JPS621845B2 - - Google Patents

Info

Publication number
JPS621845B2
JPS621845B2 JP9168483A JP9168483A JPS621845B2 JP S621845 B2 JPS621845 B2 JP S621845B2 JP 9168483 A JP9168483 A JP 9168483A JP 9168483 A JP9168483 A JP 9168483A JP S621845 B2 JPS621845 B2 JP S621845B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
engine
air
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9168483A
Other languages
Japanese (ja)
Other versions
JPS601022A (en
Inventor
Susumu Kanashiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP9168483A priority Critical patent/JPS601022A/en
Publication of JPS601022A publication Critical patent/JPS601022A/en
Publication of JPS621845B2 publication Critical patent/JPS621845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices

Description

【発明の詳細な説明】 本発明はバス用冷房装置に関するものである。[Detailed description of the invention] The present invention relates to a bus cooling device.

バスの冷房装置として、駆動源としてのサブエ
ンジン、該サブエンジンにて駆動される圧縮機、
凝縮器、蒸発器等の冷房用機器及び動力伝達系
統、送風フアン等の送風系統をユニツト化して車
体床下に搭載した所謂サブエンジン駆動式冷房装
置が一般に用いられている(例えば実開昭49−
27835号公報参照)。
As a bus cooling device, a sub-engine as a driving source, a compressor driven by the sub-engine,
A so-called sub-engine-driven cooling system is generally used, in which cooling equipment such as a condenser and evaporator, a power transmission system, and an air blowing system such as a blower fan are integrated into a unit and mounted under the floor of the car body (for example, in 1973-
(See Publication No. 27835).

このようなサブエンジン駆動式冷房装置の従来
の系統図は第3図に示す通りである。
A conventional system diagram of such a sub-engine-driven cooling device is shown in FIG.

即ちサブエンジン1は圧縮機9を直結駆動する
と共に、プーリ3,4、それに掛装されたVベル
ト、自在接手軸5及びプーリ6,7それに掛装さ
れたVベルト等の動力伝達機構を介して送風フア
ン8を回転駆動し、圧縮機9より吐出された高
圧、高温の冷媒ガスは実線矢印の如く凝縮器10
を通過する間に冷却フアン2による空冷手段にて
冷却され受液器11に入り、液冷媒のみが膨張弁
12に流入し低温、低圧の気液混合状態で蒸発器
13に入り、送風フアン8により流通するバス室
内空気を冷却して冷風とし室内に該冷風を吹き出
させる。
That is, the sub-engine 1 directly connects and drives the compressor 9, and also drives the compressor 9 through a power transmission mechanism such as the pulleys 3 and 4, the V-belt hooked thereto, the universal joint shaft 5, and the V-belt hooked around the pulleys 6 and 7. The blower fan 8 is driven to rotate, and the high-pressure, high-temperature refrigerant gas discharged from the compressor 9 is sent to the condenser 10 as shown by the solid arrow.
While passing through the cooling fan 2, the liquid refrigerant is cooled by the air cooling means and enters the liquid receiver 11. Only the liquid refrigerant flows into the expansion valve 12 and enters the evaporator 13 in a low temperature, low pressure gas-liquid mixed state. The circulating air inside the bus is cooled into cold air and the cold air is blown into the room.

蒸発器13を通過する間に空気を冷却した冷媒
は蒸発ガス化し再び圧縮機9に吸入されるように
なつている。
The refrigerant that cooled the air while passing through the evaporator 13 is evaporated into gas and is sucked into the compressor 9 again.

又上記冷媒の循環回路には、凝縮器10でわず
かに冷却された冷媒ガスを点線矢印の如く圧縮機
9の吸入側にバイパスするバイパス回路が設けら
れ、該バイパス回路を制御弁21にて開閉制御す
ることにより、前記蒸発器13側を流れる冷媒流
量を制御し得るようになつている。
The refrigerant circulation circuit is also provided with a bypass circuit that bypasses the refrigerant gas slightly cooled in the condenser 10 to the suction side of the compressor 9 as indicated by the dotted arrow, and the bypass circuit is opened and closed by a control valve 21. Through this control, the flow rate of refrigerant flowing through the evaporator 13 can be controlled.

14はサブエンジン1の冷却水の冷却用ラジエ
ータであり、サブエンジン1を冷却した冷却水は
鎖線矢印の如くラジエータ14に至り、ここで冷
却フアン2による空冷手段にて放熱し再びサブエ
ンジン1に流入する。
14 is a radiator for cooling the cooling water of the sub-engine 1, and the cooling water that has cooled the sub-engine 1 reaches the radiator 14 as shown by the chain arrow, where it is radiated by air cooling means by the cooling fan 2 and is then returned to the sub-engine 1. Inflow.

上記のような従来装置においては、冷房運転中
冷房がきき過ぎて室内温度が冷えて来ると自動的
に又は手動で制御弁21を開とし主回路の冷媒流
量を減少させ、冷房能力を小として室温のコント
ロールを行つているが、一般に蒸発器により冷却
される空気の温度降下量は送風フアン8の送風量
により変化し、従つてこの温度降下量は第4図に
示すように約2℃程度のバラツキがあるので、室
温即ち蒸発器の入口空気温度が25℃の冷房適温時
に出口空気温度は5〜7℃の幅が生じ、出口空気
温度が5℃くらいのときには冷媒の蒸発温度は−
5〜−7℃くらいとなり、蒸発器に着霜或は凍結
が始まる虞れが生じる。
In the conventional device as described above, when the air conditioner is running too high during cooling operation and the indoor temperature becomes cold, the control valve 21 is automatically or manually opened to reduce the refrigerant flow rate in the main circuit and reduce the cooling capacity. The room temperature is controlled, but generally the amount of temperature drop of the air cooled by the evaporator varies depending on the amount of air blown by the blower fan 8, so the amount of temperature drop is approximately 2 degrees Celsius as shown in Figure 4. Therefore, when the room temperature, that is, the inlet air temperature of the evaporator is the appropriate cooling temperature of 25°C, the outlet air temperature will vary from 5 to 7°C, and when the outlet air temperature is about 5°C, the refrigerant evaporation temperature will be -
The temperature will be about 5 to -7°C, and there is a risk that the evaporator will start to frost or freeze.

このような不具合を防ぐ為に蒸発器13の出口
空気温度が所定値以下となつたとき制御弁21を
開とするサーモスイツチ19を設ける方策が従来
より採用されているが、蒸発器13の空気出口側
の凝縮水の影響を防ぐ為にサーモスイツチ19を
防水型としなければならず、従つて該サーモスイ
ツチ19自身のオン、オフ温度差を2℃程度にし
ても該サーモスイツチ19全体の熱容量によりプ
ラス、マイナスに夫々4〜5℃程度の温度差が生
じるまでスイツチ19を加熱又は冷却しなければ
スイツチ19が作動せず、バイパス回路が閉じて
いるときと開いているときの吹出冷風の温度差が
大きく、バイパス回路が開いたとき急に冷風の吹
出温度が上り乗客の涼感を損なうばかりか、冷房
時の室内平均温度が26〜27℃と高くなつてしま
い、冷房効果が不足すると言う欠点を有してい
る。
In order to prevent such problems, a measure has been adopted in the past to provide a thermoswitch 19 that opens the control valve 21 when the outlet air temperature of the evaporator 13 falls below a predetermined value. In order to prevent the influence of condensed water on the outlet side, the thermoswitch 19 must be waterproof. Therefore, even if the temperature difference between on and off temperatures of the thermoswitch 19 itself is about 2°C, the heat capacity of the thermoswitch 19 as a whole is small. The switch 19 will not operate unless the switch 19 is heated or cooled until there is a temperature difference of about 4 to 5 degrees Celsius between the positive and negative sides, and the temperature of the cold air blown out when the bypass circuit is closed and when it is open. The difference is large, and when the bypass circuit opens, the temperature at which the cold air blows suddenly rises, which not only spoils the sense of coolness for passengers, but also causes the average room temperature during cooling to rise to 26-27 degrees Celsius, resulting in a lack of cooling effect. have.

又制御弁21が開くと急激に凝縮器内の高圧冷
媒ガスが低圧の圧縮機吸入側に流れるので、冷媒
の流れ音が発生し乗客に不快感を与える欠点もあ
る。
Furthermore, when the control valve 21 opens, the high-pressure refrigerant gas in the condenser suddenly flows to the low-pressure suction side of the compressor, resulting in the generation of refrigerant flow noise, which may cause discomfort to passengers.

本発明は上記のような従来の諸欠点を解消する
ことを主目的とするものであり、以下本発明を第
1,2図の実施例を参照して説明する。
The main purpose of the present invention is to eliminate the various drawbacks of the prior art as described above, and the present invention will be explained below with reference to the embodiments shown in FIGS. 1 and 2.

本発明においては、第1図に示すようにサブエ
ンジン1にて駆動される圧縮機9、冷却フアン2
により冷却される凝縮器10、受液器11、膨張
弁12及び蒸発器13よりなる主冷媒回路、プー
リ3,4、それに掛装されたVベルト、自在接手
軸5、プーリ6,7、これに掛装されたVベルト
等の動力伝達機構によつてサブエンジン1にて回
転駆動される送風フアン8等よりなるサブエンジ
ン駆動式冷房装置において、蒸発器13の前面
(流通空気の上流側)に放熱器15を設け、該放
熱器15にサブエンジン1の冷却水を流通させた
後サブエンジン1に還流させる空気加熱回路Aを
設け、且つ該空気加熱回路Aに温水制御弁16を
設けて、該温水制御弁16が蒸発器13の入口空
気温度を検知して作動するサーモスイツチ20の
信号にてオン、オフ作動することにより、空気加
熱回路Aへの冷却水流通を制御するよう構成した
ものである。
In the present invention, as shown in FIG. 1, a compressor 9 driven by a sub-engine 1, a cooling fan 2
A main refrigerant circuit consisting of a condenser 10, a liquid receiver 11, an expansion valve 12, and an evaporator 13, which are cooled by a In a sub-engine-driven cooling system consisting of a blower fan 8 etc. that is rotationally driven by the sub-engine 1 by a power transmission mechanism such as a V-belt hung on the evaporator 13 (upstream side of circulating air). A radiator 15 is provided in the radiator 15, an air heating circuit A is provided in which cooling water for the sub-engine 1 is circulated through the radiator 15 and then returned to the sub-engine 1, and a hot water control valve 16 is provided in the air heating circuit A. The hot water control valve 16 is configured to control the flow of cooling water to the air heating circuit A by turning on and off in response to a signal from a thermoswitch 20 that is activated by detecting the air temperature at the inlet of the evaporator 13. It is something.

上記のように構成した本発明装置においては、
冷房運転時室温即ち蒸発器13の入口空気温度が
所定値以上であると、サーモスイツチ20はオフ
で温水制御弁16は閉じており、空気加熱回路A
にはエンジン冷却水は流れず、フアン8にて吸入
された室内空気が蒸発器13にて冷却された後室
内に吹き出し、従来通りの冷房作動が行われる。
In the device of the present invention configured as described above,
During cooling operation, when the room temperature, that is, the inlet air temperature of the evaporator 13 is above a predetermined value, the thermoswitch 20 is turned off, the hot water control valve 16 is closed, and the air heating circuit A is turned off.
Engine cooling water does not flow through the fan 8, and the indoor air sucked in by the fan 8 is cooled by the evaporator 13 and then blown into the room, and the conventional cooling operation is performed.

室温が下り蒸発器13の入口空気温度が蒸発器
出口で着霜温度となるべき温度になると、サーモ
スイツチ20がオンとなり、温水制御弁16が開
き、エンジン冷却後の冷却水(温水)が放熱器1
5に流通し、室内空気は該放熱器15を通過する
間に加温されて蒸発器13に入るようになり蒸発
器13の入口空気温度を上げ出口空気温度を着霜
温度以上として着霜を防止する。
When the room temperature falls and the inlet air temperature of the evaporator 13 reaches the temperature that should be the frosting temperature at the evaporator outlet, the thermo switch 20 is turned on, the hot water control valve 16 is opened, and the cooling water (hot water) after cooling the engine releases heat. Vessel 1
5, the indoor air is heated while passing through the radiator 15 and enters the evaporator 13, increasing the inlet air temperature of the evaporator 13 and raising the outlet air temperature to above the frosting temperature to prevent frosting. To prevent.

この場合、サブエンジン1は圧縮機9、フアン
2及び8等を駆動しているだけであるのでその負
荷はほぼ一定であり、更にエンジン内蔵のサーモ
スタツトによりエンジン冷却水温が一定値以上に
なると冷却水をラジエータ14に流して放熱し冷
却水温をほぼ一定に保つようになつているので、
空気加熱回路Aから放熱器15に流れる冷却水温
はほぼ一定に安定しており、蒸発器13の入口空
気の加温量の設定は極めて容易である。
In this case, the sub-engine 1 only drives the compressor 9, fans 2 and 8, etc., so its load is almost constant.Furthermore, the built-in thermostat in the engine cools the engine when the engine cooling water temperature exceeds a certain value. Water is flowed through the radiator 14 to radiate heat and keep the cooling water temperature almost constant.
The temperature of the cooling water flowing from the air heating circuit A to the radiator 15 is almost constant and stable, and setting the amount of heating of the inlet air of the evaporator 13 is extremely easy.

又、第4図に示すように、蒸発器の入口空気温
度と出口空気温度の関係は、太線にて示す平均値
において、入口温度が30℃から20℃に10℃変化し
ても出口温度の変化は約4.5℃であり、例えば入
口空気温度23℃でサーモスイツチ20が働らいて
温水制御弁16が開き、放熱器15にて入口空気
温度を5℃程度加熱上昇させれば、蒸発器13の
出口空気温度は約2℃上昇し、室内への供給空気
温度を大きく変化させることなく着霜等の不具合
を防止することができる。
In addition, as shown in Figure 4, the relationship between the inlet air temperature and outlet air temperature of the evaporator is that, at the average value shown by the thick line, even if the inlet temperature changes by 10°C from 30°C to 20°C, the outlet temperature does not change. The change is about 4.5 degrees Celsius. For example, when the inlet air temperature is 23 degrees Celsius, the thermoswitch 20 operates, the hot water control valve 16 opens, and the radiator 15 heats up the inlet air temperature by about 5 degrees Celsius, then the evaporator 13 The temperature of the outlet air increases by approximately 2°C, making it possible to prevent problems such as frost formation without significantly changing the temperature of the air supplied indoors.

放熱器15により蒸発器13の入口空気温度が
上昇しサーモスイツチ20のオフ点設定温度に達
すると、該サーモスイツチ20がオフとなつて温
水制御弁16は閉となり、放熱器15に冷却水
(温水)が流通しなくなり、室内空気により放熱
器15は次第に冷却されて室温と同じになり、サ
ーモスイツチ20が再びオンとなつて温水制御弁
16を開とする。
When the inlet air temperature of the evaporator 13 is increased by the radiator 15 and reaches the off-point set temperature of the thermoswitch 20, the thermoswitch 20 is turned off, the hot water control valve 16 is closed, and the cooling water ( Hot water) no longer flows, and the radiator 15 is gradually cooled down by the indoor air until it reaches room temperature, and the thermoswitch 20 is turned on again to open the hot water control valve 16.

上記のように蒸発器の入口空気温度の変化に対
する出口空気温度の変化が極めて小であると言う
ことは、本発明のように蒸発器の入口空気温度を
センシングして作動するサーモスイツチ20を設
けた場合、そのサーモスイツチ20のオン、オフ
のセツト温度の幅を比較的大きくしても室内の冷
房効果をあまり損なうことがないと言うことにな
り、該サーモスイツチ20は蒸発器13の上流側
に配設されるので凝縮水の影響を考慮する必要が
ないことと相俟つてサーモスイツチ20として市
販の安価なものを用いても充分所定の機能を果す
ことができ、コスト的に極めて有利である。
As mentioned above, the fact that the change in the outlet air temperature with respect to the change in the inlet air temperature of the evaporator is extremely small means that, as in the present invention, the thermoswitch 20 that operates by sensing the inlet air temperature of the evaporator is provided. In this case, it can be said that even if the range of on/off set temperatures of the thermoswitch 20 is relatively large, the indoor cooling effect will not be significantly impaired, and the thermoswitch 20 is placed on the upstream side of the evaporator 13. Since the thermoswitch 20 is installed at be.

勿論サーモスイツチ20は第1図示のように放
熱器15と蒸発器13との中間位置に設けるのが
望ましいが、20′の如く放熱器15の下流側の
温水通路に取付け、放熱器15における温水の温
度変化量によつて間接的に蒸発器13の入口空気
温度を検出するようにしても良く、又20″のよ
うに放熱器15の空気入口側に熱抵抗体を介して
取付け、放熱器15の入口空気温度が所定値以下
となつたらオンとなり放熱器15の出口空気温度
が所定値に達したらオフとなるようにしても良
い。
Of course, it is preferable to install the thermoswitch 20 at an intermediate position between the radiator 15 and the evaporator 13 as shown in the first figure, but it should be installed in the hot water passage on the downstream side of the radiator 15 like 20' so that the hot water in the radiator 15 The inlet air temperature of the evaporator 13 may be indirectly detected based on the amount of temperature change of It may be turned on when the inlet air temperature of the radiator 15 is below a predetermined value, and turned off when the outlet air temperature of the radiator 15 reaches a predetermined value.

第2図は第1図の装置のすべてフレーム17上
に装着して一体型の冷房ユニツトとし、これを車
体床下にボルト等の結合部材で取付けることによ
り蒸発器13、放熱器15を内蔵したケース18
の空気吸入口18′が車室内に連通すると共に送
風フアン8の吹出口が車体の天井部等に設けた冷
風吹出ダクトに例えば立上りダクト等を介して連
通するようにした例を示している。
Fig. 2 shows a case in which all of the devices shown in Fig. 1 are mounted on a frame 17 to form an integrated cooling unit, and this is attached under the floor of the car body with connecting members such as bolts, thereby incorporating an evaporator 13 and a radiator 15. 18
An example is shown in which the air intake port 18' communicates with the interior of the vehicle, and the outlet of the blower fan 8 communicates with a cold air blowing duct provided on the ceiling of the vehicle body, for example, via a riser duct or the like.

尚第2図において18″はケース18に設けた
ユニツトの点検用開閉蓋であり、第2図において
第1図と同一の符号は同一の部分を表わしてい
る。
In FIG. 2, reference numeral 18'' is a unit inspection opening/closing lid provided on the case 18, and the same reference numerals in FIG. 2 as in FIG. 1 represent the same parts.

上記のように本発明によれば、冷房装置の駆動
源であるエンジンの冷却水を用い、蒸発器の入口
空気温度を制御することにより、室内への吹出冷
風温度をあまり変化させることなく蒸発器への着
霜を防止することができ、乗客の涼感の著しい向
上をはかることができると共に、装置の簡略化及
びコストダウンをもはかることができるもので、
実用上多大の効果をもたらし得るものである。
As described above, according to the present invention, by controlling the inlet air temperature of the evaporator using the cooling water of the engine, which is the driving source of the cooling device, the evaporator is heated without significantly changing the temperature of the cold air blown into the room. It is possible to prevent frost from forming on the air, significantly improve the feeling of cooling for passengers, and also simplify the equipment and reduce costs.
This can bring about great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す冷房系統図、第
2図は第1図装置をユニツト化した場合の一例を
示す正面説明図、第3図は従来の冷房系統図、第
4図は蒸発器の入口空気温度と出口空気温度との
関係を示す図である。 1……サブエンジン、9……圧縮機、10……
凝縮器、11……受液器、12……膨張弁、13
……蒸発器、14……ラジエータ、15……放熱
器、16……温水制御弁、20……サーモスイツ
チ。
Fig. 1 is a cooling system diagram showing an embodiment of the present invention, Fig. 2 is a front explanatory view showing an example of the unit shown in Fig. 1, Fig. 3 is a conventional cooling system diagram, and Fig. 4 is a diagram of a conventional cooling system. It is a figure showing the relationship between inlet air temperature and outlet air temperature of an evaporator. 1...Sub engine, 9...Compressor, 10...
Condenser, 11...Liquid receiver, 12...Expansion valve, 13
... Evaporator, 14 ... Radiator, 15 ... Heat radiator, 16 ... Hot water control valve, 20 ... Thermoswitch.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンを駆動源とする冷房装置において、
蒸発器の空気流通方向における上流側に放熱器を
設け、上記エンジンの冷却水が該放熱器を流通し
てエンジンに還流する空気加熱用冷却水循環回路
を構成すると共に、蒸発器の入口空気温度が所定
値以下となつたとき上記空気加熱用冷却水循環回
路を開とし、蒸発器の入口空気温度が所定値以上
となつたとき上記空気加熱用冷却水循環回路を閉
とする温水制御弁を設けたことを特徴とするバス
用冷房装置。
1 In a cooling system using an engine as a driving source,
A radiator is provided on the upstream side of the evaporator in the air flow direction, forming an air heating cooling water circulation circuit in which the engine cooling water flows through the radiator and returns to the engine. A hot water control valve is provided that opens the air heating cooling water circulation circuit when the temperature falls below a predetermined value, and closes the air heating cooling water circulation circuit when the inlet air temperature of the evaporator reaches a predetermined value or higher. A bus cooling device featuring:
JP9168483A 1983-05-25 1983-05-25 Cooler for bus Granted JPS601022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168483A JPS601022A (en) 1983-05-25 1983-05-25 Cooler for bus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168483A JPS601022A (en) 1983-05-25 1983-05-25 Cooler for bus

Publications (2)

Publication Number Publication Date
JPS601022A JPS601022A (en) 1985-01-07
JPS621845B2 true JPS621845B2 (en) 1987-01-16

Family

ID=14033322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168483A Granted JPS601022A (en) 1983-05-25 1983-05-25 Cooler for bus

Country Status (1)

Country Link
JP (1) JPS601022A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248328U (en) * 1985-09-11 1987-03-25
JPH09113014A (en) * 1995-10-23 1997-05-02 Sanyo Electric Co Ltd Controller for air conditioner

Also Published As

Publication number Publication date
JPS601022A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US5642627A (en) Automotive air conditioner having condenser and evaporator provided within air duct
JP2882184B2 (en) Heat pump type air conditioner for vehicles
CN108698475A (en) Air conditioner for motor vehicle
CN108698476A (en) Air conditioner for motor vehicle
US10508588B2 (en) Cooling device for internal combustion engine
JP3794121B2 (en) Air conditioner for vehicles
CN109715422A (en) Air conditioner for motor vehicle
CN104105612A (en) Vehicle air conditioning device
JP2003080928A (en) Vehicular air conditioner
JP3410820B2 (en) Vehicle air conditioner
JPS621845B2 (en)
JPS6015217A (en) Air conditioner for vehicle
CN109890635A (en) Air conditioner for motor vehicle
JP2658918B2 (en) Freezing prevention control method for hot water type air conditioner
JPH0952508A (en) Vehicular air conditioner
JPS59145617A (en) Air conditioning equipment for car
JPH07120005A (en) Air-conditioning apparatus
JP3158889B2 (en) Heat pump type air conditioner
JPH1018845A (en) Cooling water flow control device of internal combustion engine
JP3049940B2 (en) Heat pump type air conditioner for vehicles
JP3303249B2 (en) Control unit for refrigeration unit with heating function
JPH08183320A (en) Air conditioner for vehicle
JP2000219023A (en) Air conditioner for vehicle
JPS6144511Y2 (en)
JPS60252017A (en) Warming/cooling apparatus for car