JPS62187245A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS62187245A
JPS62187245A JP61028954A JP2895486A JPS62187245A JP S62187245 A JPS62187245 A JP S62187245A JP 61028954 A JP61028954 A JP 61028954A JP 2895486 A JP2895486 A JP 2895486A JP S62187245 A JPS62187245 A JP S62187245A
Authority
JP
Japan
Prior art keywords
layer
lead
thickness
oxygen sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61028954A
Other languages
Japanese (ja)
Other versions
JPH0690176B2 (en
Inventor
Keiji Mori
啓治 森
Akira Uchikawa
晶 内川
Tadao Suwa
諏訪 忠男
Shinji Kimura
木村 信司
Koichi Nemoto
好一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Nissan Motor Co Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd, Nissan Motor Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP61028954A priority Critical patent/JPH0690176B2/en
Publication of JPS62187245A publication Critical patent/JPS62187245A/en
Publication of JPH0690176B2 publication Critical patent/JPH0690176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxygen sensor having good durability by forming a lead trap layer of a porous ceramic material so as to have >=0.3cc/g and <=5cc/g pore volume and >=200mu and <=1,000mu thickness. CONSTITUTION:Platinum electrodes 12, 13 are respectively provided on the inside and outside surface of a ceramic pipe 11 essentially consisting of zirconium oxide having closed ends and platinum is deposited by evaporation on the electrode 13 on the outside surface side to form a catalyst layer 14. A metallic oxide such as magnesium spinel is further thermally sprayed thereon to form a protective layer 15 and the lead trap layer 16 having >=0.3cc/g and <=5cc/g pore volume and >=200mu and <=1,000mu thickness is formed on the layer 15 by using the porous ceramic material such as gamma-alumina having a large specific area. Since the thickness of the layer 16 is large, the trapping amt. of the lead component is increased. The lead component contained in an exhaust gas is adsorbed by the gamma-alumina of the layer 16. On the other hand, the exhaust gas is made to arrive quickly at the layer 14 as the pore volume is large. The decrease of the reaction rate is thereby obviated. The durability of the oxygen sensor is thus improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関、特にその空燃比制御装置においで
排気中の酸素濃度を検出するため等に使用される酸素セ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an oxygen sensor used for detecting oxygen concentration in exhaust gas in an internal combustion engine, particularly in an air-fuel ratio control device thereof.

(従来の技術〉 この種の酸素センサとしては、例えば、第5図に示すよ
うなセンサ部構造を有したものがある(特開昭58−2
04365号公報、実開昭59−31054号公報参照
)。
(Prior art) As this type of oxygen sensor, for example, there is one having a sensor structure as shown in FIG.
(See Japanese Utility Model Publication No. 04365 and Japanese Utility Model Application Publication No. 59-31054).

第5図に示す酸素センサについて説明すると、先端部を
閉塞した酸化ジルコニウム(ZrOz)を主成分とする
セラミック管1の内表面と外表面の各一部には、白金(
Pt)ペーストを塗布した後、セラミック管lを焼成す
ることで、起電力取り出し用の白金電極2,3を形成し
である。セラミック管1の外表面には、更に白金を蒸着
して触媒層4を形成し、その上からマグネシウムスピネ
ル等の金属酸化物を溶射して、保護層5を形成しである
To explain the oxygen sensor shown in FIG. 5, a ceramic tube 1 whose main component is zirconium oxide (ZrOz) with a closed end is coated with platinum (platinum) on each part of the inner and outer surfaces.
After applying the Pt) paste, the ceramic tube 1 is fired to form platinum electrodes 2 and 3 for taking out the electromotive force. On the outer surface of the ceramic tube 1, a catalyst layer 4 is further formed by vapor-depositing platinum, and a protective layer 5 is formed by spraying a metal oxide such as magnesium spinel thereon.

ここにおいて、セラミック管lの内側に基準気体として
大気が導かれるようにする一方、セラミック管1の外側
を機関排気通路に臨ませて被検出気体である排気と接触
させ、内表面に接触する大気中の酸素濃度と外表面に接
触する排気中の酸素濃度との比に応じた電圧を白金電極
2.3間に発生させることにより、排気中の酸素濃度を
検出するのである。
Here, while the atmosphere is introduced into the inside of the ceramic tube 1 as a reference gas, the outside of the ceramic tube 1 is made to face the engine exhaust passage and is brought into contact with the exhaust gas, which is the gas to be detected, so that the atmosphere comes into contact with the inner surface. The oxygen concentration in the exhaust gas is detected by generating a voltage between the platinum electrodes 2 and 3 that corresponds to the ratio of the oxygen concentration in the exhaust gas to the oxygen concentration in the exhaust gas that contacts the outer surface.

尚、触媒層4は、CO+%Oz −COz (7)反応
を促進し、濃混合気で燃焼させたときに、その部分に残
存する低濃度の02をCOと良好に反応させて0□濃度
をゼロにし、セラミック管l内外の0zfa度比を大き
くして大きな起電力を発生させる。一方、希薄混合気で
燃焼させたときには、排気中に高濃度の0□と低濃度の
COがあるため、COとOtとが反応してもまだ0□が
余り、セラミック管1内外の0zfi度比は小さく殆ど
電圧は発生しない。
The catalyst layer 4 promotes the CO+%Oz -COz (7) reaction, and when a rich mixture is combusted, the low concentration of 02 remaining in that area reacts favorably with CO to reduce the 0□ concentration. is set to zero, and the 0zfa degree ratio between the inside and outside of the ceramic tube 1 is increased to generate a large electromotive force. On the other hand, when combustion is performed with a lean mixture, there is a high concentration of 0□ and a low concentration of CO in the exhaust gas, so even if CO and Ot react, there is still 0□ left over, and the 0zfi degree inside and outside of the ceramic tube 1 increases. The ratio is small and almost no voltage is generated.

〈発明が解決しようとする問題点〉 かかるセンサ部構造を有した酸素センサを備えた内燃機
関において、鉛を多く含んだ有鉛ガソリン等を使用した
場合、排気中に含まれる鉛成分が保護層5を浸透して触
媒層4表面を覆うという、いわゆる鉛被前を生じる。こ
の被毒が進むと、排気中の酸素濃度が理論空燃比より小
に転換した時に、前記した触媒層4によるCOと0□と
の反応が十分に促進されず、第7図の破線で示すように
起電力の立ち上がりに遅れを生じ、以て酸素センサから
の信号に基づく空燃比のリーンからリッチへの切換制御
に応答遅れを生じ、空燃比の平均値がリッチ側へ偏り、
機関の燃費、出力、排気エミッション等に悪影響を与え
るという問題点があった。尚、第7図中実線は正常状態
の特性を示す。
<Problems to be Solved by the Invention> In an internal combustion engine equipped with an oxygen sensor having such a sensor structure, when leaded gasoline containing a large amount of lead is used, the lead components contained in the exhaust gas may form a protective layer. 5 permeates and covers the surface of the catalyst layer 4, resulting in so-called lead coating. As this poisoning progresses, when the oxygen concentration in the exhaust gas changes to lower than the stoichiometric air-fuel ratio, the reaction between CO and 0□ by the catalyst layer 4 is not sufficiently promoted, as shown by the broken line in FIG. As a result, there is a delay in the rise of the electromotive force, which causes a response delay in the air-fuel ratio switching control from lean to rich based on the signal from the oxygen sensor, and the average value of the air-fuel ratio is biased toward the rich side.
There was a problem in that it adversely affected the fuel efficiency, output, exhaust emissions, etc. of the engine. Incidentally, the solid line in FIG. 7 shows the characteristics in the normal state.

そこで、かかる鉛被前対策として、従来第6図に示すよ
うに、保護層5の上に更に比表面積の大きいT−アルミ
ナやδ−アルミナ等の多孔性セラミックス材を用い気孔
容積が0.01=0.08cc/gで膜厚が20μ〜6
0μ程度の鉛トラップ層6を設けるようにし、γ−アル
ミナやδ−アルミナで鉛をトラップさせて鉛被前を抑制
し酸素センサの寿命の向上を図っている。
Therefore, as a countermeasure against lead exposure, as shown in FIG. 6, a porous ceramic material such as T-alumina or δ-alumina, which has a larger specific surface area, is used on the protective layer 5, and the pore volume is 0.01. =0.08cc/g, film thickness 20μ~6
A lead trap layer 6 with a thickness of about 0 μm is provided, and lead is trapped with γ-alumina or δ-alumina to suppress lead deposition and improve the life of the oxygen sensor.

ところで、第3図に示すように上述の鉛トラップN6の
膜厚を厚くすればするほど鉛に対するトラップ効果は大
きくなるが、従来の鉛トラップ層構造では気孔容積が小
さいため膜厚を厚くすると、排気の触媒層4への到達速
度が遅くなり応答性が低下するという不具合があった。
By the way, as shown in FIG. 3, the thicker the film thickness of the lead trap N6 described above, the greater the trapping effect on lead.However, in the conventional lead trap layer structure, the pore volume is small, so if the film thickness is increased, There was a problem in that the speed at which the exhaust gas reaches the catalyst layer 4 was slow, resulting in a decrease in responsiveness.

そこで、本発明は上記の実情に鑑みてなされたもので、
応答性能を損なうことなく鉛被前効果を高めることので
きる鉛トラップ層構造とすることにより、耐久性の更に
良好な酸素センサを提供することを目的とする。
Therefore, the present invention was made in view of the above-mentioned circumstances.
The object of the present invention is to provide an oxygen sensor with even better durability by using a lead trap layer structure that can enhance the lead exposure effect without impairing response performance.

く問題点を解決するための手段〉 このため本発明では、鉛トラップ層を、多孔性セラミッ
クス材により気孔容積が0.3 cc/g以上5cc/
g以下かつ厚さが200μ以上1000μ以下に形成し
て構成した。
Therefore, in the present invention, the lead trap layer is made of a porous ceramic material with a pore volume of 0.3 cc/g or more and 5 cc/g.
g or less and a thickness of 200 μm or more and 1000 μm or less.

〈作用〉 上記の構成によれば、鉛トラップ層が厚くて鉛成分のト
ラップ量を増大させることができ触媒層の鉛被前を抑制
できると共に、気孔容積が大きく排気が触媒層へ速やか
に到達するので応答性が低下することはな(なる。
<Function> According to the above configuration, the lead trap layer is thick and can increase the amount of lead component trapped, suppressing lead encrustation in the catalyst layer, and the pore volume is large so that exhaust gas quickly reaches the catalyst layer. Therefore, the responsiveness will not deteriorate.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1実施例を示す第1図において、第5図に示すと同様
に、閉塞端部を有する酸化ジルコニウム(ZrOz)を
主成分とするセラミック管11の内外表面にそれぞれ白
金電極12.13を設け、外表面側の白金電極13上に
白金を蒸着して触媒層14を形成し、更にマグネシウム
スピネル等の金属酸化物を溶射して保護層15を形成し
、この保護層15上に鉛トラップ層16を形成すること
は従来と同様である。
In FIG. 1 showing the first embodiment, platinum electrodes 12 and 13 are respectively provided on the inner and outer surfaces of a ceramic tube 11 mainly composed of zirconium oxide (ZrOz) and having a closed end, as shown in FIG. , a catalyst layer 14 is formed by vapor depositing platinum on the platinum electrode 13 on the outer surface side, a protective layer 15 is formed by spraying a metal oxide such as magnesium spinel, and a lead trap layer is formed on this protective layer 15. 16 is the same as the conventional method.

そして、本発明では、前記鉛トラップJi16を、比表
面積の大きい多孔性セラミックス材により、気孔容積を
従来よりも大きい0.3 cc/g以上5 cc/g以
下とし、かつ厚さを200μ以上1000μ以下として
いる。
In the present invention, the lead trap Ji16 is made of a porous ceramic material with a large specific surface area, and has a pore volume of 0.3 cc/g or more and 5 cc/g or less, which is larger than the conventional one, and a thickness of 200 μm or more and 1000 μm or less. It is as follows.

例えば、本実施例では、比表面積100rrf/g以上
のγ−アルミナペレットをボールミルで粒径4〜10μ
に粉砕し、これに10〜40%のアルミナゾルを加えて
ベースト状にし、保護層15上に200μ〜400μの
厚さに塗布した後、500〜700℃で焼成することに
よって鉛トラップ層16を形成しである。
For example, in this example, γ-alumina pellets with a specific surface area of 100rrf/g or more were milled in a ball mill with a particle size of 4 to 10 μm.
The lead trap layer 16 is formed by adding 10 to 40% alumina sol to the powder, applying it to a thickness of 200 to 400 μ on the protective layer 15, and baking it at 500 to 700°C. It is.

かかる構成によれば、排気中に含まれる鉛成分は鉛トラ
ップ層I6のγ−アルミナで吸着され、その吸着能力は
従来よりも一層良好となる。一方、気孔容積が大きいた
め排気が触媒7114に速やかに到達するので反応速度
が低下することはない。従って、酸素センサの耐久性を
向上させることができる。
According to this configuration, the lead component contained in the exhaust gas is adsorbed by the γ-alumina of the lead trap layer I6, and the adsorption ability thereof becomes even better than that of the conventional case. On the other hand, since the pore volume is large, the exhaust gas quickly reaches the catalyst 7114, so the reaction rate does not decrease. Therefore, the durability of the oxygen sensor can be improved.

第3図は鉛トラップ層16の厚さ変化に伴う使用時間と
λ(空気過剰率)のリッチ側への偏りとの関係の実験デ
ータを示し、第4図は気孔容積を変えた時の鉛トラップ
JiJ16の厚さと空燃比制御周波数(反応速度)との
関係の実験データを示すもので、これら第3図及び第4
図からも明らかなように鉛トラップ層16の厚さを20
0 μ以上でかつ気孔容積を0.3 cc/g以上にす
ると効果が大であることがわかる。また、鉛トラップ層
16の気孔容積が5cc/gを超えると鉛の吸着性能に
悪影響が出始め、鉛トラップ層16の厚さが1000μ
を超えると反応速度に悪影響をおよぼし、また鉛トラッ
プ層16が剥離しやすくなることが確認されている。
Figure 3 shows experimental data on the relationship between the usage time and the deviation of λ (air excess ratio) towards the rich side as the thickness of the lead trap layer 16 changes, and Figure 4 shows the lead trapping layer 16 when the pore volume is changed. This shows experimental data on the relationship between the thickness of the trap JiJ16 and the air-fuel ratio control frequency (reaction speed).
As is clear from the figure, the thickness of the lead trap layer 16 is 20 mm.
It can be seen that the effect is great when the pore volume is 0.0 μ or more and the pore volume is 0.3 cc/g or more. Furthermore, when the pore volume of the lead trap layer 16 exceeds 5 cc/g, the lead adsorption performance begins to be adversely affected, and the thickness of the lead trap layer 16 is 1000 μm.
It has been confirmed that if the lead trapping layer 16 is exceeded, the reaction rate is adversely affected and the lead trap layer 16 is easily peeled off.

第2図は第2実施例を示し、このものは鉛I・ランプ層
1Gの下層部16aを触媒、例えば白金をγ−アルミナ
に担持させた触媒担持層とし、上層部I6bは単にT−
アルミナだけの層としたものである。
FIG. 2 shows a second embodiment, in which the lower layer 16a of the lead I/lamp layer 1G is a catalyst supporting layer in which a catalyst, for example platinum, is supported on γ-alumina, and the upper layer I6b is simply a T-
It is a layer made of only alumina.

この場合は、例えば比表面積Loom/g以上のT−ア
ルミナペレットをボールミルで粒径4−10μに粉砕し
、10〜40%のアルミナゾルを加えてペースト状にし
、このペーストの一部に塩化白金酸を加えたもの(白金
として0.2〜2.0wt%)を10〜50μの厚さで
保護層15上に塗布して500〜700℃で焼成する。
In this case, for example, T-alumina pellets with a specific surface area of Loom/g or more are ground with a ball mill to a particle size of 4-10μ, 10-40% alumina sol is added to make a paste, and part of this paste is added with chloroplatinic acid. (0.2 to 2.0 wt % as platinum) is coated on the protective layer 15 to a thickness of 10 to 50 μm and baked at 500 to 700°C.

この焼成処理後、塩化白金酸を加えない残りのペースト
をその上に200〜400μの厚さで塗布し500〜7
00℃で焼成することにより、下層部16aに触媒担持
層を有する鉛トラップ層16を形成する。
After this baking treatment, the remaining paste without chloroplatinic acid is applied on top to a thickness of 200-400 μm.
By firing at 00° C., a lead trap layer 16 having a catalyst supporting layer is formed in the lower layer portion 16a.

かかる第2実施例によれば、第1実施例と同様の効果に
加えて、触媒層14が被毒しその酸化作用が低下しても
鉛トラップ層16の下層部16aの触媒担持層によって
触媒層14の触媒機能を補うことができ、一層酸素セン
サの耐久性を向上させることができる。
According to the second embodiment, in addition to the same effects as in the first embodiment, even if the catalyst layer 14 is poisoned and its oxidizing effect is reduced, the catalyst support layer in the lower part 16a of the lead trap layer 16 can catalyze the The catalytic function of the layer 14 can be supplemented, and the durability of the oxygen sensor can be further improved.

また、以上の実施例では下層部16a、鉛トラップ層1
6ともにT−アルミナを用いた酸素センサを示したが、
δ−アルミナを使えば高温でも安定な酸素センサが得ら
れる。
Further, in the above embodiment, the lower layer 16a, the lead trap layer 1
6 both showed oxygen sensors using T-alumina,
If δ-alumina is used, an oxygen sensor that is stable even at high temperatures can be obtained.

(発明の効果) 以上述べたように本発明によれば、鉛トラップ層を、そ
の気孔容積を0.3 cc/g以上5 cc/g以下と
し、かつ200μ以上1000μ以下の厚さにして形成
したので、反応速度を低下させることなく触媒層の鉛被
前の抑制作用をより一層高めることができ、燃費、出力
、排気エミッション特性を改善できることは勿論、酸素
センサの耐久性を一層向上させることができる。
(Effects of the Invention) As described above, according to the present invention, the lead trap layer is formed with a pore volume of 0.3 cc/g or more and 5 cc/g or less, and a thickness of 200 μm or more and 1000 μm or less. Therefore, it is possible to further enhance the suppressing effect of lead deposition on the catalyst layer without reducing the reaction rate, and not only improve fuel efficiency, output, and exhaust emission characteristics, but also further improve the durability of the oxygen sensor. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す要部断面図、第2図
は本発明の第2実施例を示す要部断面図、第3図は鉛ト
ラップ層厚さを変化させたときのリッチ側への偏り度合
と使用時間との関係を示す図、第4図は気孔容積を変化
させたときの鉛トラップ層厚さと反応速度との関係を示
す図、第5図は本発明を適用する酸素センサの従来のセ
ンサ部を示す断面図、第6図は鉛トラップ層を設けた従
来例を示す要部断面図、第7図は正常時と鉛被毒時の出
力電圧状態を示す図である。 II・・・セラミック管  12・・・内表面側白金電
極13・・・外表面側白金電極  14・・・触媒層 
 15・・・保護[16・・・鉛トラップ層 特許出願人 日本電子機器株式会社 日産自動車株式会社 代理人 弁理士 笹 島  冨二雄 第5図 第6図
Fig. 1 is a sectional view of the main part showing the first embodiment of the present invention, Fig. 2 is a sectional view of the main part showing the second embodiment of the invention, and Fig. 3 is a case where the thickness of the lead trap layer is changed. Fig. 4 shows the relationship between the thickness of the lead trap layer and the reaction rate when the pore volume is varied, and Fig. 5 shows the relationship between the degree of bias toward the rich side and the usage time. A cross-sectional view showing the conventional sensor part of the applied oxygen sensor, Figure 6 is a cross-sectional view of the main part showing a conventional example with a lead trap layer, and Figure 7 shows the output voltage state during normal and lead poisoning. It is a diagram. II...Ceramic tube 12...Platinum electrode on the inner surface side 13...Platinum electrode on the outer surface side 14...Catalyst layer
15... Protection [16... Lead trap layer Patent applicant Japan Electronics Co., Ltd. Nissan Motor Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)閉塞端部を有するセラミック管の内外表面に白金
電極を設け、外表面側の白金電極上に、触媒層,保護層
及び鉛トラップ層を順次積層し、大気に接触させた内表
面側電極と内燃機関の排気に接触させた外表面側電極と
の間に発生する起電力により排気中の酸素濃度を検出す
るようにした酸素センサにおいて、前記鉛トラップ層を
、多孔性セラミックス材により気孔容積が0.3cc/
g以上5cc/g以下かつ200μ以上1000μ以下
の厚さにして形成したことを特徴とする酸素センサ。
(1) Platinum electrodes are provided on the inner and outer surfaces of a ceramic tube with a closed end, and a catalyst layer, a protective layer, and a lead trap layer are sequentially laminated on the platinum electrode on the outer surface, and the inner surface is exposed to the atmosphere. In an oxygen sensor that detects the oxygen concentration in exhaust gas by the electromotive force generated between the electrode and the outer surface electrode that is in contact with the exhaust gas of an internal combustion engine, the lead trap layer is made of a porous ceramic material with pores. Volume is 0.3cc/
An oxygen sensor characterized in that it is formed to have a thickness of 200μ to 1000μ and a thickness of 200μ to 1000μ.
(2)鉛トラップ層は、その下層部が多孔性セラミック
ス材に触媒を担持させた触媒担持層である特許請求の範
囲第1項記載の酸素センサ。
(2) The oxygen sensor according to claim 1, wherein the lead trap layer has a lower layer that is a catalyst support layer in which a catalyst is supported on a porous ceramic material.
JP61028954A 1986-02-14 1986-02-14 Oxygen sensor Expired - Fee Related JPH0690176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028954A JPH0690176B2 (en) 1986-02-14 1986-02-14 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028954A JPH0690176B2 (en) 1986-02-14 1986-02-14 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPS62187245A true JPS62187245A (en) 1987-08-15
JPH0690176B2 JPH0690176B2 (en) 1994-11-14

Family

ID=12262807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028954A Expired - Fee Related JPH0690176B2 (en) 1986-02-14 1986-02-14 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0690176B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283442A (en) * 1988-09-21 1990-03-23 Japan Electron Control Syst Co Ltd Oxygen sensor for internal combustion engine
EP0686847A2 (en) 1994-06-09 1995-12-13 Nippondenso Co., Ltd. Oxygen concentration detector
JP2006511806A (en) * 2002-12-23 2006-04-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measuring sensor
EP2372358A1 (en) 2010-03-31 2011-10-05 NGK Insulators, Ltd. Gas sensor element and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273085A (en) * 1975-12-15 1977-06-18 Nippon Soken Oxygen concentration detector
JPS5520423A (en) * 1978-08-01 1980-02-13 Toyota Motor Corp Oxygen sensor element
JPS60134157U (en) * 1984-02-20 1985-09-06 日本電子機器株式会社 Oxygen sensor for internal combustion engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273085A (en) * 1975-12-15 1977-06-18 Nippon Soken Oxygen concentration detector
JPS5520423A (en) * 1978-08-01 1980-02-13 Toyota Motor Corp Oxygen sensor element
JPS60134157U (en) * 1984-02-20 1985-09-06 日本電子機器株式会社 Oxygen sensor for internal combustion engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283442A (en) * 1988-09-21 1990-03-23 Japan Electron Control Syst Co Ltd Oxygen sensor for internal combustion engine
EP0686847A2 (en) 1994-06-09 1995-12-13 Nippondenso Co., Ltd. Oxygen concentration detector
US5593558A (en) * 1994-06-09 1997-01-14 Nippondenso Co., Ltd. Oxygen concentration detector
JP2006511806A (en) * 2002-12-23 2006-04-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measuring sensor
EP2372358A1 (en) 2010-03-31 2011-10-05 NGK Insulators, Ltd. Gas sensor element and method of manufacturing the same
US8636886B2 (en) 2010-03-31 2014-01-28 Ngk Insulators, Ltd. Gas sensor element and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0690176B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5160598A (en) Oxygen sensor for air-fuel ratio control having a protective layer including an oxygen storage material
US4272349A (en) Catalyst supported oxygen sensor with sensor element having catalyst and protective layers and a method of manufacturing same
US5849165A (en) Oxygen sensor for preventing silicon poisoning
US4066413A (en) Gas component detection apparatus
US5423973A (en) Exhaust gas sensor and method of producing the same
JPS5924382B2 (en) Manufacturing method for a sensor that mainly measures oxygen concentration in exhaust gas from internal combustion engines
JPS59100854A (en) Sensor of wide range air fuel ratio
US20040007462A1 (en) Gas sensor element and its production method
US4107018A (en) Solid electrolyte gas sensor having a protective bonding layer
EP0610884B1 (en) Oxygen concentration sensor
US4584086A (en) Device for detecting concentration of oxygen in exhaust gas
JP2000310610A (en) Gas sensor element and production thereof
JPH11237361A (en) Gas sensor
JPS62187245A (en) Oxygen sensor
JPS61207961A (en) Oxygen sensor
JP4532286B2 (en) Measuring sensor
JPS61153561A (en) Oxygen sensor
JPS6214055A (en) Oxygen sensor
JP2847979B2 (en) Oxide semiconductor gas sensor
JP3623870B2 (en) Air-fuel ratio detection element, method for manufacturing the same, and method for stabilizing air-fuel ratio detection element
JP4539809B2 (en) Exhaust purification device
JPH0668479B2 (en) Oxygen concentration detector
JPH0778483B2 (en) Oxygen detector
JPH0650298B2 (en) Oxygen sensor for internal combustion engine
JPH0725686Y2 (en) Oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees