JPS6218613B2 - - Google Patents

Info

Publication number
JPS6218613B2
JPS6218613B2 JP58251625A JP25162583A JPS6218613B2 JP S6218613 B2 JPS6218613 B2 JP S6218613B2 JP 58251625 A JP58251625 A JP 58251625A JP 25162583 A JP25162583 A JP 25162583A JP S6218613 B2 JPS6218613 B2 JP S6218613B2
Authority
JP
Japan
Prior art keywords
weight
contacts
resistance
indium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58251625A
Other languages
Japanese (ja)
Other versions
JPS60141840A (en
Inventor
Shigeki Fukushima
Mitsuo Osada
Yoshinari Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58251625A priority Critical patent/JPS60141840A/en
Publication of JPS60141840A publication Critical patent/JPS60141840A/en
Publication of JPS6218613B2 publication Critical patent/JPS6218613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明はノーヒユーズブレーカなどの気中遮断
器、開閉器に使用される電気接点材料に関する。 (ロ) 技術背景 電気接点材料としての要件は衆知のごとく、耐
溶着性に富むこと。耐溶損性に富むこと、耐絶縁
特性に富むこと、開閉寿命の長いこと、接触抵抗
の少ないことなどがあげられる。 電気回路の保護機器としての役目をもつノーヒ
ユーズブレーカーなどのしや断器、開閉器にあつ
ては、これらの要件のうち、接点の耐溶着性、耐
絶縁特性が最も重要である。 気中用接点としてこれら電気回路の保護用に使
用される接点材料としては、内部酸化法による銀
―酸化物接点が比較的多く電流の更に大きい範囲
では、銀―炭化タングステン、銀―タングステン
接点などが使用されている。 銀―酸化物接点が気中用接点として比較的多く
用いられる理由は、電流の投入、しや断に対する
耐溶着性、耐アーク消耗性に富み、かつ多数回接
点開閉を行なつても接触抵抗の増加が少なく通電
性に富むという接点としての優れた特性をバラン
スよく保持しているためである。 しかしながら、開閉機器の小型化、性能向上と
共に接点性能の向上がより望まれ、とりわけ耐溶
着性能、絶縁耐圧特性をかねそなえた接点が重要
視されている。 接点が開離すべき時に、開離せず強固に溶着し
てしや断不能になつた場合、あるいは、しや断後
の絶縁耐圧が劣化した場合電気機器の損傷、感電
等につながり、2次的災害をひきおこすことにな
る。 銀―酸化物系接点を得るには大別して粉末治金
法によるものと、内部酸化法によるものとあり、
それぞれ用途に応じて使用されているが内部酸化
法によるものが性能およびコストの点で有利なた
め多く使用されている。内部酸化法とは、すでに
述べる迄もなく合金を酸素の充分供給される雰囲
気内で高温に加熱すると合金の地が酸化される以
前に合金の組成金属が選択的に酸化される現象を
応用したものである。 気中で使用されるノーヒユーズブレーカー類に
おいては、既に述べたように銀―酸化物系接点で
は耐溶着性および耐絶縁特性が最も重要であり、
更に高性能材が要求されている。 従来、このような用途に銀―錫―インジウム系
合金が使用されているが、これは温度上昇特性が
欠点であつたが、これにカドミウムを加えた合金
を内部酸化することによつて改善されることは知
られている。しかし従来の銀―錫―インジウム―
カドミウム合金では温度上昇は改善されるが反
面、耐絶縁性、耐溶着性については不充分であり
接点の負荷開閉時のアーク熱によりカドミウムが
飛散し劣化するという問題があつた。 (ハ) 発明の開示 本発明は、接点の大電流開閉、特に、耐溶着、
耐絶縁特性、及び、温度上昇特性につき、種々検
討を加えた結果、錫を6重量%を超え8重量%ま
で、インジユウムを2〜4重量%カドミウムを1
〜3重量を加え、さらに合金を微細均一にするた
め、0.10〜0.30重量%のNi、及び、0.001〜0.008
重量%のMnを添加し、これら合金を、内部酸化
することによつて、従来到達できなかつた、優れ
た、耐溶着、耐絶縁、温度上昇特性を実現しうる
ものである。 4酸化物を微細球状化することにより、電気接
点の負荷開閉時のアーク発生量が極端に少なくな
り、このため、従来の銀―錫―インジウム―カド
ミウム接点に比べ大巾に耐絶縁特性が向上し、且
つ、耐溶着、温度上昇にも優れた電気接点を得る
ことができた。本発明合金において、ニツケルを
0.1重量%を下限値にしたことは、これ以下では
酸化物を微細化する効果が少ないことによる。ま
たニツケル量を0.3重量%を上限にしたことは、
それ以上では、ニツケルが偏析し、均一分散が難
しいとによる。なお、Ni量を0.20重量%にした場
合、最も、錫―インジウム―カドミウムの酸化物
が、均一に分散し耐溶着性向上効果が、顕著であ
る。 錫量の下限値を、6重量%としたのは、これ以
下の含有量では、酸化物含有量が、少なく、耐溶
着性の効果が少ないことによる。また、錫量の上
限値を、8重量にしたのは、これ以上含有量で
は、加工性が悪くなり、また錫酸化物が合金内で
凝集し内部酸化が不安定になるため優れた接点材
となり得難いことになる。 また、インジウムの下限値を2重量%としたの
は、これ以下では内部酸化が不安定となり酸化物
の凝集が生じて耐溶着性が確保できなくなる。
又、インジウムの上限値を4重量%としたのは、
これ以上にすると、酸化物が針状化しやすくNi
及びMnを加えて十分な、微細、球状化が得られ
ず、耐溶着性が、逆に劣るためである。しかもイ
ンジウムは、高価なため、必要最小限にすること
が望ましい。 カドミウム量の下限値を1重量%としたのは、
これ以下の含有量では耐溶着及び、温度上昇特性
改善に効果が少ないことによる。又、カドミウム
量の上限値を3重量%としたのは、これ以上の含
有量では耐絶縁特性が劣化することによる。 マンガン量の下限値を0.001%重量としたの
は、これ以下の含有量では酸化物の球状化に効果
が少ないことによる。また上記、錫、インジウ
ム、カドミウムの酸化物の球状化に対し、効果を
発揮するMnの上限値は0.008重量%である。これ
以上に増すと、酸化物が極端に微細化しわずかの
酸化温度あるいは、酸素圧の変動で、凝集、亀裂
等が入りやすくなるためである。好ましくは、
0.005重量%である。 本発明合金は、上記のごとく銀―錫―インジウ
ム―カドミウム合金に、ニツケル及びマンガンを
添加し内部酸化せしめることにより、銀地中に、
(SnO2・CdO・In2O3)で、構成する多量の微細な
金属酸化物を含有せしめて耐溶着性を確保せしめ
同時に、SnO2・In2O3など、容易に、蒸発、飛散
しない酸化物を主構成物にすることによつて蒸
発、飛散による絶縁圧劣化を防止せしめ、この結
果、従来、予想できなかつた優れた、耐絶縁及
び、耐溶着特性を、同時に示すものである。 次に本発明の実施例によつて詳述する。 実施例 第1表に示す、組成で、各々、6Kg/ロツトで
溶解してインゴツトを作り圧延後、プレス打抜に
より第1図1に示す如き6φ×0.5×30Rの形状
にし、温度720℃、酸素圧力4atmの酸化雰囲気中
で内部酸化後、第1図2に示す6φ×1×3φ×
4のCuビスにろう付したものを50A定格配線用
ブレーカーに組み込み第2表に示す試験条件で評
価テストを行つた。
(a) Technical Field The present invention relates to electrical contact materials used in air circuit breakers and switches such as no-fuse breakers. (b) Technical background As is well known, the requirements for electrical contact materials are high welding resistance. It has excellent corrosion resistance, excellent insulation properties, long switching life, and low contact resistance. Among these requirements, the welding resistance and insulation resistance of the contacts are the most important for no-fuse breakers, disconnectors, and switches that serve as protective equipment for electrical circuits. The contact materials used as air contacts to protect these electric circuits include relatively many silver-oxide contacts made by internal oxidation, and in higher current ranges, silver-tungsten carbide, silver-tungsten contacts, etc. is used. The reason why silver-oxide contacts are relatively often used as air contacts is that they have high resistance to welding and arc wear against current application and tearing, and they have low contact resistance even when the contacts are opened and closed many times. This is because it maintains a good balance of excellent properties as a contact, such as a small increase in the amount of electricity and high conductivity. However, along with the miniaturization and performance improvement of switching equipment, there is a growing desire for improved contact performance, and in particular, contacts that have both anti-welding performance and dielectric strength characteristics are considered important. If the contacts do not open when they should, but instead become firmly welded and cannot be disconnected, or if the dielectric strength deteriorates after the welding breaks, it may cause damage to electrical equipment, electric shock, etc., and cause secondary damage. It will cause a disaster. There are two main ways to obtain silver-oxide contacts: powder metallurgy and internal oxidation.
Each method is used depending on the purpose, but the internal oxidation method is most commonly used because it is advantageous in terms of performance and cost. The internal oxidation method, needless to say, applies the phenomenon that when an alloy is heated to high temperature in an atmosphere that is sufficiently supplied with oxygen, the constituent metals of the alloy are selectively oxidized before the base of the alloy is oxidized. It is something. As mentioned above, welding resistance and insulation resistance are the most important characteristics for silver-oxide contacts in no-fuse breakers used in air.
Furthermore, high-performance materials are required. Conventionally, silver-tin-indium alloys have been used for such purposes, but this has a drawback of temperature rise characteristics, but this has been improved by internally oxidizing the alloy with cadmium. It is known that However, the conventional silver-tin-indium
Although cadmium alloys improve temperature rise, they do not have sufficient insulation resistance or welding resistance, and there is a problem in that cadmium scatters and deteriorates due to arc heat when the contacts open and close under load. (C) Disclosure of the Invention The present invention relates to high current switching of contacts, particularly anti-welding,
As a result of various studies regarding insulation resistance properties and temperature rise properties, we found that tin is more than 6% by weight and up to 8% by weight, indium is 2 to 4% by weight, cadmium is 1% by weight.
~3% by weight and 0.10 to 0.30% by weight of Ni and 0.001 to 0.008 to make the alloy fine and uniform.
By adding % by weight of Mn and internally oxidizing these alloys, it is possible to achieve excellent welding resistance, insulation resistance, and temperature rise properties that were previously unattainable. By making the tetraoxide into fine spherules, the amount of arc generated during load switching of electrical contacts is extremely reduced, and as a result, the insulation properties are greatly improved compared to conventional silver-tin-indium-cadmium contacts. Moreover, an electrical contact with excellent welding resistance and temperature rise could be obtained. In the alloy of the present invention, nickel is
The reason why 0.1% by weight is set as the lower limit is because below this, the effect of making the oxide finer is small. In addition, the upper limit for the amount of nickel is 0.3% by weight.
Above that, nickel segregates and uniform dispersion becomes difficult. Note that when the Ni amount is 0.20% by weight, the tin-indium-cadmium oxide is most uniformly dispersed, and the effect of improving welding resistance is most remarkable. The reason why the lower limit of the amount of tin is set to 6% by weight is that if the content is less than this, the oxide content is small and the effect of welding resistance is small. In addition, the upper limit for the amount of tin was set at 8 weight because if the content exceeds 8 weight, workability deteriorates and tin oxide aggregates within the alloy, making internal oxidation unstable. That would be very unlikely. Further, the lower limit of indium is set to 2% by weight because if the indium content is less than this, internal oxidation becomes unstable, oxide agglomeration occurs, and welding resistance cannot be ensured.
In addition, the upper limit of indium was set at 4% by weight because
If it is more than this, the oxide tends to become acicular
This is because sufficient fineness and spheroidization cannot be obtained by adding Mn and Mn, and the welding resistance is, on the contrary, inferior. Moreover, since indium is expensive, it is desirable to minimize the amount of indium necessary. The lower limit of cadmium content was set to 1% by weight because
This is because if the content is less than this, there is little effect on welding resistance and improvement of temperature rise characteristics. Further, the reason why the upper limit of the amount of cadmium is set to 3% by weight is that the insulation properties deteriorate if the content exceeds this value. The reason why the lower limit of the amount of manganese is set to 0.001% by weight is that a content below this value has little effect on spheroidizing the oxide. Furthermore, the upper limit of Mn that exhibits an effect on the spheroidization of the oxides of tin, indium, and cadmium is 0.008% by weight. This is because if the amount is increased more than this, the oxide becomes extremely fine and agglomeration, cracking, etc. are likely to occur due to slight fluctuations in oxidation temperature or oxygen pressure. Preferably,
It is 0.005% by weight. The alloy of the present invention is produced by adding nickel and manganese to the silver-tin-indium-cadmium alloy as described above and causing internal oxidation.
(SnO 2 / CdO / In 2 O 3 ), it contains a large amount of fine metal oxides to ensure welding resistance, and at the same time does not easily evaporate or scatter, such as SnO 2 / In 2 O 3 By using oxide as the main constituent, deterioration of insulation voltage due to evaporation and scattering is prevented, and as a result, it simultaneously exhibits excellent insulation resistance and anti-welding properties that could not have been expected in the past. Next, the present invention will be explained in detail by way of examples. Example Ingots were made by melting each ingot at 6 kg/lot with the composition shown in Table 1. After rolling, the ingots were punched out into a shape of 6φ x 0.5 x 30R as shown in Figure 1, and heated at 720°C. After internal oxidation in an oxidizing atmosphere with an oxygen pressure of 4 atm, the 6φ×1×3φ× shown in FIG.
The brazed Cu screw of No. 4 was incorporated into a 50A rated wiring breaker, and an evaluation test was conducted under the test conditions shown in Table 2.

【表】【table】

【表】 なお、過負荷及び耐久試験後に各々の接点間に
AC5V、電流50Aを通電し温度上昇テストを行つ
た。 さらに、短絡試験後の端子間の絶縁劣化を測定
した。同一試料につき、各々5台の50A定格配線
用ブレーカーに組み込みテストを行つた結果を第
3表に示す。比較材として、第1表に示す組成
で、本発明材と、同一形状の接点を作り、温度
720℃、酸素圧力4atmの酸化雰囲気中で内部酸化
したものを用いた。
[Table] In addition, after overload and durability tests, the
A temperature rise test was conducted by applying AC5V and a current of 50A. Furthermore, insulation deterioration between terminals was measured after the short circuit test. Table 3 shows the results of testing the same sample installed in five 50A rated wiring breakers. As a comparison material, a contact point of the same shape as the present invention material was made with the composition shown in Table 1, and the temperature was
The material used was internally oxidized in an oxidizing atmosphere at 720°C and oxygen pressure of 4 atm.

【表】【table】

【表】 第3表より、明らかなとおり本発明材が、大電
流領域の耐絶縁、耐溶着性及び、温度上昇におい
てバランスよく優れた性能を有している。 以上、詳述した如く本発明になる接点材料は、
大電流の開閉に際して、耐絶縁、耐溶着性に著し
く富んでおりノーヒユーズブレーカー、安全ブレ
ーカーなど、気中遮断器、開閉器類に使用して、
その効果を充分に発揮する。
[Table] As is clear from Table 3, the material of the present invention has well-balanced and excellent performance in insulation resistance in the large current region, welding resistance, and temperature rise. As detailed above, the contact material of the present invention is
When switching large currents, it has extremely high insulation resistance and welding resistance, and can be used in air circuit breakers and switchgears such as no-fuse breakers and safety breakers.
Make full use of its effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の試験片の断面図であ
り1が本発明電気接点材料、2が台金銅ビスであ
る。
FIG. 1 is a sectional view of a test piece according to an embodiment of the present invention, in which 1 is the electrical contact material of the present invention, and 2 is a base metal copper screw.

Claims (1)

【特許請求の範囲】[Claims] 1 内部酸化法によつて得られる銀―酸化物系接
点材料において、金属成分として重量%で錫が6
%を超え8%まで、インジウムが2〜4%、カド
ミウムが1〜3%、ニツケルが0.1〜0.3%、更に
マンガンが0.001〜0.008%残部銀からなることを
特徴とするノーヒユーズブレーカなど大電流遮断
開閉器用の電気接点材料。
1 In the silver-oxide contact material obtained by the internal oxidation method, tin is 6% by weight as a metal component.
% up to 8%, 2-4% indium, 1-3% cadmium, 0.1-0.3% nickel, and 0.001-0.008% manganese, the balance being silver. Electrical contact material for circuit breakers.
JP58251625A 1983-12-27 1983-12-27 Electrical contact material Granted JPS60141840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251625A JPS60141840A (en) 1983-12-27 1983-12-27 Electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251625A JPS60141840A (en) 1983-12-27 1983-12-27 Electrical contact material

Publications (2)

Publication Number Publication Date
JPS60141840A JPS60141840A (en) 1985-07-26
JPS6218613B2 true JPS6218613B2 (en) 1987-04-23

Family

ID=17225604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251625A Granted JPS60141840A (en) 1983-12-27 1983-12-27 Electrical contact material

Country Status (1)

Country Link
JP (1) JPS60141840A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226468A (en) * 1975-08-22 1977-02-28 Mitsubishi Marorii Yakin Kougi Silverroxide electric contact material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226468A (en) * 1975-08-22 1977-02-28 Mitsubishi Marorii Yakin Kougi Silverroxide electric contact material

Also Published As

Publication number Publication date
JPS60141840A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
US4072515A (en) Electrical contact material
EP0031159B1 (en) Electrical contact
US3551622A (en) Alloy materials for electrodes of vacuum circuit breakers
JPS6218613B2 (en)
JPS6214618B2 (en)
JPH0460284B2 (en)
Lindmayer et al. The effect of unsymmetrical material combination on the contact and switching behavior
JPS5938344A (en) Electrical contact material
JPS5914212A (en) Electric contact material
JPH08134564A (en) Silver-oxide type electrical contact element
JPS6023178B2 (en) electrical contact materials
JPS5914218A (en) Contact material for vacuum breaker
JPH0313691B2 (en)
KR830001073B1 (en) Electrical contactor
JPS6021216B2 (en) electrical contact materials
JPH0215964B2 (en)
CA2009671A1 (en) Ag-sno electrical contact materials and manufacturing method thereof
JPS6151016B2 (en)
JPS6021214B2 (en) electrical contact materials
JPH03236443A (en) Sintered contact material for breaking current
JPS5985833A (en) Contact material
JPH0119606B2 (en)
JPH0146572B2 (en)
JPS5877541A (en) Contact material
JPH0153337B2 (en)