JPS621859A - Formation of germanium film - Google Patents

Formation of germanium film

Info

Publication number
JPS621859A
JPS621859A JP13878985A JP13878985A JPS621859A JP S621859 A JPS621859 A JP S621859A JP 13878985 A JP13878985 A JP 13878985A JP 13878985 A JP13878985 A JP 13878985A JP S621859 A JPS621859 A JP S621859A
Authority
JP
Japan
Prior art keywords
germanium
film
ion plating
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13878985A
Other languages
Japanese (ja)
Inventor
Tadanobu Okubo
忠信 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13878985A priority Critical patent/JPS621859A/en
Publication of JPS621859A publication Critical patent/JPS621859A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily form a uniform Ge or Ge alloy film having a desired thickness and high adhesion by coating the surface of an electrically conductive material with Ge or a Ge alloy by ion plating. CONSTITUTION:A Ge or Ge alloy film is formed on the surface of an electrically conductive material such as a stainless steel sheet by ion plating. When an electrically nonconductive material such as a magnetic body of ferrite is used, a primary metallic film of Ni or the like is formed on the surface of the material by electroless plating to make the surface electrically conductive before the surface is coated with Ge or a Ge alloy by ion plating. By this method, a uniform film can be formed on the surface of any material with high adhesion.

Description

【発明の詳細な説明】 [発明の技術分野] この発明はゲルマニウム被膜形成方法に係り、所望の膜
厚で、しかも均−且つ密着性の良好なゲルマニウム被膜
を、あらゆる材料の表面に容易に形成できるようにした
ゲルマニウム被膜形成方法に間するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming a germanium film, which allows a germanium film with a desired thickness, uniformity, and good adhesion to be easily formed on the surface of any material. This is a method for forming a germanium film.

[発明の技術的背景とその問題点] 最近、コンピューターの普及に伴ないゲルマニウムを被
膜して被膜を形成し使用する半導体等の需要が急増して
きた。
[Technical background of the invention and its problems] Recently, with the spread of computers, the demand for semiconductors and the like that are coated with germanium and used has rapidly increased.

しかし、現在の技術では、湿式めっき法にて金属表面に
ゲルマニウム或いはゲルマニウム合金の被膜を形成する
ことは不可能である。
However, with current technology, it is impossible to form a germanium or germanium alloy film on a metal surface by wet plating.

そのため、金属表面等にゲルマニウム或いはゲルマニウ
ム合金の被膜を形成するには、従来は、ゲルマニウム或
いはゲルマニウム合金の箔を貼着する方法や真空蒸着に
よって被膜を形成する方法等にて行なわれていた。
Therefore, in order to form a germanium or germanium alloy film on a metal surface, etc., conventional methods have been used such as pasting a germanium or germanium alloy foil or forming a film by vacuum evaporation.

ところが、ゲルマニウム或いはゲルマニウム合金の箔を
貼着する方法は、これらの箔を作成しなくてはならない
から非常に手間がかかり、又、これらの箔はあまり薄く
することができないので必要以上に厚い被膜となってし
まい、ゲルマニウム或いはゲルマニウム合金自体が高価
な材料であるためコストアップにつながり、しかも密着
性も悪い欠点があった。
However, the method of pasting germanium or germanium alloy foil is very time-consuming because these foils must be made, and since these foils cannot be made very thin, it is necessary to create a film that is thicker than necessary. Since germanium or germanium alloy itself is an expensive material, it leads to an increase in cost and has the disadvantage of poor adhesion.

又、真空蒸着によってゲルマニウム或いはゲルマニウム
合金被膜を形成する方法は、この方法にて形成されたゲ
ルマニウム或いはゲルマニウム合金被膜は密着性が悪く
剥離し易い欠点があり、しかも密着性が悪いため所望の
膜厚を形成することが困難となることも多く、更には、
素材の表面と側面とでは膜厚に差が出るというように一
定の膜厚を得ることができない等の欠点をも有するもの
であった。
Furthermore, the method of forming a germanium or germanium alloy film by vacuum evaporation has the disadvantage that the germanium or germanium alloy film formed by this method has poor adhesion and is easy to peel off. It is often difficult to form a
It also has drawbacks such as the inability to obtain a constant film thickness, such as the difference in film thickness between the surface and side surfaces of the material.

〔発明の目的] そこで、この発明は、上述した欠点等に鑑み、所望の膜
厚で、しかも均−且つ密着性の良好なゲルマニウム或い
はゲルマニウム合金の被膜を、あらゆる材料の表面に容
易にそして安価にて形成できるようにすることを目的と
して創出されたものである。
[Object of the Invention] Therefore, in view of the above-mentioned drawbacks, the present invention provides a method for easily and inexpensively applying a germanium or germanium alloy film having a desired thickness, uniformity, and good adhesion to the surface of any material. It was created with the aim of making it possible to form

[考案の概要] 本願発明者は各種実験を繰返した結果、導電性材料の表
面には直接、非導電性材料の表面には無電解めっきにて
一次金属被膜を形成した後この金属被膜の表面に、イオ
ン・プレイティング法によりゲルマニウム或いはゲルマ
ニウム合金を被覆することにより、殿下の目的を達成し
得るゲルマニウム或いはゲルマニウム合金の被膜を形成
することに成功した。
[Summary of the invention] As a result of repeated various experiments, the inventor of the present application has formed a primary metal coating directly on the surface of a conductive material and by electroless plating on the surface of a non-conductive material. By coating germanium or germanium alloy using the ion plating method, we succeeded in forming a coating of germanium or germanium alloy that could achieve His Highness's objective.

[発明の実施例] 以下、この発明の詳細について説明する。[Embodiments of the invention] The details of this invention will be explained below.

めっきによる被膜によって被覆される材料は、導電性材
料と非導電性材料との二つに大別される。
Materials covered with plating films are broadly classified into two types: conductive materials and non-conductive materials.

導電性材料の場合には、先ず最初に表面を脱脂洗浄して
おく。又、非導電性材料の場合には、予め、無電解めっ
きにてめっきし易い金属をめっきし非導電性材料の表面
に一次金属被膜を形成しておき、非導電性材料の表面を
導電性を有するようにして151!!理を完了する。
In the case of conductive materials, the surface is first degreased and cleaned. In addition, in the case of non-conductive materials, a primary metal film is formed on the surface of the non-conductive material by plating with a metal that is easy to plate using electroless plating, and the surface of the non-conductive material is made conductive. 151! ! complete the process.

次に、このように前処理を施した各材料に、適当な条件
でイオン・プレイティング法によりゲルマニウム或いは
ゲルマニウム合金を被覆して被膜を形成するものである
Next, each material pretreated in this manner is coated with germanium or germanium alloy by ion plating under appropriate conditions to form a film.

又、イオン・プレイティング法は、不活性ガスのグロー
放電中でめっきすべき金属を蒸発させると共にイオン化
し、負に印加した被めっき材料にイオン化した金属を衝
撃的に蒸着する方法である。
The ion plating method is a method in which the metal to be plated is evaporated and ionized in a glow discharge of an inert gas, and the ionized metal is deposited by impact onto the material to be plated to which a negative voltage is applied.

そのため、イオン化された分子が加速されて激しく被め
っき材料表面を衝撃するから、その表面は局部的に加熱
されてめっきすべき金属と被めっき材料との合金層が形
成され、密着性に優れた被膜を形成することができるも
のである。そして、従来の真空蒸着法ではさけられなか
った樹枝状晶の生成も、イオン衝撃のために妨げられて
均質で密度の高い等方晶的な被膜を形成することができ
る。
Therefore, the ionized molecules are accelerated and violently impact the surface of the material to be plated, which locally heats the surface and forms an alloy layer between the metal to be plated and the material to be plated, resulting in excellent adhesion. It is capable of forming a film. Furthermore, the formation of dendrites, which could not be avoided in conventional vacuum deposition methods, is also prevented by the ion bombardment, making it possible to form a homogeneous, high-density, isotropic film.

その結果、ゲルマニウム或いはゲルマニウム合金をイオ
ン・プレイティング法によって被覆することで、その被
膜は均−且つ密着性に優れたものとなる。しかも、イオ
ン・プレイティング法の条件を適宜変えることにより膜
厚のコントロールが容易になるものである。
As a result, by coating germanium or germanium alloy by the ion plating method, the coating becomes uniform and has excellent adhesion. Moreover, the film thickness can be easily controlled by appropriately changing the conditions of the ion plating method.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

実施例1゜ 材料は、導電性材料としてステンレス鋼板を使用する。Example 1゜ As for the material, a stainless steel plate is used as a conductive material.

先ず最初に、ステンレス鋼板の表面を脱脂洗浄する。次
に、10−5Torr程度まで排気した後、アルゴンガ
スを用い、Q 、 02 Torr、基板電圧40o■
で10分間ボンバードクリーニングを行なった。更にそ
の後、ヒーターを用いてステンレス鋼板を約150℃に
加熱し、10 ’Torr程度まで排気を行なったあと
、イオン・プレイティング法によりゲルマニウム或いは
ゲルマニウム合金の被膜をステンレス鋼板の表面に形成
した。
First, the surface of the stainless steel plate is degreased and cleaned. Next, after exhausting to about 10-5 Torr, using argon gas, Q, 02 Torr, substrate voltage 40 o
Bombard cleaning was performed for 10 minutes. Thereafter, the stainless steel plate was heated to about 150° C. using a heater and evacuated to about 10 Torr, and then a germanium or germanium alloy coating was formed on the surface of the stainless steel plate by ion plating.

その時のイオン・プレイティング条件は次の通りである
The ion plating conditions at that time were as follows.

使用装置     アーク放電型高真空イオン・プレイ
ティング装置 電子銃電源加速電圧         9kvフイラメ
ント印加電流     600TrLA熱電子電m  
        4v −3OAイオン化電極電源  
       40V基板電圧           
 300Vの条件で30分間プレイティングを行なった
Equipment used Arc discharge type high vacuum ion plating device Electron gun Power source Accelerating voltage 9kv Filament applied current 600TrLA thermionic electron m
4v -3OA ionization electrode power supply
40V board voltage
Plating was performed for 30 minutes at 300V.

その結果、均一で且つ密着性の良好なゲルマニウム或い
はゲルマニウム合金の被膜を形成することができた。
As a result, it was possible to form a germanium or germanium alloy film that was uniform and had good adhesion.

実施例2゜ 材料は、非導電性材料としてフェライト磁性体を使用す
る。
Example 2: A ferrite magnetic material is used as a non-conductive material.

先ず最初に、フェライト磁性体の表面に無電解ニッケル
めっきを施し、その後金のフラッシュめっきを施して一
次金属被膜を形成した。その後−次金属被膜の表面を脱
脂洗浄した。次に、実施例1、と同様の条件で、ボンバ
ードクリーニング行ない次にイオン・プレイティング法
によりゲルマニウム或いはゲルマニウム合金の被膜を一
次金属被膜の表面に形成した。
First, electroless nickel plating was applied to the surface of the ferrite magnetic material, and then gold flash plating was applied to form a primary metal coating. Thereafter, the surface of the second metal coating was degreased and cleaned. Next, bombard cleaning was performed under the same conditions as in Example 1, and then a germanium or germanium alloy film was formed on the surface of the primary metal film by ion plating.

その結果、実施例1.と同様に均一で且つ密着性の良好
なゲルマニウム或いはゲルマニウム合金の被膜を形成す
ることができた。
As a result, Example 1. Similarly, it was possible to form a germanium or germanium alloy film that was uniform and had good adhesion.

[発明の効果] 以上説明したように、この発明は、導電性材料の場合に
は直接、被導電性材料の場合には無電解めっきにて一次
金属被膜を形成してイオン・プレイティング法によるめ
っきを可能にし、その後、均−且つ密着性に優れた被膜
が形成できるイオン・プレイティング法によるめっきに
てゲルマニウム或いはゲルマニウム合金の被膜を形成す
るから、あらゆる材料の表面に、均−且つ密着性の良好
なケールマニウム或いはゲルマニウム合金被膜を得るこ
とができ、しかも、イオン・プレイティングの条件を適
宜設定すれば所望の膜厚の被膜が形成できるものであり
、イオン・プレイティング法によるめっきは、装置と各
条件が設定されていれば誰にでも容易に行なうことがで
きるため熟練者を必要としないので人件費の低減化を図
り得るもので、又、高価なゲルマニウム或いはゲルマニ
ウム合金の膜厚を必要最小限に抑えることが可能となり
、ゲルマニウム等を被覆した製品を安価にて提供できる
等の優れた効果を奏するものである。
[Effects of the Invention] As explained above, the present invention is capable of forming a primary metal film directly in the case of a conductive material, or by electroless plating in the case of a conductive material, and using the ion plating method. After that, a germanium or germanium alloy film is formed by plating using the ion plating method, which enables the formation of a uniform and highly adhesive film, so it can be applied to the surface of any material with uniform and adhesive properties. It is possible to obtain a kalemanium or germanium alloy film with a good quality, and if the ion plating conditions are set appropriately, a film with the desired thickness can be formed. As long as the following conditions are set, anyone can easily perform the process, and as it does not require skilled personnel, labor costs can be reduced.Also, it does not require the thickness of an expensive germanium or germanium alloy film. This makes it possible to minimize the amount of heat generated, and provides excellent effects such as being able to provide products coated with germanium or the like at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1、導電性材料の表面には直接、非導電性材料の表面に
は無電解めっきにて一次金属被膜を形成した後この金属
被膜の表面に、イオン・プレイティング法によりゲルマ
ニウム或いはゲルマニウム合金を被覆することを特徴と
したゲルマニウム被膜形成方法。
1. After forming a primary metal coating directly on the surface of a conductive material and by electroless plating on the surface of a non-conductive material, the surface of this metal coating is coated with germanium or germanium alloy by an ion plating method. A germanium film forming method characterized by:
JP13878985A 1985-06-25 1985-06-25 Formation of germanium film Pending JPS621859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13878985A JPS621859A (en) 1985-06-25 1985-06-25 Formation of germanium film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13878985A JPS621859A (en) 1985-06-25 1985-06-25 Formation of germanium film

Publications (1)

Publication Number Publication Date
JPS621859A true JPS621859A (en) 1987-01-07

Family

ID=15230248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13878985A Pending JPS621859A (en) 1985-06-25 1985-06-25 Formation of germanium film

Country Status (1)

Country Link
JP (1) JPS621859A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174985A (en) * 1974-12-25 1976-06-29 Kagaku Gijutsucho Kinzoku IONPURE ETEINGUHO
JPS5618075A (en) * 1979-07-23 1981-02-20 Hiroshi Shimoda Wind collecting plate fitting position for multiple parallel-positioned vertical wind mills

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174985A (en) * 1974-12-25 1976-06-29 Kagaku Gijutsucho Kinzoku IONPURE ETEINGUHO
JPS5618075A (en) * 1979-07-23 1981-02-20 Hiroshi Shimoda Wind collecting plate fitting position for multiple parallel-positioned vertical wind mills

Similar Documents

Publication Publication Date Title
US4683149A (en) Film forming process
US4692230A (en) Thin film forming method through sputtering and sputtering device
US4151325A (en) Titanium nitride thin films for minimizing multipactoring
US4420386A (en) Method for pure ion plating using magnetic fields
JPS6483656A (en) Method and vacuum painting machine for applying film to base layer
US5078847A (en) Ion plating method and apparatus
CN111235532A (en) Coating device combining ion coating and electron beam evaporation coating and coating method thereof
US4209552A (en) Thin film deposition by electric and magnetic crossed-field diode sputtering
JPH07115213B2 (en) Manufacturing method of metal composite
JP2968800B2 (en) Method for producing electrode material for electrolytic capacitor
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
JPS621859A (en) Formation of germanium film
US3846294A (en) Method of coating the interior walls of through-holes
WO2017020535A1 (en) Copper/aluminium alloy crystal oscillation plate coating process
WO2017020534A1 (en) Silver/aluminium alloy crystal oscillation plate coating process
JP4138971B2 (en) Surface treatment method for plastic substrate and coated plastic article
JPH11245371A (en) Mask and squeegee
CN112281118A (en) Ion beam metallization method of LCP (liquid Crystal Polymer) substrate and product thereof
JPS6350463A (en) Method and apparatus for ion plating
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JPH0428853A (en) Formation of thin vacuum-deposited material metallic film having high adhesive strength on stainless steel surface
JPH04346651A (en) Metallizing method
JPH04276062A (en) Arc deposition device
JPH01168857A (en) Formation of titanium nitride film
JPS63213664A (en) Ion plating device