JPS6218645B2 - - Google Patents

Info

Publication number
JPS6218645B2
JPS6218645B2 JP190679A JP190679A JPS6218645B2 JP S6218645 B2 JPS6218645 B2 JP S6218645B2 JP 190679 A JP190679 A JP 190679A JP 190679 A JP190679 A JP 190679A JP S6218645 B2 JPS6218645 B2 JP S6218645B2
Authority
JP
Japan
Prior art keywords
yarn
spinneret
spinning
temperature
spun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP190679A
Other languages
Japanese (ja)
Other versions
JPS5593816A (en
Inventor
Michiaki Hagiwara
Isamu Ogasawara
Kazumi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP190679A priority Critical patent/JPS5593816A/en
Publication of JPS5593816A publication Critical patent/JPS5593816A/en
Publication of JPS6218645B2 publication Critical patent/JPS6218645B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステルから通常の溶融紡糸法に
より、断糸、毛羽、融着のない高品位の完全連続
極細多フイラメント糸を経済的かつ能率的に製造
する方法に関するものである。 極細繊維は合成紙、フイルター、人造皮革、衣
料用スエードなどに使用され、最近工業的な意味
で進展が著しく、極細繊維の製造とその応用研
究、開発が活発に行われている。従来、極細繊維
を製造する方法としては剥離型複合繊維割繊法、
海島型繊維の海成分溶解除去法などが提案され、
工業化されているが、これらの方法は経済性、操
業性および糸質性能の面において種々問題があつ
た。通常の溶融紡糸法により単糸1デニール以下
の極細糸を製造する試みもなされているが、紡出
ポリマーの表面張力等の関係で極細糸特に単糸
0.5デニール以下のような極細糸を操業性よく製
造することはできなかつた。 そこで本発明者らは経済性や糸質性能の面で好
ましい通常の溶融紡糸法によつて高品位の完全連
続極細ポリエステル多フイラメント糸を操業性よ
く製造するべく鋭意研究の結果、本発明に到達し
た。 すなわち、本発明はポリエステルを溶融紡糸す
るに際して紡糸口金孔1孔当りの吐出量(g/
分)を0.05〜0.15g/分とし、引取速度を18×103
×Qm/分以上で、かつ3000m/分以上として、
紡糸引取糸の単糸繊度が0.1〜0.5デニールの極細
繊維を製造する方法において、次のA,Bの条件
を満足させることを特徴とする極細ポリエステル
繊維の製造法である。 A:口金孔径(D)が0.2mm以下で、しかも式で規
定するKの値が0〜0.25となるように口金孔
が環状に配置された紡糸口金を用いること、 K=D−D/D 〔D1,D2は紡糸口金孔の最小および最大配孔
径〕 B:紡糸口金直下10cm以内の領域において、紡糸
口金の外周から中心に向けて、式を満足す
る流量M(Nl/分)の気体を吹き付け、か
つ紡出糸条近傍の雰囲気温度T(℃)を式
の範囲とすること。 〔Vは紡出糸条の引取速度(m/分)、H
は紡糸口金の孔数でH≧34〕 〔ηはポリエステルの相対粘度で1.30≦η
≦1.45、Lは紡糸口金面からの距離(cm)〕 なお本発明において、ポリエステルの相対粘度
ηはフエノールと四塩化エタンの等重量混合物を
溶媒とし、濃度0.5g/100mlで、20℃で測定した
値を示す。 次に本発明を図面を参照しながら説明する。 第1図は本発明の一実施態様を示す溶融紡糸装
置の説明図で、1は紡糸口金、2,3は紡糸口金
面直下10cm以内に設置された、外周方向から紡糸
口金の中心方向へ気体を吹き出す円筒型の吹付装
置(環状吹付)で、2段吹き付け型となつている
(以後上部吹付2を第1吹付、下部吹付3を第2
吹付と称す)。4は紡糸口金1より紡出された糸
条、5は支点ガイドで、油剤処理装置6ならびに
糸条速度を規定する最初の引取ローラー(以後第
1引取ローラーと称す)7より上流に位置する。
8は第1引取ローラー7と一対になつている第2
引取ローラーで、9はインターレースノズルまた
は仮撚ノズル、10はトラバース支点ガイド、1
1は捲取機である。第2図は紡糸口金1の下面を
示すもので、口金孔12は最小配孔径D1、最大
配孔径D2で規定される円環状の配孔帯に配孔さ
れている。 従来の通常紡糸方法を採用する限り、ポリマー
の表面張力などのため、均一な完全連続極細繊維
の紡糸は極めて困難であつたが、本発明を採用す
ることにより簡単に目的とする単糸繊度が0.1〜
0.5デニールのポリエステル多フイラメントの完
全連続極細繊維を得ることができる。その原因に
ついては現在まだ明確に解明するまでに至つてい
ないが、おそらく基本的には紡糸口金孔直下のポ
リエステル溶融重合体のふくらみと表面張力およ
び落下速度(引取速度)の三つの要因の微妙な組
合せによるものと考えられる。しかし、紡出糸条
4のフイラメント数が多くなると、前記三つの基
本要因の他の紡出糸条の個々のフイラメントの周
囲に発生する随伴気流の相互作用による糸揺れ、
冷却雰囲気の温度変動、外周部と中心部等のフイ
ラメント位置の違いによつて生ずる冷却細化固化
挙動の差等の問題が発生する。すなわち、フイラ
メント間の張力、冷却、速度斑等をなくし、理想
的な冷却細化固化をさせることが工業化するに当
つては重要な要因として考えなければならない。 以下本発明につき具体的に説明する。 紡糸口金孔径D(mm)、該口金孔1孔当りの吐
出量Q(g/分)、糸条引取速度V(m/分)と
得られる繊維の単糸繊度dおよび紡糸ドラフト
V/V0との関係は次式で示される。 d=9000Q/V V/V0=πρDV/4Q ただし、V0は紡糸口金孔12から吐出される
溶融重合体の吐出速度で V0=4Q/πρD(m/分) ρ:吐出される溶融重合体の密度(g/cm3) 式より明らかな如く、極細繊維を得るために
は、糸条の引取速度Vを大巾に上げるか、あるい
は紡糸口金孔121孔当りから吐出される溶融重
合体の量Qを小さくする必要がある。糸条4の引
取速度Vだけを上げて極細繊維を製造しようとす
る方向は生産性の点からみて好ましいことである
が、設備費、紡糸性等の点に種々の問題を有して
いる。すなわち、捲取機の性能からみても現在市
販の捲取機の最高捲取速度は6000m/分であるゆ
え、これ以上の速度で捲取り製品化することは不
可能であり、また高速の捲取機を開発したとして
も設備費は莫大なものとなろう。 さらに紡糸口金孔121孔当りの吐出量Qを従
来レベルとして糸条の引取速度Vだけを高速化し
て極細繊維を得ようとすると、式より明らかな
如く、紡糸ドラフト(V/V0)を大きくする必要
があり、その結果、紡出糸条4近傍の随伴気流が
非常に大きくなり、紡糸口金1下の雰囲気を極端
に乱し、糸揺れ、冷却斑を惹起し、単糸繊度0.7
デニール相当の引取り速度(すなわちQ=
0.45g/分のときでV=5500m/分)では安定し
た紡糸が不可能となる。次に紡糸口金孔121孔
当りから吐出される溶融高分子重合体の量Qを小
さくすれば式より明らかな如く、より細い繊維
を得るのに好ましい方向である。しかし通常の紡
糸口金孔径(0.25〜1.0mm)を有した紡糸口金1
を用いて吐出量Qを徐々に低下させ、口金孔12
1孔当り0.2g/分以下にすると、紡出糸条4は霜
ふり状態となり、非常に不安定で均一な連続極細
繊維を得ることができない。 そこで本発明者らは霜ふり状態を発生させるこ
となくして、いかに紡糸口金孔121孔当りの吐
出量Qを低下させ、安定して紡糸できるか鋭意研
究した結果、紡糸口金孔径Dを0.20mm以下に小さ
くすることにより、紡糸口金孔121孔当りの吐
出量Qを0.15g/分以下にしても紡出糸条4は霜
ふり状態とならず、安定して良好に紡糸できるこ
とを見出した。より細い極細繊維を得るためには
前述の如く、口金孔121孔当りの吐出量Qを小
さく、かつ引取り速度Vを上げることが好ましい
が式より明らかなように、紡糸ドラフト(V/
V0)が極端に大きくなり、紡出糸条4にドラフト
切断が発生し、連続捲取は困難となる。しかし、
紡糸口金孔径Dを小さくすることにより、紡糸ド
ラフトも紡糸可能限界内に抑え、かつ該口金孔1
21孔当りから吐出される溶融重合体の量Qも低
下させることができるため、それほど超高速引取
りにしなくとも吐出量Qに比例した引取り速度
V、すなわち、18×103×Q(m/分)以上で引
取ることにより極細繊維を得ることが可能となつ
た。逆に口金孔径Dと該口金孔121孔当りの吐
出量Qを本発明の範囲内にし、引取り速度Vを18
×103×Q(m/分)より低速にすると紡糸ドラ
フトが小さく、低引取り張力でかつ単糸繊度が大
きいため、冷却が不充分となり、糸揺れ、糸条間
の融着が発生し延伸に供するまでの糸条は得られ
ない。 したがつて、紡糸口金孔径Dを0.20mm以下と
し、該口金孔121孔当りの高分子重合体吐出量
Qを0.15g/分以下として紡出し、引取速度Vを
18×103×Qm/分以上として引取ることは本発明
の目的とする極細繊維を製造するために不可欠の
要件である。 しかし、吐出量Qを少なくするには、口金孔径
Dを小さくしなければならず、紡糸口金製作技術
上、吐出量Qは0.05g/分が下限である。また、
引取速度Vが小さいと、たとえば18×103×Qm/
分以上であつても、適度の紡糸張力とならず、糸
揺れ、糸条間の融着等が発生して均一な極細繊維
を操業性良く製造することができないと共に、生
産性が悪く工業的に実施することが困難であり、
引取速度は3000m/分以上とすることが必要であ
る。 一方、実用的な糸特性、加工性、生産性を考慮
した場合には紡出糸条の全デニールには自ずと下
限があり、単糸デニールを低下させるほどフイラ
メント本数を増加させる必要がある。したがつて
生産性、糸揺れ、単糸斑、作業性等多フイラメン
ト化に付随して発生する問題点の解決が工業化の
ために絶対必要である。 本発明法によれば前述の如く低単孔吐出量、高
引取速度で紡糸が行われるため紡出糸条の細化固
化は急速に進み、紡糸口金1面から25cm程度以内
の距離で完了するから、紡糸口金1面から紡出糸
条4が固化するまでの多数のフイラメント近傍の
雰囲気温度、気流を厳密に調整することが最も重
要である。しかし、前記式のKが0.25よりも大
きい配孔帯に100孔以上の多数の口金孔を配孔し
た紡糸口金を用いる限り、いかに糸条近傍の雰囲
気温度、気流を調整しても紡出糸条の外周部と中
心部とでは冷却速度の差が生じ、糸曲り、フイラ
メント間の繊度斑が増大して高品位の極細繊維を
安定して製造することはできない。はなはだしい
場合は紡出糸条の固化点近傍で雰囲気温度を実測
すると、中心部の雰囲気温度は外周部に比べ50〜
100℃高温で、中心部の糸条の固化点は外周部の
糸条の固化点よりかなり下流にずれ、細化固化す
るまでに糸条間に張力速度差が生じると同時に糸
条近傍に発生する随半気流の相互作用のため糸揺
れ、融着、切断が多発する。 本発明者らはこの点についても鋭意研究を進め
た結果、紡糸口金孔の配置の仕方と、紡糸口金面
直下10cm以内の領域において紡出糸条の冷却方法
を改良することにより解決するに至つた。すなわ
ち、紡出されたポリエステル多フイラメントの細
化固化挙動を均一にするため、紡糸口金1面の口
金孔12の配置を環状にすると同時に式で規定
するK値を0〜0.25にし、該紡糸口金1面直下10
cm以内の領域において外周方向から紡糸口金の中
心方向へ吹き出す気体の流量M(Nl/分)を
式で規定すると同時に紡出糸条近傍の気体雰囲気
の温度T(℃)を式の範囲内に調整することに
より糸揺れ、融着、切断等のない高品位のポリエ
ステル多フイラメントの完全連続極細糸を製造す
ることを可能にした。特に式でK=0とは紡糸
口金孔12配列数が1列であることを示し、この
紡糸口金を用いると、各フイラメント間の細化固
化挙動は殆んど均一であり、単糸間斑の小さい高
品位の連続極細糸を安定して得ることができる。
口金板全面からの均一な重合体吐出を意図してK
値を0.25より大きくした場合、いかなる糸条冷却
方法を採用しても、フイラメント間に細化固化挙
動の差が大きく生じ、口金孔12を環状に配置し
た効果が消失して前述の如き問題点を惹起する。
また式で規定するKの値が0ないし0.25である
ように口金孔が環状に配置された紡糸口金を用い
ても紡糸口金面直下10cm以内の領域にいて、紡糸
口金の外周から中心方向へ吹き出す気体の流量M
(Nl/分)が式の下限より少ない場合は糸条中
心部の雰囲気温度が外周部に比べて高く、中心部
の糸条の固化は外周部の糸条の固化点よりもかな
り下流にずれ、細化固化するまでに糸条間の張
力、速度差が生じると同時に、糸条近傍に発生す
る随伴気流を完全に調整することができず、同一
個所で雰囲気温度を測定しても温度変動が5〜20
℃程度生じ糸揺れ、融着、切断が発生し、積極的
な吹付効果はほとんど期待できない。逆に吹き出
す気体の流量Mが式の上限より多い場合は、紡
糸口金直下に発生する糸条近傍の随伴気流、雰囲
気温度変動も抑えることができるが、吹き付け流
量が多すぎるために吹き付け風で直接紡出糸条を
切断する現象が発生して好ましくない。すなわ
ち、紡出糸条に吹き付ける気体の量は、基本的に
は紡出糸条が惹起する随伴気流の量よりやや多目
にすることが好ましく、糸条引取速度Vと紡出フ
イラメント総数Hの函数で規定される実験式の
範囲内に調整することで解決に至つた。 本発明で採用する吹き付け気体は空気またはチ
ツソガス等の不活性ガスが好ましく、吹き付け段
数は1段でもよいし、第1図に示す如く2段以上
の多段吹き付け方法のどれを採用してもよい。特
に紡出フイラメント総数Hが多く、しかも引取速
度が高速化するにしたがつて吹き付け気体の量を
多くする必要があるので、2段以上の吹き付け方
法を採用し、上段吹き付け部からの吹き付け風量
を下段部の吹き付け風量より少目に、また吹き付
け風の温度も上段部は下段部より高温に、しかも
ノズル寿命を長くするため上段部に加熱チツソガ
スのような不活性ガスを流通するようにすると一
層効果的である。次に前記した如く式を満足す
る紡糸口金および式を満足する環状吹き付け方
法を採用しても、紡糸口金直下10cm以内の領域に
おける糸条冷却速度(糸条近傍の雰囲気の温度)
が不適当であると、すなわち糸条冷却速度が速い
とドラフト切断が多発し、逆に冷却速度を遅くす
ると糸条の張力が低下し、糸揺れ、密着、ドロー
レゾナンス現象が発生して高品位のポリエステル
多フイラメントの連続極細糸を得ることはできな
い。 そこで本発明者らは、高品位のポリエステル多
フイラメントの連続極細糸を製造するためには、
紡糸口金直下の糸条近傍の雰囲気の温度(糸条よ
り5mm離れた気体の温度を0.25mmφのCA熱電対
を用いて測定した温度)についても鋭意研究した
結果、前記式の温度範囲内に調整することによ
り解決するに至つた。紡出ポリエステル多フイラ
メントを理想的(糸揺れ、密着、ドラフト切断、
霜降り状とならない)に均一冷却細化固化するた
めには、固化点での紡糸張力を0.5〜1.0g/dに
することが好ましく、そのためには紡出ポリエス
テルの重合度(本発明では相対粘度ηで表示)に
よつて紡糸口金直下の雰囲気温度を変え、紡出糸
条の冷却細化固化速度を調整することが必須であ
る。すなわち、用いるポリエステル重合体の重合
度ηに対して紡糸口金面直下の紡出糸条近傍の雰
囲気の温度T(℃)が式の下限温度より低温に
した場合は急激な糸条の細化固化が生ずるためド
ラフト切断が発生し、目的とする糸条は得られな
い。また逆にこの温度が式の上限温度より高す
ぎると、紡出糸条の冷却細化固化が遅延し、紡糸
張力が低下し、糸揺れ、密着、霜降り等が発生し
て高品位のポリエステル多フイラメントの連続極
細繊維を安定して得ることはできない。 本発明においてポリエステル糸条を構成するポ
リエステルは、ポリエステル構成単位の少なくと
も70%がポリエチレンテレフタレートであるポリ
エステルである。 本発明法によつて得られた高品位のポリエステ
ル多フイラメントの極細繊維はきわめて優れた形
態追従性や粘着性を有する。この性質はワイシヤ
ツのすそ上り防止や面フアスナーの代用として用
いることもでき、また着物のぴつたりした重ね合
せにも利用できるものであり、人間の皮膚に対し
て接着のような現象を呈するなどの従来知られて
いなかつた特殊な性状を有するものである。 更に本発明の方法によれば、完全に連続して極
細繊維が得られるのでそのまま使用してもよい
し、従来の繊維の如く通常の延伸機で延伸熱処理
して種々の繊維性能を持つた希望の極細繊維にす
ることも可能である。特に延伸性については、い
かなる製法で得られた極細繊維よりも優れた長所
を有するものである。また、本発明は工業的価値
に著しく優れており、完全に連続した単一ポリエ
ステル重合体の極細繊維なるがゆえに海島繊維溶
解法のように1成分を溶剤の中で除去する必要も
なく、通常の未延伸糸あるいは延伸糸と同様の扱
いができる。すなわち、本繊維は単独でも活用さ
れるが、他の太デニール、他の繊維と混用するこ
ともできる。しかもその結果本繊維は感触、著し
いフイツト性、形態追従性、軽量化、うす物化、
ドレープ性、ハンドリングの点で著しい改良を与
えることができる。 以下実施例により本発明を具体的に説明する
が、実施例により本発明が制限されるものではな
い。 実施例 1 第1図に示した溶融紡糸装置で相対粘度η=
1.38のポリエチレンテレフタレートを紡糸温度
(紡糸口金面温度)285℃で加熱溶融後第1表に示
す紡糸口金を用い、口金孔121孔当りの吐出量
Q(g/分)と、引取りローラ7,8速度(m/
分)を変更して紡糸を行いパツケージを作製し
た。この時使用した吹付装置は円筒型の2段式吹
付のもので、第1吹付は紡糸口金面直下5mmの位
置で、内径110mmψ、巾25mmの吹付面より加熱チ
ツソガスを、第2吹付は第1吹付装置直下の位置
で、内径110mmψ、巾50mmの吹付面より50℃の空
気を吹き付けた。尚、吹付風量M(Nl/分)、紡
出糸条近傍の雰囲気の温度T(℃)がそれぞれ
式、式を満足するように吹付風量および第1吹
付の加熱チツソガスの温度を調整した。 結果を第2表に示す。
The present invention relates to a method for economically and efficiently producing high-grade, completely continuous, ultrafine multifilament yarn free from breakage, fluff, and fusion from polyester by a conventional melt spinning method. Ultrafine fibers are used in synthetic paper, filters, artificial leather, suede for clothing, etc., and have recently made remarkable progress in an industrial sense, with active research and development into the production of ultrafine fibers and their applications. Conventionally, methods for producing ultrafine fibers include peel-off type composite fiber splitting method;
A method for dissolving and removing sea components from sea-island type fibers has been proposed.
Although these methods have been industrialized, they have had various problems in terms of economy, operability, and yarn quality. Attempts have been made to produce ultra-fine yarns with a single denier of less than 1 denier using ordinary melt-spinning methods, but due to the surface tension of the spun polymer, ultra-fine yarns, especially single filaments,
It has not been possible to manufacture ultrafine yarns of 0.5 denier or less with good operability. Therefore, the present inventors conducted intensive research to produce a high-grade, fully continuous, ultra-fine polyester multifilament yarn with good operability by the usual melt spinning method, which is preferable in terms of economy and yarn quality performance, and as a result, they arrived at the present invention. did. In other words, the present invention reduces the amount of discharge per spinneret hole (g/
min) is 0.05 to 0.15g/min, and the withdrawal speed is 18×10 3
× Qm/min or more and 3000m/min or more,
The present invention is a method for producing ultrafine polyester fibers having a single yarn fineness of 0.1 to 0.5 denier, which is characterized by satisfying the following conditions A and B. A: Use a spinneret in which the spinneret diameter (D) is 0.2 mm or less and the spinneret holes are arranged in a ring so that the value of K defined by the formula is 0 to 0.25, K = D 2 - D 1 /D 1 [D 1 and D 2 are the minimum and maximum hole diameters of the spinneret holes] B: In the area within 10 cm directly below the spinneret, the flow rate M (Nl/ ) and set the atmospheric temperature T (°C) near the spun yarn within the range of the formula. [V is the take-up speed (m/min) of the spun yarn, H
is the number of holes in the spinneret, H≧34] [η is the relative viscosity of polyester, 1.30≦η
≦1.45, L is the distance from the spinneret surface (cm)] In the present invention, the relative viscosity η of the polyester is measured at 20°C using an equal weight mixture of phenol and tetrachloroethane as a solvent at a concentration of 0.5 g/100 ml. shows the value. Next, the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory diagram of a melt spinning apparatus showing one embodiment of the present invention, in which 1 is a spinneret, 2 and 3 are installed within 10 cm directly below the spinneret surface, and gas is supplied from the outer circumferential direction toward the center of the spinneret. It is a cylindrical spray device (annular spray) that blows out water, and has a two-stage spray type (hereinafter, upper spray 2 is the first spray, and lower spray 3 is the second spray).
(referred to as spraying). 4 is a yarn spun from the spinneret 1, and 5 is a fulcrum guide located upstream of an oil treatment device 6 and a first take-off roller (hereinafter referred to as the first take-up roller) 7 that defines the yarn speed.
8 is a second roller that is paired with the first take-up roller 7;
A take-up roller, 9 is an interlace nozzle or false twist nozzle, 10 is a traverse fulcrum guide, 1
1 is a winding machine. FIG. 2 shows the bottom surface of the spinneret 1, and the spinneret holes 12 are arranged in an annular hole zone defined by a minimum hole diameter D 1 and a maximum hole diameter D 2 . As long as conventional spinning methods were employed, it was extremely difficult to spin uniform, completely continuous ultrafine fibers due to the surface tension of the polymer, etc. However, by adopting the present invention, the desired single fiber fineness can be easily achieved. 0.1~
Completely continuous ultrafine fibers of 0.5 denier polyester multifilament can be obtained. The reason for this has not yet been clearly elucidated, but it is probably due to three subtle factors: the bulge and surface tension of the polyester molten polymer just below the spinneret hole, and the falling speed (take-up speed). This is thought to be due to a combination of However, when the number of filaments in the spun yarn 4 increases, the yarn sways due to the interaction of accompanying air currents generated around the individual filaments of the spun yarn, which are other than the three basic factors mentioned above.
Problems arise such as differences in cooling thinning and solidification behavior caused by temperature fluctuations in the cooling atmosphere and differences in filament position between the outer periphery and the center. That is, eliminating tension, cooling, speed unevenness, etc. between filaments, and achieving ideal cooling, thinning and solidification must be considered as important factors for industrialization. The present invention will be specifically explained below. Spinneret hole diameter D (mm), discharge amount Q (g/min) per spinneret hole, yarn take-up speed V (m/min), single yarn fineness d of the obtained fiber, and spinning draft V/V 0 The relationship with is shown by the following equation. d=9000Q/V V/V 0 = πρD 2 V/4Q Where, V 0 is the discharge speed of the molten polymer discharged from the spinneret hole 12. V 0 = 4Q/πρD 2 (m/min) ρ: Discharge Density of the molten polymer (g/cm 3 ) It is necessary to reduce the amount Q of molten polymer. Producing ultrafine fibers by increasing only the take-up speed V of the yarn 4 is preferable from the viewpoint of productivity, but it has various problems in terms of equipment costs, spinnability, etc. In other words, considering the performance of the winding machine, the maximum winding speed of currently commercially available winding machines is 6,000 m/min, so it is impossible to manufacture products that can be wound at higher speeds. Even if a cutting machine were developed, the equipment costs would be enormous. Furthermore, if we try to obtain ultrafine fibers by increasing the yarn take-up speed V while keeping the discharge amount Q per 121 spinneret holes at the conventional level, as is clear from the equation, the spinning draft (V/V 0 ) will increase. As a result, the accompanying airflow near the spun yarn 4 becomes extremely large, extremely disturbing the atmosphere under the spinneret 1, causing yarn shaking, uneven cooling, and a single yarn fineness of 0.7.
Take-up speed corresponding to denier (i.e. Q=
When V=5500 m/min at 0.45 g/min), stable spinning becomes impossible. Next, as is clear from the formula, decreasing the amount Q of the molten polymer discharged from each spinneret hole 121 is a preferable direction for obtaining thinner fibers. However, spinneret 1 with a normal spinneret hole diameter (0.25-1.0 mm)
gradually reduce the discharge amount Q using
If the amount is less than 0.2 g/min per hole, the spun yarn 4 becomes frosty, and is extremely unstable, making it impossible to obtain uniform continuous ultrafine fibers. Therefore, the present inventors conducted extensive research on how to reduce the discharge amount Q per spinneret hole 121 and achieve stable spinning without causing frosting, and as a result, the spinneret hole diameter D was reduced to 0.20 mm or less. It has been found that by reducing the size, even if the discharge amount Q per spinneret hole 121 is set to 0.15 g/min or less, the spun yarn 4 does not become frosty, and stable and good spinning can be performed. In order to obtain thinner ultrafine fibers, as mentioned above, it is preferable to reduce the discharge amount Q per spinneret hole 121 and increase the take-up speed V. As is clear from the equation, the spinning draft (V/
V 0 ) becomes extremely large, draft breakage occurs in the spun yarn 4, and continuous winding becomes difficult. but,
By reducing the spinneret hole diameter D, the spinning draft can also be suppressed within the spinning possible limit, and the spinneret hole 1
Since the amount Q of the molten polymer discharged from the 21st hole can also be reduced, the withdrawal speed V proportional to the discharge amount Q, that is, 18×10 3 ×Q(m /min) or more, it became possible to obtain ultrafine fibers. On the other hand, the diameter D of the mouthpiece hole and the discharge amount Q per 121 mouthholes are set within the range of the present invention, and the take-up speed V is set to 18
If the speed is lower than ×10 3 ×Q (m/min), the spinning draft will be small, the take-up tension will be low, and the single yarn fineness will be large, resulting in insufficient cooling, which will cause yarn shaking and fusion between yarns. The yarn cannot be obtained until it is subjected to drawing. Therefore, the spinneret hole diameter D was set to 0.20 mm or less, the polymer discharge amount Q per 121 spinneret holes was set to 0.15 g/min or less, and the take-up speed V was set to
Taking it off at a rate of 18×10 3 ×Qm/min or more is an essential requirement for producing ultrafine fibers, which is the object of the present invention. However, in order to reduce the discharge amount Q, the spinneret hole diameter D must be made smaller, and the lower limit of the discharge amount Q is 0.05 g/min in terms of spinneret manufacturing technology. Also,
If the take-up speed V is small, for example, 18×10 3 ×Qm/
Even if the spinning time is more than 10 minutes, the spinning tension will not be adequate, yarn shaking, fusion between yarns, etc. will occur, making it impossible to produce uniform ultrafine fibers with good operability, and productivity will be poor and industrial difficult to implement,
The take-up speed must be 3000 m/min or more. On the other hand, when considering practical yarn properties, processability, and productivity, there is naturally a lower limit to the total denier of the spun yarn, and the lower the single yarn denier, the more it is necessary to increase the number of filaments. Therefore, it is absolutely necessary for industrialization to solve the problems associated with multifilament, such as productivity, yarn shaking, single yarn unevenness, and workability. According to the method of the present invention, as described above, spinning is performed at a low single-hole discharge rate and a high take-up speed, so the thinning and solidification of the spun yarn progresses rapidly, and is completed within a distance of about 25 cm from one surface of the spinneret. Therefore, it is most important to strictly adjust the atmospheric temperature and air flow in the vicinity of the many filaments from the spinneret surface until the spun yarn 4 is solidified. However, as long as a spinneret with a large number of 100 or more spinneret holes in the perforation zone where K in the above formula is larger than 0.25 is used, no matter how much the atmospheric temperature and air flow near the yarn are adjusted, the spun yarn will not be produced. There is a difference in cooling rate between the outer periphery and the center of the strip, which increases yarn bending and uneven fineness between filaments, making it impossible to stably produce high-quality ultrafine fibers. If the temperature is extremely high, measure the ambient temperature near the solidification point of the spun yarn, and the ambient temperature at the center will be 50 to 50°F compared to the outer periphery.
At a high temperature of 100℃, the solidification point of the yarn in the center shifts far downstream from the solidification point of the yarn in the outer periphery, and by the time the yarn is thinned and solidified, a difference in tension speed occurs between the yarns and at the same time occurs near the yarn. Due to the interaction of the air currents, yarn swaying, fusing, and cutting occur frequently. The inventors of the present invention conducted extensive research on this issue, and as a result, they were able to solve this problem by improving the arrangement of the spinneret holes and the method of cooling the spun yarn in the area within 10 cm directly below the spinneret surface. Ivy. That is, in order to make the thinning and solidification behavior of the spun polyester multifilament uniform, the arrangement of the spinneret holes 12 on one side of the spinneret is annular, and at the same time, the K value defined by the formula is set to 0 to 0.25, and the spinneret is Directly below 1st page 10
The flow rate M (Nl/min) of gas blown out from the outer circumferential direction toward the center of the spinneret in an area within cm is defined by the formula, and at the same time, the temperature T (℃) of the gas atmosphere near the spun yarn is determined within the range of the formula. By making adjustments, we have made it possible to produce a completely continuous ultrafine polyester multifilament yarn of high quality without yarn sway, fusion, or breakage. In particular, in the formula, K = 0 indicates that the number of 12 spinneret holes is 1 row, and when this spinneret is used, the thinning and solidification behavior between each filament is almost uniform, and there is no unevenness between single filaments. It is possible to stably obtain high-quality continuous ultra-fine yarn with a small size.
K with the intention of uniformly discharging the polymer from the entire surface of the mouth plate.
If the value is greater than 0.25, no matter what yarn cooling method is used, there will be a large difference in the thinning and solidification behavior between the filaments, and the effect of arranging the cap holes 12 in an annular shape will disappear, causing the problems described above. cause
Furthermore, even if a spinneret with annularly arranged spinneret holes is used so that the value of K defined by the formula is 0 to 0.25, the spinnerets are located within 10 cm directly below the spinneret surface and are blown from the outer periphery of the spinneret toward the center. Gas flow rate M
If (Nl/min) is less than the lower limit of the formula, the ambient temperature at the center of the yarn is higher than at the outer periphery, and the solidification of the yarn at the center is far downstream from the solidification point of the yarn at the outer periphery. , tension and speed differences between the yarns occur before they thin and solidify, and at the same time, it is not possible to completely adjust the accompanying airflow that occurs near the yarns, and even if the ambient temperature is measured at the same location, temperature fluctuations may occur. is 5-20
℃, yarn shaking, fusion, and breakage occur, and a positive spraying effect can hardly be expected. On the other hand, if the flow rate M of the blown gas is higher than the upper limit of the formula, it is possible to suppress the accompanying airflow near the yarn generated directly under the spinneret and the atmospheric temperature fluctuation, but the blown gas flow rate is too high and the blown air directly This is undesirable because a phenomenon of cutting the spun yarn occurs. In other words, it is basically preferable that the amount of gas blown onto the spun yarn be slightly larger than the amount of accompanying airflow caused by the spun yarn, and the amount of gas blown onto the spun yarn should be slightly larger than the amount of accompanying airflow caused by the spun yarn, and the amount of gas to be blown onto the spun yarn should be slightly larger than the amount of accompanying airflow caused by the spun yarn. A solution was reached by adjusting the problem to within the range of the experimental formula defined by the function. The blowing gas employed in the present invention is preferably air or an inert gas such as chiso gas, and the number of blowing stages may be one, or any of the multi-stage blowing methods of two or more stages as shown in FIG. 1 may be adopted. In particular, as the total number of spun filaments H increases and the take-up speed increases, it is necessary to increase the amount of blown gas, so a two-stage or more blowing method is adopted to reduce the amount of air blown from the upper blowing section. It is even better if the air volume blown in the lower part is lower than that in the lower part, and the temperature of the air blown in the upper part is higher than that in the lower part, and in order to extend the nozzle life, an inert gas such as heated titanium gas is distributed in the upper part. Effective. Next, even if a spinneret that satisfies the formula and an annular spraying method that satisfies the formula as described above are used, the yarn cooling rate (temperature of the atmosphere near the yarn) in the area within 10 cm directly below the spinneret
If the yarn cooling rate is inappropriate, that is, if the yarn cooling rate is high, draft breakage will occur frequently, and conversely, if the cooling rate is slow, the yarn tension will decrease, causing yarn shaking, adhesion, and draw resonance phenomena, resulting in high quality. It is not possible to obtain continuous ultrafine yarns of polyester multifilament. Therefore, the present inventors have determined that in order to produce continuous ultrafine yarn of high-quality polyester multifilament,
As a result of intensive research on the temperature of the atmosphere near the yarn directly under the spinneret (the temperature of the gas 5 mm away from the yarn, measured using a 0.25 mmφ CA thermocouple), we adjusted the temperature to within the temperature range of the above formula. I was able to solve the problem by doing this. Ideal for spun polyester multifilament (yarn swing, adhesion, draft cutting,
In order to uniformly cool, thin and solidify the spun polyester (without marbling), it is preferable to set the spinning tension at the solidification point to 0.5 to 1.0 g/d. It is essential to adjust the cooling, thinning and solidification rate of the spun yarn by changing the atmospheric temperature directly below the spinneret according to η). In other words, if the temperature T (°C) of the atmosphere near the spun yarn immediately below the spinneret surface is lower than the lower limit temperature of the formula for the degree of polymerization η of the polyester polymer used, the yarn will rapidly thin and solidify. As a result, draft cutting occurs and the desired yarn cannot be obtained. On the other hand, if this temperature is too high than the upper limit temperature of the formula, the cooling, thinning, and solidification of the spun yarn will be delayed, the spinning tension will decrease, and yarn shaking, adhesion, marbling, etc. will occur, resulting in high-grade polyester fibers. Continuous ultrafine filament fibers cannot be stably obtained. In the present invention, the polyester constituting the polyester yarn is a polyester in which at least 70% of the polyester structural units are polyethylene terephthalate. The high-quality polyester multifilament microfiber obtained by the method of the present invention has extremely excellent conformability and adhesiveness. This property can be used to prevent the hem of a dress shirt from rising, or as a substitute for hook-and-loop fasteners, and can also be used to tightly stack kimonos, and it exhibits a phenomenon similar to adhesion to human skin. It has special properties that were previously unknown. Furthermore, according to the method of the present invention, completely continuous ultrafine fibers can be obtained, so they can be used as they are, or they can be drawn and heat-treated in a normal drawing machine like conventional fibers to obtain various fiber properties. It is also possible to make ultrafine fibers. In particular, in terms of stretchability, it has a superior advantage over ultrafine fibers obtained by any manufacturing method. In addition, the present invention has outstanding industrial value, and because the ultrafine fibers are made of a single polyester polymer that is completely continuous, there is no need to remove one component in a solvent as in the sea-island fiber dissolution method, which is normally It can be treated in the same way as undrawn yarn or drawn yarn. That is, this fiber can be used alone, but it can also be used in combination with other thick denier fibers. Moreover, as a result, this fiber has a good feel, remarkable fit, conformability, light weight, thinness,
Significant improvements can be made in terms of drapability and handling. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the Examples. Example 1 The relative viscosity η=
After heating and melting 1.38 polyethylene terephthalate at a spinning temperature (spinneret surface temperature) of 285°C, using the spinneret shown in Table 1, the discharge amount Q (g/min) per 121 spinneret holes, the take-up roller 7, 8 speed (m/
A package was produced by spinning with different speeds (minutes). The spraying device used at this time was a cylindrical two-stage spraying type; the first spraying was at a position 5mm directly below the spinneret surface, and the heated titso gas was sprayed from the spraying surface with an inner diameter of 110mmψ and a width of 25mm, and the second spraying was at a position 5mm directly below the spinneret surface. Air at 50°C was blown from a spray surface with an inner diameter of 110 mmψ and a width of 50 mm at a position directly below the spray device. The blown air volume and the temperature of the heated titanium gas in the first spraying were adjusted so that the blown air volume M (Nl/min) and the temperature T (°C) of the atmosphere near the spun yarn satisfied the following formulas, respectively. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】 本発明法を採用して紡糸引取りした試験No.6〜
8、11〜14は紡出時霜ふり、融着、糸揺れがなく
非常に良好で、特に紡糸口金孔径Dと口金孔1孔
当りの吐出量Qを小さくし、高紡速で引取つた試
験No.11〜14は単糸繊度が0.20デニール以下で単糸
斑の非常に小さい高品位の完全連続極細繊維で安
定して得ることができた。また、本発明範囲外で
ある試験No.1〜3は口金孔1孔当りの吐出量Qが
大きく、冷却固化速度が遅く、糸揺れが大きいた
め単糸斑も大きく、延伸性が不良であつた。No.
4,5は口金孔Dが大きいため口金孔1孔当りの
吐出量Qを小さくすると、口金1直下で紡出糸条
4が霜ふり状となり、単糸斑が極度に増大しひど
くなると切断が発生し連続引取りは不可能であつ
た。試験No.9は紡糸口金孔径Dと、吐出量Qは本
発明範囲内であるが、低引取り速度であるため糸
条4にかかる張力が低く、不安定で紡出糸条は霜
ふり状となつた。また、低張力のため糸揺れも発
生しやすく、糸条間に融着が発生した。試験No.10
は口金孔径D0.10mmに対して口金孔1孔当りの吐
出量Qが0.25g/分と高いため、紡出糸条4の冷
却固化が遅れ、しかも紡糸ドラフト(V/V0)が
約210と小さいため糸揺れが大きく融着が発生し
た。試験No.1,3,9,10の糸条を通常の延伸機
で1段熱延伸で最終単糸繊度0.30デニールになる
ように2本合糸延伸を行つたが延伸時毛羽、切断
が多発した。本発明法を採用した試験No.6も同様
の方法でDR=1.20で2本合糸延伸を行つたが毛
羽、切断等何らのトラブルもなく銘柄120d/
480f、強度5.1g/d、切断伸度23%の高品位の完
全連続極細糸を得ることができた。試験No.7,
8,11〜14は延伸するまでもなく0.20デニール以
下の均一な連続極細繊維である。尚、単糸間斑は
ランダムに30本の単糸直径(2r)を測定し、太い
単糸直径の5本の平均2maxと細い単糸直径5
本の平均2minを算出し2rmax−2rmin/2
r×100よ り求めた。(ただし、2は30本の平均単糸直
径)。単糸内斑は長さ50mの1本の単糸を長さ方
向に30点ランダムに単糸直径を測定し、太い単糸
直径5個所の平均2′maxと細い単糸直径5個
所の平均2′minを算出し2r′max−2r′mi
n/2r′×100 より求めた。(ただし、2′は30点の平均単糸直
径。) 実施例 2 実施例1と同一の溶融紡糸装置で相対粘度η=
1.45のポリエチレンテレフタレートを紡糸温度
300℃で加熱溶融後、第3表に示した紡糸口金を
用いて、口金孔1孔当りの吐出量Qを変えて引取
速度3500m/分一定で引取つた。この時紡糸口金
面直下の糸条の冷却条件が,式を満足するよ
うに第1吹付からは205℃の加熱チツソガスを70
(Nl/分)、第2吹付からは75℃の空気を280
(Nl/分)の割合で紡出糸条4に吹き付け冷却固
化した。紡糸条件と結果は第4表の通りである。
[Table] Test No. 6 ~ in which the method of the present invention was adopted and the yarn was taken off
Test Nos. 8 and 11 to 14 were very good with no frosting, fusion, or yarn shaking during spinning, especially test No. 8 in which the spinneret hole diameter D and the discharge amount Q per spinneret hole were made small and the yarn was taken at high spinning speed. .11 to 14 were able to stably obtain high-quality completely continuous ultrafine fibers with a single fiber fineness of 0.20 denier or less and very small single fiber irregularities. In addition, in Test Nos. 1 to 3, which are outside the scope of the present invention, the discharge amount Q per nozzle hole was large, the cooling solidification rate was slow, the yarn sway was large, the single yarn unevenness was large, and the drawability was poor. . No.
4 and 5 have large nozzle holes D, so if the discharge amount Q per nozzle hole is reduced, the spun yarn 4 becomes frosty just below the nozzle 1, and single yarn unevenness increases to an extreme extent, causing breakage when it becomes severe. Continuous collection was impossible. In test No. 9, the spinneret hole diameter D and the discharge rate Q were within the range of the present invention, but due to the low take-up speed, the tension applied to the yarn 4 was low and unstable, and the spun yarn became frosty. Summer. Furthermore, due to the low tension, yarn sway was likely to occur, and fusion occurred between the yarns. Test No.10
Since the discharge amount Q per spindle hole is as high as 0.25 g/min for the spindle hole diameter D of 0.10 mm, the cooling and solidification of the spun yarn 4 is delayed, and the spinning draft (V/V 0 ) is approximately 210 g/min. Because of the small size, the yarn swayed a lot and fusion occurred. The yarns of test Nos. 1, 3, 9, and 10 were drawn in a two-ply yarn so that the final single yarn fineness was 0.30 denier in one stage of hot drawing using a normal drawing machine, but fluffing and breakage occurred frequently during drawing. did. In Test No. 6, which adopted the method of the present invention, two yarns were drawn in the same manner at DR = 1.20, but there were no problems such as fluffing or cutting, and brand 120d/
A high-quality completely continuous ultrafine yarn with a strength of 480 f, a strength of 5.1 g/d, and a breaking elongation of 23% was obtained. Test No.7,
No. 8, 11 to 14 are uniform continuous ultrafine fibers of 0.20 denier or less without being stretched. For unevenness between single threads, 30 single thread diameters (2r) were randomly measured, and the average diameter of 5 thick single threads was 2max and the thin single thread diameter was 5.
Calculate the average 2min of the book, 2rmax-2rmin/2
It was calculated from r×100. (However, 2 is the average diameter of 30 single yarns.) For unevenness within a single yarn, measure the single yarn diameter at 30 random points in the length direction of a single single yarn with a length of 50 m, and calculate the average of 2'max for 5 thick single yarn diameters and the average of 5 thin single yarn diameters. 2'min is calculated and 2r'max-2r'mi
It was calculated from n/2r'×100. (However, 2' is the average single yarn diameter at 30 points.) Example 2 Using the same melt spinning apparatus as Example 1, the relative viscosity η=
Spinning polyethylene terephthalate temperature of 1.45
After heating and melting at 300° C., using the spinneret shown in Table 3, the yarn was taken at a constant take-up speed of 3500 m/min while changing the discharge amount Q per spinneret hole. At this time, from the first spray, heated chitsuso gas at 205°C was applied at 70°C so that the cooling conditions for the yarn directly below the spinneret surface satisfied the formula.
(Nl/min), from the second spray, air at 75℃ is 280℃
(Nl/min) was sprayed onto the spun yarn 4 and cooled and solidified. The spinning conditions and results are shown in Table 4.

【表】【table】

【表】【table】

【表】 試験No.1,2は口金孔1孔当りの吐出量Qが高
いため3500m/分の引取り速度で引取つても単糸
繊度がそれほど小さくならず、しかも単糸繊度が
大きいため紡出糸条4の冷却固化が遅れ、かつ紡
糸ドラフトが小さいため(No.1,2の紡糸ドラフ
トはそれぞれ106,133)糸条4にかかる張力が低
く、紡出糸条は不安定で、糸揺れ、融着が発生し
やすく単糸斑の大きい糸条しか得られなかつた。
試験No.3〜6は本発明法を採用したもので紡糸調
子は良好で、特にNo.3,4の糸条は通常の1段熱
延伸でそれぞれ1.95、1.3倍に延伸し、最終単糸
繊度0.20デニールの毛羽、断糸のない高品位の完
全連続ポリエステル極細糸とすることができた。
No.1,2も同様の方法でそれぞれ3.2、2.6倍(最
終単糸繊度0.20デニール)で延伸したが、毛羽、
断糸が多発して連続延伸が不可能であつた。尚、
この時の紡糸口金面直下の糸条近傍(糸条より5
mmの位置)の雰囲気の温度T(℃)を0.25mmψの
CA電対を使用して測定した結果を下記第5表に
示す。
[Table] In Test Nos. 1 and 2, the discharge amount Q per nozzle hole is high, so even if the yarn is taken at a take-up speed of 3500 m/min, the fineness of the single yarn does not decrease that much. Because the cooling and solidification of the spun yarn 4 is delayed and the spinning draft is small (the spinning drafts of No. 1 and 2 are 106 and 133, respectively), the tension applied to the yarn 4 is low, the spun yarn is unstable, and the spinning draft is small. Shaking and fusion tended to occur, and only yarns with large single yarn irregularities could be obtained.
Test Nos. 3 to 6 adopted the method of the present invention, and the spinning condition was good. In particular, yarns of Nos. 3 and 4 were drawn 1.95 times and 1.3 times, respectively, by the normal one-stage hot drawing, and the final single yarn We were able to create high-quality, completely continuous polyester ultrafine yarn with a fineness of 0.20 denier and no fuzz or yarn breakage.
Nos. 1 and 2 were drawn in the same manner at 3.2 and 2.6 times (final single yarn fineness 0.20 denier), respectively, but the fluff and
Continuous stretching was impossible due to frequent yarn breakage. still,
At this time, the vicinity of the yarn directly below the spinneret surface (5
The temperature T (℃) of the atmosphere at the position of 0.25mmψ
The results measured using a CA couple are shown in Table 5 below.

【表】 試験No.1〜6は全て式を満足する温度範囲内
である。しかも各測定点での温度変動は±1℃以
内と安定であつた。 上記試験No.1〜6と同様にして、Q=0.10g/
分とし、捲取単糸繊度0.26デニールの糸条を得る
に際し、紡出糸条に吹き付ける加熱チツソガス及
び空気の温度を変更して同量吹きつけ、式の温
度範囲に入る場合(No.8,9)と式の温度範囲
外となる場合(No.7,10)とを比較した。 糸条近傍の雰囲気の温度を第5表の2に示す。 試験No.8,9では、単糸斑が小さく、紡糸調子
も良好(糸揺れややあり、融着糸なし)であつた
が、No.7,10では、単糸斑が大きく、紡糸調子も
不良(糸揺れ大、糸切れ又は融着糸発生)であつ
た。
[Table] Test Nos. 1 to 6 were all within the temperature range that satisfied the formula. Moreover, the temperature fluctuation at each measurement point was stable within ±1°C. In the same manner as above test No. 1 to 6, Q=0.10g/
To obtain a yarn with a winding single yarn fineness of 0.26 denier, change the temperature of the heated titso gas and air that are blown onto the spun yarn in the same amount, and if the temperature falls within the temperature range of the formula (No. 8, 9) and cases where the temperature is outside the range of the formula (Nos. 7 and 10) were compared. The temperature of the atmosphere near the yarn is shown in Table 5, 2. In test Nos. 8 and 9, the single yarn unevenness was small and the spinning condition was good (some yarn shaking, no fused yarn), but in No. 7 and 10, the single yarn unevenness was large and the spinning condition was poor ( There was severe yarn sway, yarn breakage, or fused yarn occurrence.

【表】 実施例 3 紡糸口金直下の円筒型吹付装置を1段吹付(紡
糸口金面直下30mmの位置で、内径110mmψ、吹付
面巾50mm)にした溶融紡糸装置を用い、相対粘度
η=1.30ポリエチレンテレフタレートを紡糸温度
270℃で加熱溶融後第6表に示した紡糸口金を用
いて単糸の平均繊度が0.15デニールになるように
口金孔1孔当りの吐出量Qを0.075g/分とし、速
度4500m/分で引取りパツケージした。尚、紡糸
口金直下の糸条近傍の雰囲気の温度が式を満足
するように115℃に加熱した空気を口金孔総数H
=120,240の場合それぞれ200(Nl/分)、300
(Nl/分)を吹き付けた。この時の紡糸調子なら
び単思斑は第7表に示す通りである。
[Table] Example 3 Polyethylene terephthalate with a relative viscosity η = 1.30 was produced using a melt spinning device with a cylindrical spraying device directly below the spinneret in a single stage spraying (at a position 30mm directly below the spinneret surface, inner diameter 110mmψ, spraying surface width 50mm). The spinning temperature
After heating and melting at 270°C, using the spinneret shown in Table 6, the discharge amount Q per spinneret hole was set to 0.075 g/min and the speed was 4500 m/min so that the average fineness of the single yarn was 0.15 denier. I picked it up and packaged it. In addition, air heated to 115℃ so that the temperature of the atmosphere near the yarn directly under the spinneret satisfies the formula is
= 120, 240, 200 (Nl/min), 300 respectively
(Nl/min) was sprayed. The spinning conditions and single grains at this time are as shown in Table 7.

【表】【table】

【表】【table】

【表】 試験No.1〜3は本発明法の紡糸口金を用いたた
め紡糸調子が良好で単糸斑も小さく、高品位の連
続ポリエステル極細繊維が得られた。特に試験No.
1,2は配孔列数が1列または2列でK値が非常
に小さいため均一な冷却ができ、糸条間の細化固
化挙動が均一で、かつ糸揺れもほとんどなく、単
糸斑の非常に小さい高品位の連続極細糸を安定し
て得ることができた。試験No.4,5はK値が大き
いため糸条間に冷却の差が生じ、均一な細化固化
が起こりにくく、紡糸調子も不安定で、時には融
着、切断が発生する。 特に通常の紡糸口金を用いた試験No.5は切断が
多発して(中心部の糸条の揺れが大きく、融着が
頻発)連続糸は採取不可能であつた。 実施例 4 実施例1と同一の溶融紡糸装置を用い、相対粘
度η=1.36ポリエチレンテレフタレートを紡糸温
度280℃で加熱溶融後、第6表のBに示す紡糸口
金を用い、口金孔1孔当りの吐出量Qを0.075g/
分とし、紡出糸条近傍の雰囲気の温度T(℃)が
式を満足するように第1吹付から加熱チツソガ
ス、第2吹付からは50℃の空気を流量を種々変更
して吹き付け、引取速度4500m/分一定でパツケ
ージを作製した。この時の紡糸調子ならびに単糸
斑は第8表に示すとおりである。
[Table] In Test Nos. 1 to 3, the spinneret of the present invention was used, so the spinning condition was good, the single fiber unevenness was small, and high-quality continuous polyester ultrafine fibers were obtained. Especially exam no.
1 and 2 have one or two rows of holes and a very small K value, so they can be cooled uniformly, the thinning and solidification behavior between yarns is uniform, there is almost no yarn shaking, and there is no single yarn unevenness. We were able to stably obtain extremely small, high-quality continuous ultrafine threads. In Test Nos. 4 and 5, because the K value was large, a difference in cooling occurred between the yarns, making it difficult to achieve uniform thinning and solidification, and the spinning condition was also unstable, sometimes resulting in fusion and breakage. In particular, in Test No. 5 using an ordinary spinneret, there was frequent breakage (the yarn in the center swayed significantly and fusion occurred frequently), making it impossible to collect continuous yarn. Example 4 Using the same melt spinning apparatus as in Example 1, polyethylene terephthalate with a relative viscosity η = 1.36 was heated and melted at a spinning temperature of 280°C. Discharge amount Q is 0.075g/
The temperature T (°C) of the atmosphere near the spun yarn satisfies the formula, the first blowing is heated chitsuso gas, and the second blowing is blowing air at 50°C at various flow rates, and the take-up speed is A package was made at a constant speed of 4500 m/min. The spinning condition and single yarn unevenness at this time are as shown in Table 8.

【表】 試験No.2〜4は紡糸口金面直下5〜80mmの間
(吹付面巾=25+50=75mm)で、吹付風量M(チ
ツソガス風量+空気風量)が式を満足するよう
に調整して紡出糸条に吹き付けたもので単糸斑が
小さく、非常に安定して連続紡糸捲取が可能であ
つた。試験No.1は吹付風量Mが120(Nl/分)と
少ないため紡出糸条によつて生ずる随伴気流を整
流することができず、紡糸口金面直下の雰囲気の
温度は±5℃以上も変動し、霜ふり状になり、同
時に糸揺れも大きく、連続紡糸は不可能であつ
た。また試験No.5は吹付風量Mが500(Nl/分)
と紡出糸条が随伴気流として紡糸口金面下から持
ち出す風量より多いため、逆に吹付風により紡糸
口金直下の気流を乱し、糸揺れを大きくし、時に
は切断を誘発し、連続紡糸は不可能であつた。ま
た、紡糸室の温調、経済性からみても必要以上に
加熱気体を紡出糸条に吹き付けることは好ましく
ない。 実施例 5 実施例4と同一の溶融紡糸装置、紡糸口金を用
い、相対粘度η=1.38のポリエチレンテレフタレ
ート・イソフタレート共重合ポリエステル(イソ
フタレート成分10モル%)を紡糸温度283℃で加
熱溶融後、口金孔1孔当りの吐出量Q0.075g/分
とし、紡糸口金直下の糸条冷却条件を変えるため
第1吹付、第2吹付から吹き付ける気体の風量を
320(Nl/分)一定とし、第1吹付から吹付ける
チツソガス、第2吹付から吹付ける空気の温度、
量を種々変更して、速度4500m/分一定で引取り
パツケージを作成した。この時の紡糸口金面直下
の紡出糸条近傍の雰囲気の温度T(℃)と紡糸調
子ならびに単糸斑は第9表、10表に示す通りであ
る。
[Table] Test Nos. 2 to 4 were conducted between 5 and 80 mm directly below the spinneret surface (blow surface width = 25 + 50 = 75 mm), and the blow air volume M (chitsuso gas air volume + air flow volume) was adjusted to satisfy the formula. It was sprayed onto the starting yarn, and the single yarn unevenness was small, and continuous spinning and winding was possible in a very stable manner. In test No. 1, the blowing air volume M was as small as 120 (Nl/min), so the accompanying airflow generated by the spun yarn could not be rectified, and the temperature of the atmosphere directly below the spinneret surface was over ±5°C. The yarn fluctuated and became frosty, and at the same time, the yarn swayed so much that continuous spinning was impossible. In addition, in test No. 5, the blowing air volume M was 500 (Nl/min)
Since the amount of spun yarn is larger than the amount of air taken out from under the spinneret surface as an accompanying air current, the blown wind disturbs the air flow directly under the spinneret, increases yarn sway, and sometimes induces breakage, making continuous spinning impossible. It was possible. Also, from the viewpoint of temperature control of the spinning chamber and economic efficiency, it is not preferable to spray heated gas onto the spun yarn more than necessary. Example 5 Using the same melt-spinning equipment and spinneret as in Example 4, polyethylene terephthalate/isophthalate copolyester with a relative viscosity η = 1.38 (isophthalate component 10 mol%) was heated and melted at a spinning temperature of 283°C. The discharge rate per spinneret hole was Q0.075 g/min, and the air volume of the gas blown from the first and second blowing was adjusted to change the yarn cooling conditions directly under the spinneret.
320 (Nl/min) constant, the temperature of the Chitsuso gas sprayed from the first spray, the air sprayed from the second spray,
The amount was changed variously, and the take-up package was created at a constant speed of 4500 m/min. At this time, the temperature T (°C) of the atmosphere in the vicinity of the spun yarn immediately below the spinneret surface, the spinning condition, and single yarn irregularities are as shown in Tables 9 and 10.

【表】【table】

【表】 試験No.1及び8は第1吹付、第2吹付のチツソ
ガス、空気の温度が高すぎるため、紡糸口金面直
下2cm以降の糸条近傍の雰囲気の温度が式の上
限温度より高くなり、紡出糸条の張力が極端に低
下し(0.3g/d以下)、糸揺れが激しく、密着、
切断が多発した。試験No.4及び5は逆に第1吹付
のチツソガスの温度が低いため紡糸口金面が275
℃まで低下すると同時に、紡糸口金直下1〜3cm
付近の糸条近傍の雰囲気の温度は式の下限温度
以下となり完全なドラフト切断となり、連続捲取
は不可能であつた。なお試験No.2,3,6,7は
本発明法によるもので、単糸斑も小さく、紡糸調
子は非常に良好であつた。 実施例 6 実施例3において、紡糸口金A及び紡糸口金F
(D1=65mm、配孔列数=3列、H=350、K値=
0.123とした以外は紡糸口金Aと同じ)を使用
し、式を満足するように紡出糸条に吹き付ける
加熱空気の温度を変更して、第11表の風量で吹き
付けた。 この時の紡糸調子は第11表に示す通りである。
[Table] In Test Nos. 1 and 8, the temperature of the chitsuso gas and air in the first and second spraying was too high, so the temperature of the atmosphere near the yarn from 2 cm directly below the spinneret surface was higher than the upper limit temperature of the formula. , the tension of the spun yarn is extremely reduced (below 0.3g/d), the yarn sways violently, and the tightness and
There were many amputations. On the contrary, in Test Nos. 4 and 5, the temperature of the first sprayed Tituso gas was low, so the spinneret surface was 275
At the same time as the temperature drops to 1-3 cm directly below the spinneret.
The temperature of the atmosphere near the yarn was below the lower limit temperature of the formula, resulting in complete draft cutting and continuous winding was impossible. Test Nos. 2, 3, 6, and 7 were conducted using the method of the present invention, and the single yarn unevenness was small and the spinning condition was very good. Example 6 In Example 3, spinneret A and spinneret F
(D 1 = 65 mm, number of hole arrangement rows = 3 rows, H = 350, K value =
Using the same spinneret A (except that the temperature was 0.123), the temperature of the heated air blown onto the spun yarn was changed so as to satisfy the formula, and the air was blown at the air volume shown in Table 11. The spinning conditions at this time are as shown in Table 11.

【表】【table】

【表】 は本発明法.
[Table] shows the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す溶融紡糸装置
の説明図、第2図は紡糸口金の下面図である。 1…紡糸口金、2…第1吹付、3…第2吹付、
4…紡出糸条。
FIG. 1 is an explanatory diagram of a melt spinning apparatus showing one embodiment of the present invention, and FIG. 2 is a bottom view of a spinneret. 1... Spinneret, 2... First spraying, 3... Second spraying,
4... Spun yarn.

Claims (1)

【特許請求の範囲】 1 ポリエステルを溶融紡糸するに際して、紡糸
口金孔1孔当りの吐出量Q(g/分)を0.05〜
0.15g/分とし、引取速度を18×103×Qm/分以
上で、かつ3000m/分以上として、紡糸引取糸の
単糸繊度が0.1〜0.5デニールの極細繊維を製造す
る方法において、次のA,Bの条件を満足させる
ことを特徴とする極細ポリエステル繊維の製造
法。 A:口金孔径(D)が0.20mm以下で、しかも式で規
定するKの値が0〜0.25となるように口金孔
が環状に配置された紡糸口金を用いること、 K=D−D/D 〔D1,D2は紡糸口金の口金孔の最小および最
大配孔径〕 B:紡糸口金直下10cm以内の領域において、紡糸
口金の外周から中心に向けて式を満足する
流量M(Nl/分)の気体を吹き付け、かつ
紡出糸条近傍の雰囲気温度T(℃)を式の
範囲とすること。 〔Vは紡出糸条の引取速度(m/分)、H
は紡糸口金の孔数でH≧34〕 〔ηはポリエステルの相対粘度で1.30≦η
≦1.45、Lは紡糸口金面からの距離(cm)〕
[Claims] 1. When melt-spinning polyester, the discharge amount Q (g/min) per spinneret hole is 0.05 to
In the method for producing ultrafine fibers with a single yarn fineness of 0.1 to 0.5 denier of the spun drawn yarn, the following method is used : A method for producing ultrafine polyester fiber, characterized by satisfying conditions A and B. A: Use a spinneret in which the spinneret diameter (D) is 0.20 mm or less and the spinneret holes are arranged in a ring so that the value of K defined by the formula is 0 to 0.25, K = D 2 - D 1 /D 1 [D 1 and D 2 are the minimum and maximum hole diameters of the spinneret holes] B: The flow rate M (Nl /min), and the atmospheric temperature T (°C) near the spun yarn is within the range of the formula. [V is the take-up speed (m/min) of the spun yarn, H
is the number of holes in the spinneret, H≧34] [η is the relative viscosity of polyester, 1.30≦η
≦1.45, L is the distance from the spinneret surface (cm)]
JP190679A 1979-01-10 1979-01-10 Production of extremely fine polyester fiber Granted JPS5593816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP190679A JPS5593816A (en) 1979-01-10 1979-01-10 Production of extremely fine polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP190679A JPS5593816A (en) 1979-01-10 1979-01-10 Production of extremely fine polyester fiber

Publications (2)

Publication Number Publication Date
JPS5593816A JPS5593816A (en) 1980-07-16
JPS6218645B2 true JPS6218645B2 (en) 1987-04-23

Family

ID=11514612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP190679A Granted JPS5593816A (en) 1979-01-10 1979-01-10 Production of extremely fine polyester fiber

Country Status (1)

Country Link
JP (1) JPS5593816A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047928B2 (en) * 1981-02-09 1985-10-24 旭化成株式会社 Method for manufacturing polyester fiber
JPS58208416A (en) * 1982-05-28 1983-12-05 Asahi Chem Ind Co Ltd Preparation of highly oriented polyester filament
JPS58208415A (en) * 1982-05-28 1983-12-05 Asahi Chem Ind Co Ltd Easily dyeable polyethylene terephthalate fiber
JPH0819565B2 (en) * 1985-02-25 1996-02-28 東レ株式会社 Method for producing fine denier polyester fiber
JPS61225314A (en) * 1985-03-29 1986-10-07 Toray Ind Inc Production of modified polyester yarn
JPS61275418A (en) * 1985-05-31 1986-12-05 Asahi Chem Ind Co Ltd Production of polyester yarn
JPS62177214A (en) * 1986-01-29 1987-08-04 Toyobo Co Ltd Production of ultrafine antistatic fiber
KR100454498B1 (en) * 1997-08-30 2005-06-17 주식회사 휴비스 Manufacturing method of polyester microfiber
US6444151B1 (en) * 1999-04-15 2002-09-03 E. I. Du Pont De Nemours And Company Apparatus and process for spinning polymeric filaments
JP2001336023A (en) * 2000-03-24 2001-12-07 Toray Eng Co Ltd Spinning apparatus and spinning method
JP2002309431A (en) * 2000-06-21 2002-10-23 Toray Eng Co Ltd Spinning apparatus
DE10338821B4 (en) * 2003-08-21 2014-09-25 Lurgi Zimmer Gmbh Process for producing fine fibers
JP2007063690A (en) * 2005-08-30 2007-03-15 Teijin Fibers Ltd Device for cooling yarn
JP2007063689A (en) * 2005-08-30 2007-03-15 Teijin Fibers Ltd Device for cooling yarn
JP2007247121A (en) * 2006-03-20 2007-09-27 Teijin Fibers Ltd Yarn cooling device

Also Published As

Publication number Publication date
JPS5593816A (en) 1980-07-16

Similar Documents

Publication Publication Date Title
JPS6218645B2 (en)
JP2918332B2 (en) Method and spinning device for the production of microfilaments
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JPS62243824A (en) Production of ultrafine polyester filament yarn
JPS6051561B2 (en) Manufacturing method of ultra-fine multifilament yarn
JPS5822565B2 (en) High speed spinning method
JPS6235481B2 (en)
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JPS6149407B2 (en)
JPS6250566B2 (en)
JPH0931749A (en) Production of polyester fiber
JPS61194218A (en) Production of polyester fiber
JPS6215321A (en) Production of modified cross-section combined filament polyester yarn
JPS6039761B2 (en) Melt spinning method
JP3880143B2 (en) Method for cooling melt spun fiber
JP2842243B2 (en) Melt spinning equipment
JPH0231126B2 (en)
JP3333750B2 (en) Method for producing polyester fiber
JPS6155212A (en) Melt-spinning of ultrafine multifilament
JP2006336117A (en) Method for producing polyester hollow yarn
JPS6238442B2 (en)
JPS61194210A (en) Rroduction of combined filament yarn of polyester having different fineness
JPH0418107A (en) Production of superfine fiber
JP3271401B2 (en) Method for producing polyester fiber
JPH1193015A (en) Monofilament and its production