JPS62184270A - Belt driven type non-stage transmission - Google Patents

Belt driven type non-stage transmission

Info

Publication number
JPS62184270A
JPS62184270A JP2517486A JP2517486A JPS62184270A JP S62184270 A JPS62184270 A JP S62184270A JP 2517486 A JP2517486 A JP 2517486A JP 2517486 A JP2517486 A JP 2517486A JP S62184270 A JPS62184270 A JP S62184270A
Authority
JP
Japan
Prior art keywords
pulley
block
grooves
contact
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2517486A
Other languages
Japanese (ja)
Inventor
Junzo Hasegawa
長谷川 準三
Yoshiyuki Mizutani
水谷 嘉之
Yuji Nagasawa
裕二 長沢
Munehisa Matsui
宗久 松井
Kazuyuki Nakanishi
和之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2517486A priority Critical patent/JPS62184270A/en
Publication of JPS62184270A publication Critical patent/JPS62184270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

PURPOSE:To enable the frictional force between a block and a pulley to be adjusted, by forming plural rectangular grooves on the block or a V-shaped groove. CONSTITUTION:A driving belt comprises hoops which are formed by overlapping a prescribed number of metal sheet bands forming loops and a metal block 3 having both side end surfaces which are brought into contact with the conical surfaces of pulleys, and is provided between a fixed pulley 5 and a movable pulley 6. Plural grooves 8 which are intersected with each other and have almost the same width in the depth direction are provided for at least one of the side end surface 3a of the block or pulley driving surfaces 5a, 6a. The grooves 8 have rectangular sections which are 0.1mm wide and 5-20mum deep at intervals of0.2mm, and the directions of the grooves 8 are respectively inclined 45 deg. in the longitudinal direction of the side end surface of the block. Thus, even in case of long time use, the controlling effect of forming oil film can be maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は幅寸法が変更できる一対のプーリヘフープを介
してブロックを巻掛けることにより駆動力を伝達し、溝
幅の変更で減速度比を変えるベルト駆動式変速機に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention transmits driving force by winding a block around a pair of pulley hoops whose width dimensions can be changed, and changes the deceleration ratio by changing the groove width. Related to belt-driven transmissions.

[背景技術] 近年、自動車等への採否が注目されているベルト駆動式
無段変速機では、ループを成す多層に重ねた金属薄帯の
フープに、金属製のブロックを複数個重ねて取り付け、
駆動ベルトを形成している。この駆動ベルトを一対の並
設したV字状のプーリに巻き掛け、一方のプーリから他
方のプーリヘトルクの伝達を行なっている。
[Background technology] In recent years, belt-driven continuously variable transmissions, which have been attracting attention for their adoption in automobiles, are made by attaching multiple metal blocks to a hoop of multi-layered metal thin strips forming a loop.
It forms the drive belt. This drive belt is wound around a pair of V-shaped pulleys arranged in parallel, and torque is transmitted from one pulley to the other pulley.

プーリは円錐状の駆動面を有する固定プーリと、この固
定プーリに対向する同一の駆動面を有する可動プーリと
から成り1両駆動面はV溝を形成している。その可動プ
ーリは油圧等の手段によって移動し、固定プーリとで構
成するV溝の間隔が可変となっている。
The pulley consists of a fixed pulley having a conical driving surface and a movable pulley having the same driving surface facing the fixed pulley, and both driving surfaces form a V-groove. The movable pulley is moved by means such as hydraulic pressure, and the distance between the V groove and the fixed pulley is variable.

駆動ベルトを構成するブロックの両側端面は、プーリの
駆動面によって形成されるV溝のテーパ角と略同一のテ
ーパ角を有し、プーリのV溝の間隔によって駆動ベルト
のプーリに巻き掛けられる径が変化する。一方のプーリ
に巻き掛けられた径と、他方のプーリに巻き掛けられた
径が異なることによって増速、又は減速の変速が無段階
に行なわれる。駆動ベルトのプーリに巻き掛けられる径
は、一対の並設されたブーりに作用する油圧等の手段の
バランスによって決定される。
Both side end surfaces of the blocks that constitute the drive belt have a taper angle that is approximately the same as the taper angle of the V groove formed by the drive surface of the pulley, and the diameter of the drive belt wrapped around the pulley is determined by the interval between the V grooves of the pulley. changes. Since the diameter wrapped around one pulley is different from the diameter wrapped around the other pulley, speed change for speed increase or deceleration is performed steplessly. The diameter of the drive belt wound around the pulley is determined by the balance of means such as hydraulic pressure acting on a pair of parallel pulleys.

一対の並設された7字状のプーリに巻き掛けられた駆動
ベルトによってトルクが伝達される。すなわち、ブーり
と駆動ベルト間の、また、駆動ベルトにおけるブロック
とフープ間の摩擦によってトルクの伝達が行なわれる。
Torque is transmitted by a drive belt wrapped around a pair of figure-7 pulleys arranged in parallel. That is, torque is transmitted by friction between the bobbin and the drive belt, and between blocks and hoops in the drive belt.

このうちプーリと駆動ベルト間のトルク伝達はプーリと
接触しているブロックを介して行なわれるため、このト
ルク伝達効率は油潤滑下におけるプーリとブロック間の
摩擦力の大きさと安定性に強く依存しうる。
Torque transmission between the pulley and drive belt is carried out via the block that is in contact with the pulley, so the efficiency of this torque transmission strongly depends on the magnitude and stability of the frictional force between the pulley and block under oil lubrication. sell.

この摩擦力が小さい場合、プーリに対する駆動ベルトの
滑りが生じ、駆動ベルトの伝達効率の低下、更には駆動
ベルト端面及びプーリ駆動面に引かき傷等の損傷を引き
起こす、このような滑りを抑制するためにプーリに作用
させる油圧等の手段を高めることが考えられるが、油圧
の増大に要する動力損失のためこの方法も結局系全体と
しての伝達効率の低下をもたらし、得策ではない、この
ため、伝達効率を高めるためにはプーリに作用させる油
圧等の手段ならびにプーリと駆動ベルト間等のすべりを
最小限にすべき事が本発明者の研究によってわかってき
た。
If this frictional force is small, the drive belt slips against the pulley, reducing the transmission efficiency of the drive belt and further causing damage such as scratches to the end surface of the drive belt and the drive surface of the pulley.Such slipping can be suppressed. Therefore, it is conceivable to increase the means such as hydraulic pressure applied to the pulley, but due to the power loss required to increase the hydraulic pressure, this method also results in a decrease in the transmission efficiency of the entire system, and is not a good idea. Through research conducted by the present inventors, it has been found that in order to improve efficiency, means such as hydraulic pressure applied to the pulley and slippage between the pulley and the drive belt should be minimized.

一方、特開昭53−1747号に記載のベルト駆動式無
段変速機においては、駆動ベルトの側端面および又はこ
れと接触する円錐円板(プーリ)の面に微小凹凸がラン
ダムに無数につけられている。このような微小凹凸が無
数に付けられた面においては、微小凹凸の凸部のみが相
手面と接触する。この微小凹凸が結果として油膜切れを
良くし、使用初期において0.2程度の比較的高いレベ
ルの摩擦係数を与えうる。
On the other hand, in the belt-driven continuously variable transmission described in JP-A No. 53-1747, infinitely small irregularities are randomly formed on the side end surface of the drive belt and/or on the surface of the conical disk (pulley) that comes into contact with the side end surface of the drive belt. ing. On a surface having countless such micro-asperities, only the convex portions of the micro-asperities come into contact with the other surface. As a result, these minute irregularities can improve the oil film removal and provide a relatively high level of friction coefficient of about 0.2 at the initial stage of use.

しかし、摩耗の進行に伴なって相手面と接触する平坦部
が多くなると油膜が次第に形成されやすくなって摩擦係
数の低下、すなわちそれによる伝達効率の低下を引き起
こすので、この不具合が耐久使用上問題となる。
However, as wear progresses, as the number of flat parts that come into contact with the mating surface increases, an oil film gradually becomes more likely to form, resulting in a decrease in the coefficient of friction and thus a decrease in transmission efficiency, so this problem poses a problem in terms of durable use. becomes.

また、実開昭58−97337号に記載の溝を適数設け
たベルトブロックについては、溝の方向が一方向のみで
あり、しかもその方向は駆動ベルトの進行方向に対して
反時計方向に0°〜45゜の範囲である。溝の方向と摩
擦方向とにある関係が存在することは本発明者の実験に
よっても明らかとなっているが、その結果は実開昭58
−97337号と逆になっている。
Furthermore, regarding the belt block described in Japanese Utility Model Application Publication No. 58-97337, in which an appropriate number of grooves are provided, the grooves are oriented in only one direction, and that direction is zero in the counterclockwise direction with respect to the traveling direction of the drive belt. The angle ranges from 45° to 45°. The existence of a certain relationship between the direction of the groove and the direction of friction has been clarified through experiments by the present inventor, but the results were
-97337 is the opposite.

また、木発明者の実験によると、駆動ベルトにおいて変
速又は駆動という方向が必ずしもプーリ駆動面の半径方
向又は円周方向と一致しておらず、無断変速機の性能を
維持し、伝達効率を最良とするためには摩擦の方向にか
かわらず、接触面の摩擦係数が変化せず安定している事
が必要な事がわかっている。従って溝が一方向である場
合には性能が維持できず伝達効率の低下を招くだけでは
なく、油圧等の制御回路が複雑となるという問題点があ
る。
Additionally, according to the inventor's experiments, the direction of speed change or drive in the drive belt does not necessarily coincide with the radial direction or circumferential direction of the pulley drive surface, which maintains the performance of the continuously variable transmission and maximizes the transmission efficiency. It is known that in order to achieve this, it is necessary that the friction coefficient of the contact surface remains stable and does not change, regardless of the direction of friction. Therefore, if the groove is unidirectional, there is a problem that not only the performance cannot be maintained and the transmission efficiency is lowered, but also that the control circuit for hydraulic pressure etc. becomes complicated.

[発明の1]的] この発明はブロック端面とプーリ駆動面間の摩擦力を調
整する手段に関するもので前記従来技術の問題点をブロ
ック端面及びプーリ駆動面の形状で改善し、接触2面間
の摩擦力がそれぞれの摩耗の進行に伴なって低下せず、
さらにブロックとプーリのすべり方向又はすべり速度に
よらず一定であり、しかもその製作が比較的容易な端面
形状を有するベルト駆動式無段変速機を提供することを
目的とするものである。
[Objective of the Invention 1] This invention relates to a means for adjusting the frictional force between the block end face and the pulley drive face, and improves the problems of the prior art by changing the shapes of the block end face and the pulley drive face, and improves the friction between the two contact faces. The frictional force of each does not decrease as the wear progresses,
Another object of the present invention is to provide a belt-driven continuously variable transmission having an end face shape that is constant regardless of the sliding direction or sliding speed of the block and pulley and is relatively easy to manufacture.

[発明の説明] 本発明に関わるベルト駆動式無段変速機のトルク伝達系
では、第1図及び第2図に示すように。
[Description of the Invention] The torque transmission system of the belt-driven continuously variable transmission according to the present invention is as shown in FIGS. 1 and 2.

駆動ベルトがループを成す金属薄帯を所定枚数重ねたフ
ープ4とプーリの円錐面と当接する両側端面を有する金
属製ブロック3とから成り、略平行に一対並設したプー
リ1,2に巻き掛けられ、トルクを伝達する仕組になっ
ている。ここでプーリ1.2はその軸に固定された固定
プーリ5と固定プーリ5に対向し軸方向に移動できる可
動プーリ6とから成り、各々円錐状の駆動面5a及び6
aによってV溝が形成されている。また、駆動ベルトを
構成するブロック3はブーりの駆動面5a及び6aと当
接する両側端面3aを有し、さらにフープ4と当接する
フープ当たり面3bを有する。
The driving belt consists of a hoop 4 made by stacking a predetermined number of metal thin strips forming a loop, and a metal block 3 having both end surfaces that come into contact with the conical surface of the pulley, and is wound around a pair of pulleys 1 and 2 that are arranged substantially parallel to each other. It is designed to transmit torque. Here, the pulley 1.2 consists of a fixed pulley 5 fixed to its shaft and a movable pulley 6 which faces the fixed pulley 5 and is movable in the axial direction, each having a conical drive surface 5a and a conical drive surface 6.
A V groove is formed by a. Further, the block 3 constituting the drive belt has both side end surfaces 3a that come into contact with the drive surfaces 5a and 6a of the boob, and further has a hoop contact surface 3b that comes into contact with the hoop 4.

次に、第2図のm−■線断面にょるプーリ駆動面6aと
ブロック側端面3aとの接触面断面を第3図に示す、接
触は、剛体同志の場合、線接触であり、また、弾性体同
志の場合、台形状の接触面をなす面接触である。極めて
高い面圧下で接触面がブロック側端面3a全 にみられるようなくさび形のすきl?II7が接触面の
両側に存在する.プーリ駆動面5aとブロック側端面3
aとの接触においても同様な関係にある。
Next, FIG. 3 shows a cross section of the contact surface between the pulley drive surface 6a and the block side end surface 3a taken along the line m-■ in FIG. 2. In the case of rigid bodies, the contact is a line contact, and In the case of elastic bodies, there is a surface contact with a trapezoidal contact surface. A wedge-shaped plow in which the contact surface can be seen on the entire block side end face 3a under extremely high surface pressure. II7 is present on both sides of the contact surface. Pulley drive surface 5a and block side end surface 3
A similar relationship exists in contact with a.

この発IJllはこのような構造を有する系においてブ
ロック側端面3aとプーリ駆動面5a,6aの少なくと
もいずれか一方の面に互に交差すると共に幅寸法が深さ
方向に見て略同一の複数の溝8を施けた点にある。
In a system having such a structure, this IJll crosses the block side end surface 3a and at least one of the pulley drive surfaces 5a, 6a, and has a plurality of substantially the same width dimensions when viewed in the depth direction. It is located at the point where groove 8 was made.

ベルト駆動式無段変速機は油潤滑されているので、ブロ
ック側端面3aとプーリ駆動面5a,6aとの接触にお
いて、接触面間にくさび形すき間7があると、ブロック
とプーリ間の相対すべりに伴ないそのくさび形すき間に
油膜による圧力が生じ接触面間で油膜が形成され易くな
る.最も油膜が形成され易い一般的な平坦面同志の接触
においては第4図に示すように相対速度が増加すると摩
擦係数が0.1 と低くなりその接触面間には油膜が形
成されていることがわかる。
Since the belt-driven continuously variable transmission is lubricated with oil, if there is a wedge-shaped gap 7 between the contact surfaces between the block side end surface 3a and the pulley drive surfaces 5a and 6a, relative slip between the block and the pulley will occur. As a result, pressure is generated by the oil film in the wedge-shaped gap, making it easier for an oil film to form between the contact surfaces. As shown in Figure 4, when the relative speed increases, the coefficient of friction decreases to 0.1 in contact between flat surfaces, where oil films are most likely to form, and an oil film is formed between the contact surfaces. I understand.

これに対し本発明のように,接触面に所定の幅及び深さ
の溝がある場合には油膜を形成する油がその溝に流入し
、その結果としてくさび形すき間での圧力が発生し難く
、接触面での油膜の形成が抑制される。
On the other hand, when the contact surface has a groove of a predetermined width and depth as in the present invention, the oil that forms the oil film flows into the groove, and as a result, pressure is less likely to occur in the wedge-shaped gap. , the formation of an oil film on the contact surface is suppressed.

また、相対すべりに伴なう油膜の形成を抑制するために
配設する溝は、すべり方向と溝の方向とによってくさび
形すき間から溝への油の流出の仕方に差が生じるため、
相対すべりの方向と溝の方向によって油膜形成の抑制効
果が異なる.一方向の溝を設けた場合の摩擦係数の測定
結果を第5図及び第6図に示す.第5図はすべりの方向
と溝の方向とが同一方向の場合で、第6図はすべりの方
向と溝の方向とが垂直方向の場合である。
In addition, the grooves provided to suppress the formation of oil film due to relative slipping cause differences in the way oil flows from the wedge-shaped gap to the groove depending on the sliding direction and the direction of the groove.
The effect of suppressing oil film formation differs depending on the direction of relative slip and the direction of the groove. Figures 5 and 6 show the measurement results of the friction coefficient when grooves are provided in one direction. FIG. 5 shows the case where the sliding direction and the groove direction are the same direction, and FIG. 6 shows the case where the sliding direction and the groove direction are perpendicular.

接触面に溝がある場合には、接触面が平坦面である場合
に比べ、油膜の形成を抑制しある程度高い摩擦係数を示
しているが相対すべり速度の増加に対しわずかながら摩
擦係数は減少し、その減少はすべり方向と溝の方向が同
一方向の場合に最も大きくなる.よって溝の方向が一方
向の場合には、その接触において摩擦係数がすべり方向
によって変化し,溝による油膜形成の抑制効果が異なる
ことがわかる.これに対し、本発明の各々配設角度の異
なる溝は少なくとも一方向の溝はすべり方向と同一方向
ではなく、接触面での油膜の形成の抑制が良好であり、
従って、接触面での油膜の形成の抑制がすべり方向に関
係なく、摩擦係数も変化しない。
When the contact surface has grooves, compared to when the contact surface is flat, it suppresses the formation of an oil film and exhibits a somewhat higher coefficient of friction, but as the relative sliding speed increases, the coefficient of friction decreases slightly. , the decrease is greatest when the slip direction and the groove direction are in the same direction. Therefore, when the direction of the groove is unidirectional, the coefficient of friction in the contact changes depending on the sliding direction, and it can be seen that the effect of the groove on suppressing oil film formation differs. On the other hand, in the grooves of the present invention having different arrangement angles, at least one groove is not in the same direction as the sliding direction, and the formation of an oil film on the contact surface is effectively suppressed.
Therefore, the formation of an oil film on the contact surface is suppressed regardless of the sliding direction, and the coefficient of friction does not change.

また、本発明に関わる溝は摩耗に対する安全性も良好と
なる.即ち、微小凹凸が設けられた面においては、はと
んどの門形状が谷部を頂点とする略三角形であるため、
摩耗の進行に伴なってその凹凸の割合いが変化し、接触
面の平面の割合いが増加する.また、その微小凹凸の深
さもおよそ数十gmと浅く、摩耗の進行に伴ない微小凹
凸の効果が弱まり,接触面の摩擦係数が比較的早期に低
下すると考えられる。
Furthermore, the grooves according to the present invention have good safety against wear. In other words, on a surface with minute irregularities, most gates are approximately triangular with the valley as the apex;
As wear progresses, the ratio of concavities and convexities changes, and the ratio of flat surfaces on the contact surface increases. Furthermore, the depth of the micro-asperities is shallow, approximately several tens of gm, and it is thought that the effect of the micro-asperities weakens as wear progresses, and the friction coefficient of the contact surface decreases relatively quickly.

これに対し本発明に関わる溝は、その横断面を略矩形に
出来るため、接触面の摩耗に対して接触面の凹凸の割合
い、油の流出に重要な凹部の形状等が変化せず,また、
微小凹凸等に比べ溝の深さも比較的深く出来るため長期
の使用に対しても油膜形成−の抑制効果が維持される。
On the other hand, since the grooves according to the present invention can have a substantially rectangular cross section, the ratio of concavity and convexity on the contact surface to the wear of the contact surface does not change, and the shape of the concave portion, which is important for oil leakage, does not change. Also,
Since the depth of the grooves can be relatively deep compared to minute irregularities, etc., the effect of suppressing oil film formation is maintained even during long-term use.

さらに、ベルト駆動式無段変速機の駆動ベルトにおいて
駆動ベルトとプーリとの摩擦がすべり又は摩耗に対して
安定であれば、すベリ又は摩耗に起因する伝達効率の低
下が無くなるだけではなく、ベルトのすべりに対する特
別の考慮も不用となるため装置を制°御する油圧等の制
御系が簡単となる。
Furthermore, if the friction between the drive belt and the pulley in the drive belt of a belt-driven continuously variable transmission is stable against slipping or abrasion, not only will the drop in transmission efficiency due to slippage or abrasion be eliminated, but the belt Since there is no need to take special consideration to slippage, the control system for hydraulics and the like that controls the device is simplified.

[実施態様の説明〕 以下、本発明の実施態様の説明をする。[Description of implementation] Embodiments of the present invention will be described below.

各々配設角度の異なる所定の幅、深さ及び間隔で複数形
成した溝(−例として交差する溝)がブロック側端面に
あると、ブロック側端面とプーリ接触面との接触におけ
る油膜の形成の抑制効果は確実に個々の接触に期待でき
る。ブロックとプーリとの接触は、ブロック側端面から
みると略同一場所で生じ、接触面における溝の油膜の形
成の抑制効果は少ない溝で確実なものとすることが可能
である。
If a plurality of grooves (for example, intersecting grooves) formed at predetermined widths, depths, and intervals with different arrangement angles are present on the block side end face, the formation of an oil film at the contact between the block side end face and the pulley contact surface may be avoided. A suppressive effect can definitely be expected from individual contact. The contact between the block and the pulley occurs at approximately the same location when viewed from the end face of the block, and the effect of suppressing the formation of an oil film in the groove on the contact surface can be ensured with a small number of grooves.

またプーリ駆動面に各々配設角度の異なる所定の幅、深
さ及び間隔で、複数形成した溝(−例として交差するt
J)がある場合にも、駆動ベルトとプーリの接触におけ
る油膜の形成の抑制が期待できる。駆動ベルトとプーリ
の接触において、接触はプーリ駆動面の一部分で生じ、
また、その位置が変化するので、プーリ駆動面の方がブ
ロック!端面に比べて摩耗し難い、よって上記溝をプー
リ駆動面に設けた場合の方が摩耗の進行に伴なう溝形状
の変化が小さく、従って溝の油膜の形成の抑制効果が変
化し難い、また、生産の面からも。
In addition, a plurality of grooves (for example, intersecting t
J) can also be expected to suppress the formation of an oil film during contact between the drive belt and the pulley. In the contact between the drive belt and the pulley, the contact occurs on a portion of the pulley drive surface,
Also, since its position changes, the pulley drive surface is more blocked! It is difficult to wear compared to the end face, so when the groove is provided on the pulley drive surface, the change in the groove shape due to the progress of wear is smaller, and therefore the effect of suppressing the formation of an oil film on the groove is less likely to change. Also from a production perspective.

プーリ駆動面の方が駆動ベルトのブロックよりも部品数
が少なく加工も容易である事から、上記溝をブーりに設
けた方が有利となる。
Since the pulley drive surface has fewer parts and is easier to machine than the block of the drive belt, it is advantageous to provide the groove in the boob.

プーリ駆動面及びブロック側端面に各々所定の幅、深さ
及び間隔で複数形成した溝があり、それらの溝がプーリ
とブロックの当接状態で互いに交差する場合にも駆動ベ
ルトとプーリの接触における油膜の形成の抑制効果が期
待できる。ブーり駆動面に設けられた溝とブロック側端
面に設けられた溝とがそれらの接触において互いに交差
するように配設されているため、ブーりとブロックの接
触においてそれらの溝の交差点がブロックごとに分散し
、あらゆる場合の接触に対して油膜の形成の抑制効果が
期待できる。また、ブロックとプーリが相対連動をした
場合に接触面に生じる溝の交差点は移動し、油膜の形成
の抑制効果である溝への油の排出が良好となる。
There are a plurality of grooves formed on the pulley drive surface and the block side end surface, each with a predetermined width, depth, and spacing, and even when these grooves intersect with each other when the pulley and block are in contact, there is a problem in the contact between the drive belt and the pulley. The effect of suppressing the formation of oil film can be expected. Since the grooves provided on the boot drive surface and the grooves provided on the block side end surface are arranged so as to intersect with each other when they come into contact, the intersection of those grooves crosses the block when the booth and block come into contact. It can be expected to have the effect of suppressing the formation of an oil film in all cases of contact. Further, when the block and pulley are relatively interlocked, the intersection of the grooves formed on the contact surfaces moves, and the oil can be efficiently discharged into the grooves, which is effective in suppressing the formation of an oil film.

各々配設角度の異なる所定の幅、深さ及び間隔で複数形
成した溝と、溝を形成していない平坦面に形成された微
小凹凸とを併設してもよい、すなわち、これうめ溝と微
小凹凸とを全てプーリの駆動面へ又はブロックへ形成し
てもよく、交差する溝のみを一方へ、微小凹凸を他方へ
形成してもよく、更には一方の溝をプーリの駆動面とブ
ロックの一方へ、この溝と交差する他方の溝及び微小凹
凸をプーリの駆動面とブロックの他方へ形成してもよい
A plurality of grooves formed at predetermined widths, depths, and intervals with different arrangement angles may be provided together with minute irregularities formed on a flat surface on which no grooves are formed. All of the unevenness may be formed on the drive surface of the pulley or on the block, or only the intersecting grooves may be formed on one side and the minute unevenness may be formed on the other. Furthermore, one groove may be formed on the drive surface of the pulley and the block. Grooves intersecting this groove and minute irregularities may be formed on the drive surface of the pulley and on the other side of the block.

駆動ベルトは複数のブロック及び複数のフープから構成
されており1個々のブロックの寸法は同一である力が良
い事が本発明者の実験により明らかとなっている。ブロ
ックの寸法が同一でない場合、駆動ベルトのなじみとし
て寸法を均一化する必要があるが、ブロック側端面に溝
を形成したのみの面は平坦面の摩耗の進行が遅く、なじ
みに要する時間が長くなる。#1小凹凸のみを設けた面
はなじみの進行が比較的速いが前述した様に摩擦面とし
ての安定性に問題がある。そこで接触面に上記溝を設け
しかもなじみの進行を容易にする微小凹凸を平坦面に併
設する事により、なじみの進行が速く、しかも安定性の
ある摩擦面を得ることが可能となる。
The drive belt is composed of a plurality of blocks and a plurality of hoops, and it has been revealed through experiments by the inventor that the force is better when each block has the same dimensions. If the dimensions of the blocks are not the same, it is necessary to equalize the dimensions to allow the drive belt to break in. However, with only grooves formed on the end face of the block, wear progresses slowly on the flat surface, and it takes a long time to break in. Become. #1 The surface with only small irregularities progresses relatively quickly, but as mentioned above, there is a problem with stability as a friction surface. Therefore, by providing the above-mentioned grooves on the contact surface and also providing minute irregularities on the flat surface to facilitate the progress of the break-in, it becomes possible to obtain a friction surface that allows the break-in to progress quickly and is stable.

また、駆動ベルトのブロック寸法が均一となると、駆動
ベルトがプーリと接触した際に、フープと接触する部位
の位置関係が良好となりフープに作用する力が均一化し
、フープの寿命が長くなることも本発明者の実験によっ
て明らかとなっている。
In addition, when the block dimensions of the drive belt are uniform, when the drive belt contacts the pulley, the positional relationship between the parts that make contact with the hoop is good, the force acting on the hoop becomes uniform, and the life of the hoop can be extended. This has become clear through experiments conducted by the inventor.

[実施例1] ブロック側端面に各々配設角度の異なる所定の幅、深さ
及び間隔で複数形成した溝を設けた実施例について説明
する。
[Example 1] An example in which a plurality of grooves having predetermined widths, depths, and intervals with different arrangement angles are provided on the end face of the block will be described.

形成した溝8の断面形状は第7図に示すように@Q、1
mm 、深さ5〜20 p、 m 、間隔0.2mmの
矩形断面でありブロック側端面にフライス盤を用いて加
工し設けた。従って溝幅は深さ方向に見て同一である。
The cross-sectional shape of the formed groove 8 is @Q,1 as shown in FIG.
It has a rectangular cross section with a depth of 5 to 20 mm and an interval of 0.2 mm, and was machined on the end face of the block using a milling machine. Therefore, the groove width is the same when viewed in the depth direction.

溝の方向は第8図に示すようにブロック側端面の長手方
向に各々45°傾斜し、ブロックがプーリの半径方向又
は円周方向へ移動する際、すべり方向と谷溝がそれぞれ
同一角度だけ傾斜している。
As shown in Figure 8, the direction of the grooves is inclined at 45 degrees in the longitudinal direction of the end face of the block, and when the block moves in the radial direction or circumferential direction of the pulley, the sliding direction and the groove are inclined by the same angle. are doing.

y!擦係数の測定にはベルト駆動式無段変速機を模して
製作された測定機を用い、ブロック試験片と円錐面を右
するプーリ試験片とを接触させ、油潤滑下におけるブロ
ック試験片とプーリ試験片との摩擦係数をA1一定した
。その結果を第9図に示すが、横軸はブロック試験片と
ブーり試験片との相対回転数、縦軸は測定された摩擦係
数であり、ブロック試験片に加えた荷重は20〜50K
gとした。摩擦方向はプーリの円周方向であり、この方
向はブロックとプーリとの相対運動によってその接触面
に油nりが最も形成し易い方向である。ブロック側端面
に溝が無い場合には第4図に示すように、ブロックとプ
ーリとの相対運動によってその接触面に油膜が形成され
、摩擦係数が減少する。
Y! To measure the friction coefficient, a measuring device made to imitate a belt-driven continuously variable transmission was used, and a block test piece was brought into contact with a pulley test piece with a conical surface on the right side. The coefficient of friction with the pulley test piece was kept constant at A1. The results are shown in Figure 9, where the horizontal axis is the relative rotational speed between the block test piece and the boolean test piece, the vertical axis is the measured friction coefficient, and the load applied to the block test piece is 20 to 50K.
g. The direction of friction is the circumferential direction of the pulley, and this direction is the direction in which oil is most likely to form on the contact surface due to the relative movement between the block and the pulley. If there is no groove on the end face of the block, as shown in FIG. 4, an oil film is formed on the contact surface due to the relative motion between the block and the pulley, reducing the coefficient of friction.

実施例1に示したブロックは相対運動に伴なう接触面で
の油膜の形成を抑制する効果が広いすベリ速度に対して
良好である事がわかる。
It can be seen that the block shown in Example 1 has a good effect of suppressing the formation of an oil film on the contact surface due to relative motion over a wide range of slipping speeds.

[実施例2] 第10図に示す如く、一方の溝方向はブロック3の端面
長手方向となっている。
[Embodiment 2] As shown in FIG. 10, one groove direction is the longitudinal direction of the end face of the block 3.

前述したように一方向のみの溝を複数形成した面の摩擦
係数はそのすべり方向と溝の方向によって変化する。ベ
ルト駆動式無段変速機において比較的大きいすべり速度
が生じ、また、接触面に油膜が形成し易い方向はプーリ
の円周方向であるから、配設角度の異なる溝を摩擦面に
設ける場合。
As described above, the coefficient of friction of a surface having a plurality of grooves in only one direction changes depending on the sliding direction and the direction of the grooves. In a belt-driven continuously variable transmission, a relatively large sliding speed occurs, and the direction in which an oil film is likely to form on the contact surface is the circumferential direction of the pulley, so grooves with different angles are provided on the friction surface.

1方向はプーリの円周方向と垂直な方向、即ち。One direction is the direction perpendicular to the circumferential direction of the pulley, ie.

プーリ面上ではプーリの半径方向、ブロック側端面上で
は端面の長手方向にする事が良策と考えられる。
It is considered a good idea to use the pulley radial direction on the pulley surface and the longitudinal direction of the end surface on the block side end surface.

[実施例3] プーリ駆動面に交差する溝8を設けた例を第11図に示
す、溝の間隔等は、ブロックとの接触条件、即ち、半径
方向によって血圧、伝達トルク等が変化する事などを考
慮し設ける事が出来る。この実施例では半径の小さい部
分ではブロックの数が少ない事より、径の小さい部分は
ど溝の間隔を狭くしている。
[Embodiment 3] Fig. 11 shows an example in which grooves 8 intersecting the pulley drive surface are provided.The groove intervals etc. are determined based on the contact conditions with the block, that is, blood pressure, transmitted torque, etc. change depending on the radial direction. It can be established by considering such things. In this embodiment, since the number of blocks is small in the small radius part, the interval between grooves is narrowed in the small diameter part.

[実施例4] プーリ駆動面及びブロック側端面にそれぞれ溝を設け、
それらの溝が接触状態で交差するように設けられた例を
第12図に示す、接触面の両面に溝を設ける場合、面の
相対移動により溝の交点が移動するという利点がある。
[Example 4] Grooves were provided on the pulley drive surface and the block side end surface,
When grooves are provided on both sides of the contact surface, as shown in FIG. 12, an example in which the grooves are provided so as to intersect in a state of contact, there is an advantage that the intersection point of the grooves moves due to relative movement of the surfaces.

この実施例では、ブロック3がプーリ1(2)の円周方
向に移動した時に、溝の交点は移動し接触面の油膜の形
成を抑制する効果が高いと考えられる。
In this embodiment, when the block 3 moves in the circumferential direction of the pulley 1 (2), the intersection of the grooves moves, which is considered to be highly effective in suppressing the formation of an oil film on the contact surface.

[実施例5] ブロック3の側端面に交差する溝8を設け、また、その
側端面に微小凹凸9を併設した例を第13図に示す、ブ
ロック側端面のなじみに伴なう摩耗はブロック側端面の
中央部が多い事より、微小凹凸を設ける場合、ブロック
側端面の中央部を中心に設けるのが良い。
[Example 5] Fig. 13 shows an example in which intersecting grooves 8 are provided on the side end face of the block 3, and minute irregularities 9 are also provided on the side end face. Since there are many center portions of the side end surfaces, when providing minute irregularities, it is preferable to provide them centering on the center portion of the block side end surfaces.

なお上記説明における溝の加工法として実施例に用いた
フライス加工の他に、平削、研削等があり、また、塑性
加工による鍛造、転造等が考えられる。また、溝の形状
として直線又はら線を基本としてきたが、これらの他に
円弧等の曲線も考えられる。その場合においても方向の
異なる溝が交差することによって油膜の形成の抑制効果
は高くなると考えられる。
In addition to the milling process used in the embodiments as a method for forming the grooves in the above description, there are other methods such as planing and grinding, and also forging by plastic working, rolling, etc. can be considered. Further, although the shape of the groove has been basically a straight line or a helical line, curves such as circular arcs may also be considered. Even in that case, it is thought that the effect of suppressing the formation of an oil film is enhanced by intersecting the grooves in different directions.

[発明の効果] 以上説明した如く本発明は幅寸法が変更可能な一対のプ
ーリのV溝へ、複数のブロックの両側端面を当接させ、
これらのブロックを帯状の無端フープで連結するベルト
駆動式無段変速機であって、前記ブロックの両側端面又
はプーリの■溝へ互に交差すると共に幅寸法が深さ方向
に見て略同一の複数の溝を形成したことを特徴とするの
で、ブロックとプーリとの間の摩擦力を調整することが
できる優れた効果を有する。
[Effects of the Invention] As explained above, the present invention brings the both side end surfaces of a plurality of blocks into contact with the V grooves of a pair of pulleys whose width dimensions can be changed,
It is a belt-driven continuously variable transmission in which these blocks are connected by a band-shaped endless hoop, which intersects with both end surfaces of the blocks or the grooves of the pulley, and whose width dimensions are approximately the same when viewed in the depth direction. Since it is characterized by the formation of a plurality of grooves, it has an excellent effect of being able to adjust the frictional force between the block and the pulley.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るベルト駆動式無段変速機の正面図
、第2図(A)は第1図のII −II線断面図、第2
図(B)はブロックの側面図、第3図は第2図のm−■
線断面拡大図、第4図は溝のない接触面の相対回転数に
対する摩擦係数の変化を示す線図、第5図はすベリ方向
と溝の方向が同一方向の場合の相対回転数に対する摩擦
係数の変化を示す線図、第6図はすへり方向と溝の方向
が垂直方向の場合の相対回転数に対する摩擦係数の変化
を示す線図、第7図は実施例1の溝の断面拡大図、第8
図は実施例1のブロック側端面正面図、第9図は実施例
1のブロックを用いた場合の相対回転数に対する摩擦係
数の変化を示す線図、第1O図は実施例2のブロック側
端面正面図、第11図は実施例3のプーリ駆動面正面図
、第12図(A)は実施例4のプーリ駆動面正面図、第
12図(B)はブロック側端面正面図、第13図は実施
例5のブロック側端面正面図である。 1.2・・・プーリ、 3・・・ブロック、 4・・・フープ、 8・・・溝。
FIG. 1 is a front view of a belt-driven continuously variable transmission according to the present invention, FIG.
Figure (B) is a side view of the block, and Figure 3 is m-■ in Figure 2.
An enlarged view of the line cross section. Figure 4 is a diagram showing the change in the friction coefficient with respect to the relative rotation speed of a contact surface without grooves. Figure 5 is a graph showing the friction with respect to the relative rotation speed when the direction of the groove and the direction of the groove are the same. A diagram showing changes in the coefficient. Figure 6 is a diagram showing changes in the friction coefficient with respect to the relative rotation speed when the edge direction and the groove direction are perpendicular. Figure 7 is an enlarged cross-sectional view of the groove of Example 1. Figure, 8th
The figure is a front view of the block side end face of Example 1, Figure 9 is a diagram showing the change in friction coefficient with respect to the relative rotation speed when using the block of Example 1, and Figure 1O is the block side end face of Example 2. 11 is a front view of the pulley drive surface of Embodiment 3, FIG. 12 (A) is a front view of the pulley drive surface of Embodiment 4, FIG. 12 (B) is a front view of the end face of the block, and FIG. 13 FIG. 3 is a front end view of the block side of Example 5. FIG. 1.2...Pulley, 3...Block, 4...Hoop, 8...Groove.

Claims (2)

【特許請求の範囲】[Claims] (1)幅寸法が変更可能な一対のプーリのV溝へ、複数
のブロックの両側端面を当接させ、これらのブロックを
帯状の無端フープで連結するベルト駆動式無段変速機で
あって、前記ブロックの両側端面又はプーリのV溝へ互
に交差すると共に幅寸法が深さ方向に見て略同一の複数
の溝を形成したことを特徴とするベルト駆動式無段変速
機。
(1) A belt-driven continuously variable transmission in which both end surfaces of a plurality of blocks are brought into contact with the V-grooves of a pair of pulleys whose width dimensions can be changed, and these blocks are connected by a band-shaped endless hoop, A belt-driven continuously variable transmission characterized in that a plurality of grooves are formed which intersect with both end surfaces of the block or V-grooves of the pulley and have substantially the same width dimension when viewed in the depth direction.
(2)前記溝は前記ブロック及びV溝へそれぞれ形成さ
れ、これらは当接状態で互に交差して配置される特許請
求の範囲第(1)項記載のベルト駆動式無段変速機。
(2) The belt-driven continuously variable transmission according to claim (1), wherein the grooves are formed in the block and the V-groove, respectively, and these grooves are arranged to intersect with each other in abutting state.
JP2517486A 1986-02-07 1986-02-07 Belt driven type non-stage transmission Pending JPS62184270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2517486A JPS62184270A (en) 1986-02-07 1986-02-07 Belt driven type non-stage transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2517486A JPS62184270A (en) 1986-02-07 1986-02-07 Belt driven type non-stage transmission

Publications (1)

Publication Number Publication Date
JPS62184270A true JPS62184270A (en) 1987-08-12

Family

ID=12158642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2517486A Pending JPS62184270A (en) 1986-02-07 1986-02-07 Belt driven type non-stage transmission

Country Status (1)

Country Link
JP (1) JPS62184270A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947533A (en) * 1988-07-14 1990-08-14 Suzuki Jidosha Kogyo Kabushiki Kaisha Manufacturing method of disk for belt-driven continuously-variable-speed drive
JPH02236045A (en) * 1989-02-03 1990-09-18 Van Doornes Transmissie Bv Transmission having drive belt and v-pulley
JPH0674309A (en) * 1990-02-20 1994-03-15 Power Engineering & Manufacturing Ltd Mechanically variable gearing
US5800298A (en) * 1996-03-27 1998-09-01 Honda Giken Kogyo Kabushiki Kaisha Metal V-belt type continuously variable transmission
JP2006501426A (en) * 2002-09-30 2006-01-12 ロース,ウルリヒ Rotating transmission
JP2007155134A (en) * 2005-12-05 2007-06-21 Getrag Ford Transmissions Gmbh Cone ring transmission having surface-optimized contact zone
JP2008303965A (en) * 2007-06-07 2008-12-18 Nsk Ltd Toroidal continuously variable transmission and method of manufacturing same
JP2009198010A (en) * 1997-08-15 2009-09-03 Van Doornes Transmissie Bv Driving belt
US7806793B2 (en) 2004-03-26 2010-10-05 Jatco Ltd Continuously variable belt drive transmission
US7958635B2 (en) 2004-03-26 2011-06-14 Jatco Ltd Process for producing a pulley for a continuously variable belt drive transmission

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947533A (en) * 1988-07-14 1990-08-14 Suzuki Jidosha Kogyo Kabushiki Kaisha Manufacturing method of disk for belt-driven continuously-variable-speed drive
JPH02236045A (en) * 1989-02-03 1990-09-18 Van Doornes Transmissie Bv Transmission having drive belt and v-pulley
JPH0674309A (en) * 1990-02-20 1994-03-15 Power Engineering & Manufacturing Ltd Mechanically variable gearing
US5800298A (en) * 1996-03-27 1998-09-01 Honda Giken Kogyo Kabushiki Kaisha Metal V-belt type continuously variable transmission
JP2009198010A (en) * 1997-08-15 2009-09-03 Van Doornes Transmissie Bv Driving belt
JP2006501426A (en) * 2002-09-30 2006-01-12 ロース,ウルリヒ Rotating transmission
US7806793B2 (en) 2004-03-26 2010-10-05 Jatco Ltd Continuously variable belt drive transmission
US7958635B2 (en) 2004-03-26 2011-06-14 Jatco Ltd Process for producing a pulley for a continuously variable belt drive transmission
KR101088587B1 (en) 2004-03-26 2011-12-06 쟈트코 가부시키가이샤 Belt type continous variable transmission
DE102005014191B4 (en) 2004-03-26 2018-05-24 Jatco Ltd Method for producing a belt pulley for a continuously variable belt transmission
JP2007155134A (en) * 2005-12-05 2007-06-21 Getrag Ford Transmissions Gmbh Cone ring transmission having surface-optimized contact zone
JP2008303965A (en) * 2007-06-07 2008-12-18 Nsk Ltd Toroidal continuously variable transmission and method of manufacturing same

Similar Documents

Publication Publication Date Title
US4281483A (en) Method of curving supporting surfaces of driving belt elements
US6416433B1 (en) Chain-belt transmission with continuously variable transmission ratio
EP1132649B1 (en) Metal belt element
US8038559B2 (en) Power transmission chain, method for manufacturing power transmission member of the power transmission chain, and power transmission device
JPS62184270A (en) Belt driven type non-stage transmission
JPH0222254B2 (en)
KR20070087590A (en) Drive belt for a transmission with convex pulley sheaves
JPH0548364B2 (en)
CN104620023A (en) Belt-and-pulley-type continuously variable transmission
KR20160100978A (en) A continuously variable transmission with pulleys and a drive belt
US20100069189A1 (en) Power transmission chain and power transmission apparatus including power transmission chain
JPS6153567B2 (en)
JPS6126662Y2 (en)
JPS61160645A (en) Endless belt for power transmission
US4196640A (en) Belt transmission and associated belt pulley and belt
JPH0556415B2 (en)
JPH01135944A (en) Block for transmitting belt
JPH02513Y2 (en)
JPH058358Y2 (en)
NL1043521B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack that is confined in a central opening of these transverse segments
NL2027233B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack confined in a central opening of these transverse segments
JPH0333938B2 (en)
JP2002139114A (en) Belt drive system
JPH02515Y2 (en)
JPS6115332Y2 (en)