉砕機としてはターボ工業社
製ターボミルといったものが挙げられ、ジェットを利用
した粉砕機としては日本ニューマチック工業社製超音速
ジェットミルPJM−1,線用ミクロン社製ミクロンジ
ェットといったものが挙げられる。また、本発明の方法
における多分割分級機としては1日鉄鉱業社製エルポー
ジェットの如き手段が挙げられる。
For the crushing 4113, an impact crusher, a jet crusher, or the like can be used. That is, examples of impact-type crushers include Turbo Mill made by Turbo Kogyo Co., Ltd.; examples of crushers using jets include supersonic jet mill PJM-1 made by Nippon Pneumatic Kogyo Co., Ltd., and Micron Jet made by Micron Co., Ltd. for wire use. can be mentioned. Further, as a multi-division classifier in the method of the present invention, means such as Elpau Jet manufactured by Nippon Steel Mining Co., Ltd. can be mentioned.

以上説明したように1本発明の方法は、特定の分級手段
により粗粉粒子群と微粉粒子群とを同時に除去し、粗粒
子群は粉砕して再循環させるので、粉砕物から迅速に所
定の粒径範囲内のものであって精緻な粒度分布を有する
粒子群を得ることが効率良くできる。更に、本発明の方
法は、工程数が少なくてすむものであることから製品コ
ストを従来のものに比べ下げることができる。
As explained above, in the method of the present invention, coarse particles and fine particles are simultaneously removed using a specific classification means, and the coarse particles are crushed and recirculated, so that a predetermined amount can be quickly extracted from the crushed material. It is possible to efficiently obtain a group of particles that are within the particle size range and have a precise particle size distribution. Furthermore, since the method of the present invention requires fewer steps, product costs can be lowered compared to conventional methods.

さらに1本発明の方法は、分級域での滞留時間がほとん
ど無いため、従来の粗粉域を除去するための分級機で見
られたような凝集物が生じ難く、粉砕機にはある規定粒
度以上の粗大粒子だけが送られるため、粉砕機の負荷が
少なく、粉砕効率が非常に良好であり、過粉砕を引き起
こさない、そのため微粉域を除去することも非常に効率
よく行うことができ、分級収率を良好に上げることがで
きる。また、従来の中粉域と微粉域とを分級する目的の
分級方式では、微粉子によって構成される現像画像のカ
ブリの原因となる凝集物を生じ易く、生じた場合中粉域
から除去することが困難であったが本発明の方法による
と凝集物が粉砕物に混入したとしても、コアンダ効果お
よび/又は高速移動により凝集物が解壊されて細粉体と
して除去されるとともに、解壊を免れた凝集物があった
としても粗粉域へ同時に除去できるため、凝集物を効率
よ〈取り除くことが可能である。
Furthermore, since the method of the present invention has almost no residence time in the classification zone, it is difficult to form agglomerates like those seen in conventional classifiers for removing coarse particles, and the crusher has a certain specified particle size. Since only the coarse particles above are sent, the load on the crusher is small and the crushing efficiency is very good, and over-grinding does not occur. Therefore, the removal of fine particles can be done very efficiently, and the classification The yield can be improved satisfactorily. In addition, in the conventional classification method aimed at classifying the medium-powder area and the fine-powder area, aggregates that are composed of fine particles and cause fogging of the developed image are likely to occur, and if they occur, it is necessary to remove them from the medium-powder area. However, according to the method of the present invention, even if aggregates are mixed into the pulverized material, the aggregates are broken down and removed as fine powder due to the Coanda effect and/or high-speed movement, and the disintegration is removed. Even if there are any agglomerates that escape, they can be removed simultaneously to the coarse powder area, making it possible to remove the agglomerates efficiently.

静電荷像現像用トナーは通常スチレン系樹脂、スチレン
−アクリル樹脂、又はポリエステル系樹脂9着色剤(又
は/及び磁性材料)、オフセット防止剤、荷電制御剤等
の原料を溶融混練した後、冷却、粉砕9分級を行うこと
により製造される。この際、混練工程において各原料を
均一分散された溶融物を得ることが困難なため、粉砕さ
れた粉砕物中には、トナー粒子として不適な粒子(例え
ば、着色剤または磁性粒子を有していないもの或は各種
素原料単独粒子)が混在しているが、従来の粉砕分級方
法では粉砕分級過程において粒子の滞留時間が長く、こ
のため不適当な粒子が凝集しやすくなるとともに、生じ
た凝集物を除去することが困難であったため、トナーの
特性を著しく低下させていた。本発明の方法は粉砕後に
瞬時に三分画以上に分級を行うため、前記凝集物を生じ
難く、また生じたとしても凝集物を粗粉域へ除去するこ
とが可能なため、均一成分の粒子であり、かつ精緻な粒
度分布の製品を得ることができる。この結果本発明の方
法によって得られるトナーは、トナー粒子間またはトナ
ーとスリーブ、トナーとキャリアの如きトナー担持体と
の間の摩擦帯Nt量が安定である。従って従来、充分に
は解決できなかった現像カブリや、Hg像のエッヂ周辺
へのトナーの飛び散りが極めて少なく、高い画像濃度が
得られ、ハーフトーンの再現性が良くなる。さらに、現
像剤を長期にわたり連続使用した際も初期の特性を維持
し、高品質な画像を長期間提供することができる。さら
に、高温高湿度の環境条件での使用においても、極微粒
子及びその凝集物の存在が少ないので現像剤摩擦帯電量
が安定で、常温常湿度と比較してほとんど変化しないた
め、カブリや画像濃度の低下が少なく、Wi像に忠実な
現像を行える。さらには転写効率もすぐれている。また
、低温低温下条件の使用においても、摩擦帯電量分布は
常温常湿度のそれとほとんど変化がなく、帯電量のきわ
めて大きい現像剤成分が除去されているため、画像濃度
の低下やカブリもなく、力″+二′キや転写の際の飛び
散りもほとんどないという特性を本発明の方法で得られ
たトナーはイボしている。
Toner for developing electrostatic images is usually prepared by melting and kneading raw materials such as styrene resin, styrene-acrylic resin, or polyester resin9, coloring agent (or magnetic material), offset inhibitor, charge control agent, etc., followed by cooling, Manufactured by pulverization and 9 classifications. At this time, since it is difficult to obtain a melt in which each raw material is uniformly dispersed in the kneading process, the pulverized material may contain particles unsuitable as toner particles (for example, containing colorants or magnetic particles). However, in the conventional pulverization and classification method, the residence time of particles during the pulverization and classification process is long, which makes unsuitable particles more likely to agglomerate, and the resulting agglomeration It was difficult to remove the particles, which significantly degraded the properties of the toner. Since the method of the present invention instantly classifies into three or more fractions after pulverization, the above-mentioned agglomerates are unlikely to occur, and even if they occur, the agglomerates can be removed to the coarse powder region, so particles with uniform components can be obtained. , and it is possible to obtain a product with a precise particle size distribution. As a result, the toner obtained by the method of the present invention has a stable friction zone Nt amount between toner particles or between a toner and a toner carrier such as a sleeve or a toner and a carrier. Therefore, development fog, which could not be solved satisfactorily in the past, and toner scattering around the edges of the Hg image are extremely reduced, high image density is obtained, and halftone reproducibility is improved. Furthermore, even when the developer is used continuously for a long period of time, the initial characteristics can be maintained and high quality images can be provided for a long period of time. Furthermore, even when used in high-temperature, high-humidity environments, there are few ultrafine particles and their aggregates, so the developer triboelectric charge is stable and hardly changes compared to normal temperature and humidity, reducing fogging and image density. There is little deterioration in image quality, and development can be performed that is faithful to the Wi image. Furthermore, the transfer efficiency is also excellent. Furthermore, even when used under low temperature conditions, the triboelectric charge distribution is almost the same as that at room temperature and humidity, and since developer components with extremely large charges are removed, there is no reduction in image density or fog. The toner obtained by the method of the present invention has the characteristics that there is almost no force or scattering during transfer, and there is no wart.

また、粒径の小さな中粉体(例えば平均粒径3〜フル)
を製造する際には、従来の方法よりも効率よく本発明は
実施し得る。
Also, medium powder with small particle size (for example, average particle size 3 to full)
The present invention can be carried out more efficiently than conventional methods when manufacturing.

以下、実施例に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on examples.

実施例1 上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混練後、冷却して固化し、ハンマーミル
で100〜1 ooo4の粒子に粗粉砕し1次いでホソ
カワミクロン社IAcMバルベライザにより重量平均粒
径100JLの粉砕物に粉砕した。得られた粉砕物を毎
分1.0Kgの量でコアンダ効果を利用して粗粉体、中
粉体、及び細粉体の3種に分級するために第2図に示す
多分割分級装置2であるエルポージエツ)EJ−45−
3型機(0鉄鉱業社製)に導入した。導入に際しては、
排出口21,22゜23に連通している捕集サイクロン
8.9及び4の吸引減圧による系内の減圧から派生する
吸引力によって粉砕物を約100m/secの流速で供
給ノズル26に導入した。導入された粉砕物は0.01
秒以下の瞬時に分級された0分級された中粉体を捕集す
る捕集サイクロン9には体積平均粒径約12弘(粒径5
.04 g以下の粒子を0.5重量%含有し、粒径20
.2 #L以上の粒子の含有量はO,1重量%以下であ
り、実質的に含有していないとみなし得る)のトナーと
して好ましい中粉体が分級収率85重量%で得られた。
Example 1 A toner raw material consisting of a mixture of the above formulation was melt-kneaded at about 180° C. for about 1.0 hours, cooled and solidified, and coarsely ground into particles of 100 to 1 ooo4 in a hammer mill. The powder was pulverized into a pulverized product having a weight average particle size of 100 JL. In order to classify the obtained pulverized material into three types, coarse powder, medium powder, and fine powder, using the Coanda effect at a rate of 1.0 kg per minute, a multi-division classifier 2 shown in FIG. 2 is used. EJ-45-
It was introduced into a Type 3 machine (manufactured by 0 Tetsu Mining Co., Ltd.). When introducing
The pulverized material was introduced into the supply nozzle 26 at a flow rate of about 100 m/sec by the suction force derived from the reduced pressure in the system due to the suction reduced pressure of the collection cyclones 8.9 and 4 communicating with the discharge ports 21, 22 and 23. . The crushed material introduced is 0.01
The collection cyclone 9, which collects medium-sized powder classified instantly in seconds or less, has a volume average particle size of about 12 hiro (particle size 5
.. Contains 0.5% by weight of particles of 0.4 g or less, and has a particle size of 20
.. The content of particles of 2 #L or larger was 0.1% by weight or less, and could be considered to be substantially free of O. A medium powder suitable as a toner was obtained with a classification yield of 85% by weight.

ここでいう分級収率とは、供給された粉砕物原料の全量
に対しての最終的に1−謬られた中粉体(製品)の竜と
の比率をさしている。得られた中粉体を電子顕微鏡で見
たところ、極微細粒子が凝集した約5牌以上の凝集物は
実質的に見出されなかった。
The classification yield here refers to the ratio of the final medium powder (product) to the total amount of the supplied pulverized raw material. When the obtained medium powder was observed under an electron microscope, substantially no aggregates of about 5 tiles or more, which were ultrafine particles aggregated, were found.

また、分級された粗粉体は捕集サイクロン4に捕集され
、粉砕機3(日本ニューマチック工業社製の超音速ジェ
ットミルPJM−I−10)に導入し−て粉砕した。粉
砕された粉体は原料供給導管31に供給し、多分割分級
装置で分級するために、供給導管31に供給した。
Further, the classified coarse powder was collected by a collection cyclone 4, and introduced into a pulverizer 3 (supersonic jet mill PJM-I-10 manufactured by Nippon Pneumatic Industries Co., Ltd.) to be pulverized. The pulverized powder was supplied to the raw material supply conduit 31, and was supplied to the supply conduit 31 for classification by a multi-division classifier.

得られた中粉体をトナーとして使用し、疎水性シリカ0
.31 i%を混合して現像剤を7A!1し、複写機N
P−270(キャノン製)に調整した現像剤を供給して
複写試験をおこなったところカブリのない細線現像性の
良好な複写画像が得られた。
The obtained medium powder was used as a toner, and hydrophobic silica 0
.. Mix 31 i% and make the developer 7A! 1, copy machine N
When a copying test was carried out by supplying a developer adjusted to P-270 (manufactured by Canon), a copy image with good fine line developability and no fog was obtained.

比較例1 実施例工と同様にして得た粉砕物を第5図に示す如く構
成された分級システムで分級した。
Comparative Example 1 A pulverized product obtained in the same manner as in the example was classified using a classification system configured as shown in FIG.

体積平均粒径100ル粉砕物を毎分1.0 K gの丑
で、第1分級機(日本ニューヤチック工業社製気流分級
機DS−10)に導入し、分級された粗粉体を粉砕機(
日本ニューマチック工業社製超音速ジェットミルPJM
−10)に導入して粉砕後fiIJ1分級機に循環した
。第1分級機で分級された中粉体及び細粉体を第2分級
機(Ds−io)に導入し、中粉体と細粉体に分級した
。得られた中粉体は、体積平均粒径約12終を有し分級
収率70重量%で得られたが電子顕微鏡で見たところ極
微粒子が凝集した約5ル以上の凝集物が点在しているの
が見出された。
The pulverized material with a volume average particle diameter of 100 liters was introduced into the first classifier (air classifier DS-10 manufactured by Nihon Newyachik Kogyo Co., Ltd.) at a rate of 1.0 Kg per minute, and the classified coarse powder was Crusher(
Supersonic jet mill PJM manufactured by Nippon Pneumatic Kogyo Co., Ltd.
-10), and after pulverization, it was circulated to the fiIJ1 classifier. The medium powder and fine powder classified by the first classifier were introduced into the second classifier (Ds-io) and classified into medium powder and fine powder. The obtained medium powder had a volume average particle diameter of about 12 mm, and was obtained with a classification yield of 70% by weight, but when observed with an electron microscope, it was found that there were aggregates of about 5 μm or more, which were extremely fine particles aggregated. was found doing so.

複写機NP−270(キャノン類)に調製した現像剤を
供給して複写試験をおこなったところ実施例1で得られ
た複写画像よりもカブリが多かった。
When a copying test was conducted by supplying the prepared developer to a copying machine NP-270 (Canon), there was more fog than the copied image obtained in Example 1.

実遣」LL二A 実施例1と同様にして体積平均粒径50紗。Jikkyō” LL2A The volume average particle size was 50 gauze in the same manner as in Example 1.

30弘および20終の粉砕物をそれぞれ調製し、実施例
1と同様にして粉砕物の分級粉砕をおこなった。結果を
下記表に示す、尚、実施例2    約50     
  約12      85実施例3   約30  
    約7    82実施例4   約20   
   約5    81比較例2 実施例1と同様にして体積平均粒径約20川の粉砕物を
調製し、比較例1と同様にして体積平均粒径約5鉢の中
粉体を生成したところ分級収率が50重量%であった。
A pulverized product of 30 Hiro and 20 Hiro was prepared, and the pulverized product was classified and pulverized in the same manner as in Example 1. The results are shown in the table below, and Example 2 approximately 50
Approximately 12 85 Example 3 Approximately 30
Approximately 7 82 Example 4 Approximately 20
Approximately 5 81 Comparative Example 2 A pulverized material with a volume average particle diameter of approximately 20 was prepared in the same manner as in Example 1, and a medium powder with a volume average particle diameter of approximately 5 was produced in the same manner as in Comparative Example 1. The yield was 50% by weight.

尚、中粉体の粒径が小さくなる程5分級収率において本
発明の実施例と比較例とに差が大きくなる傾向があった
Incidentally, as the particle size of the medium powder became smaller, there was a tendency for the difference in the 5-class yield between the Examples of the present invention and the Comparative Examples to become larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法のフローチャートであり、第2図
及び第3図は本発明の固体粒子多分割分級方法を実施す
るための1具体例である装置の断面図を示す、第4図は
本発明の方法を実施するための分級装置システムを示す
概略図である。第5図は従来方式のフローチャート図で
ある。 図中の符号の説明
FIG. 1 is a flowchart of the method of the present invention, FIGS. 2 and 3 are cross-sectional views of an apparatus that is a specific example for implementing the solid particle multi-division classification method of the present invention, and FIG. 1 is a schematic diagram showing a classifier system for carrying out the method of the present invention; FIG. FIG. 5 is a flowchart of the conventional method. Explanation of symbols in the diagram

Claims (1)

【特許請求の範囲】[Claims] (1)粉砕により生成した結着樹脂を有する固体着色粒
子群から所定粒径範囲の粒子群をトナーとすべく分級採
取する静電荷像現像用トナーの製造方法において、分級
フエンスにより少なくとも3つに分画されてなる多分割
分級域に前記固体着色粒子群を導入して湾曲線的に降下
せしめて、第1分画域に粗粒子群を主成分とする粗粉体
を分割捕集し、第2分画域に所定粒径範囲の粒子群を主
成分とする中粉体を分割捕集し、第3分画域に所定粒径
以下の粒子群を主成分とする細粉体を分割捕集し、前記
粗粉体は粉砕工程に供給した後該多分割分級域に導入す
ることを特徴とする静電荷像現像用トナーの製造方法。
(1) In a method for producing toner for electrostatic image development, in which a group of solid colored particles having a binder resin produced by pulverization is classified and collected in a predetermined particle size range to form a toner, the toner is divided into at least three particles using a classification fence. Introducing the solid colored particle group into the multi-division classification zone formed by the fractionation and causing it to descend in a curved line, dividing and collecting the coarse powder mainly composed of the coarse particle group in the first fractionation zone, In the second fractionation area, the medium powder mainly composed of particles within a predetermined particle size range is divided and collected, and in the third fractionation area, the fine powder mainly composed of particles with a predetermined particle size or less is divided and collected. A method for producing a toner for developing an electrostatic image, characterized in that the coarse powder is collected, and the coarse powder is supplied to a pulverization step and then introduced into the multi-division classification zone.
JP61031398A 1985-04-18 1986-02-14 Method for manufacturing toner for developing electrostatic image Expired - Lifetime JPH0713759B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61031398A JPH0713759B2 (en) 1986-02-14 1986-02-14 Method for manufacturing toner for developing electrostatic image
GB08609394A GB2174621B (en) 1985-04-18 1986-04-17 Process for producing toner for developing electrostatic images and apparatus therefor
FR868605538A FR2580831B1 (en) 1985-04-18 1986-04-17 METHOD AND APPARATUS FOR PRODUCING PIGMENT POWDER FOR THE DEVELOPMENT OF ELECTROSTATIC IMAGES
US07/173,046 US4782001A (en) 1985-04-18 1988-03-28 Process for producing toner for developing electrostatic images and apparatus therefor
SG62/91A SG6291G (en) 1985-04-18 1991-02-07 Process for producing toner for developing electrostatic images and apparatus therefor
HK713/91A HK71391A (en) 1985-04-18 1991-09-05 Process for producing toner for developing electrostatic images and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031398A JPH0713759B2 (en) 1986-02-14 1986-02-14 Method for manufacturing toner for developing electrostatic image

Publications (2)

Publication Number Publication Date
JPS62187861A true JPS62187861A (en) 1987-08-17
JPH0713759B2 JPH0713759B2 (en) 1995-02-15

Family

ID=12330152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031398A Expired - Lifetime JPH0713759B2 (en) 1985-04-18 1986-02-14 Method for manufacturing toner for developing electrostatic image

Country Status (1)

Country Link
JP (1) JPH0713759B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner
JPS59101654A (en) * 1982-12-03 1984-06-12 Toshiba Corp Manufacture of electrophotographic toner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner
JPS59101654A (en) * 1982-12-03 1984-06-12 Toshiba Corp Manufacture of electrophotographic toner

Also Published As

Publication number Publication date
JPH0713759B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP2791013B2 (en) Method and apparatus for producing triboelectric toner for developing electrostatic images
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
JPH0619586B2 (en) Method for manufacturing toner for developing electrostatic image
EP0417561B1 (en) Collision-type gas current pulverizer and method for pulverizing powders
US4782001A (en) Process for producing toner for developing electrostatic images and apparatus therefor
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JPS62187861A (en) Manufacture of toner for development of electrostatically charged image
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPS63101859A (en) Manufacture of electrostatically charged image developing toner
JPS63101860A (en) Method and device for manufacturing electrostatically charged image developing toner
JPH0359674A (en) Manufacture of toner for electrostatic charge image development
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH01205172A (en) Production of toner for developing electrostatic charge image
JP3295793B2 (en) Airflow classifier and toner manufacturing method
JP2663041B2 (en) Collision type air crusher
JP3295794B2 (en) Airflow classifier and toner manufacturing method
JPH03287173A (en) Production of electrostatically charged image developing toner
JPS61242674A (en) Method for grinding and classifying solid particle
JPH09314061A (en) Production of electrostatic charge image developing toner
JPH03206466A (en) Production of toner for developing electrostatic charge image
JPH06313989A (en) Production of toner
JPH0929176A (en) Pneumatic sorter and production of toner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term