JPS62183848A - Stirring type packed bed reactor - Google Patents

Stirring type packed bed reactor

Info

Publication number
JPS62183848A
JPS62183848A JP2500086A JP2500086A JPS62183848A JP S62183848 A JPS62183848 A JP S62183848A JP 2500086 A JP2500086 A JP 2500086A JP 2500086 A JP2500086 A JP 2500086A JP S62183848 A JPS62183848 A JP S62183848A
Authority
JP
Japan
Prior art keywords
packed bed
biocatalyst
immobilized
stirring
immobilized biocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2500086A
Other languages
Japanese (ja)
Other versions
JPH042302B2 (en
Inventor
Yoshihiko Honda
本多 芳彦
Shinichi Takato
高藤 愼一
Hajime Inaba
稲葉 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO BAIORIAKUTAA SYST GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO BAIORIAKUTAA SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO BAIORIAKUTAA SYST GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO BAIORIAKUTAA SYST GIJUTSU KENKYU KUMIAI
Priority to JP2500086A priority Critical patent/JPS62183848A/en
Publication of JPS62183848A publication Critical patent/JPS62183848A/en
Publication of JPH042302B2 publication Critical patent/JPH042302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts

Abstract

PURPOSE:To enhance reaction efficiency by preventing channeling, in an upward flow type packed bed immobilized biocatalyst reactor, by respectively independently stirring the central part and outer peripheral part of the packed bed in a vertical column. CONSTITUTION:The substrate supplied from an inlet 16 passes through a pipe 17 to remove air bubbles in the substrate and reaches an immobilized biocatalyst packed part 13 from a packed bed support net 20 to be reacted by an immobilized biocatalyst (a). Herein, by stirring the immobilized biocatalyst (a) at a low speed by rotating blades 2, 3, no channeling is generated even in large caliber reactor and the biocatalyst is efficiently contacted with the substrate to enhance reaction efficiency. Subsequently, a formed reaction product passes through a biocatalyst outflow preventing net 21 to reach the next process. The biocatalyst floated while accompanied by air bubbles is separated under stirring by a scraping blade 22 and air bubbles are exhausted from an outlet 23 and the biocatalyst is returned to a packed bed part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は攪拌式充填層型反応器に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a stirred packed bed reactor.

(従来技術) 近年、固定化生体触媒による生産技術の確立に関する開
発研究は多く、これに用いられている反応器も充填層型
、流動層型、攪拌槽型、模型等多岐にわたっている。
(Prior Art) In recent years, there has been much research and development regarding the establishment of production technology using immobilized biocatalysts, and the reactors used therein are wide-ranging, including packed bed types, fluidized bed types, stirred tank types, and models.

(発明が解決しようとする問題点) 従来、充填層型反応器は強い攪拌がないため、脆い固定
化生体触媒でも破壊されない。
(Problems to be Solved by the Invention) Conventionally, packed bed reactors do not have strong stirring, so even fragile immobilized biocatalysts are not destroyed.

又、液の逆混合が少ないため、生成物阻害の生ずるよう
な反応でも高効率で反応できるという利点がある。
Furthermore, since there is little back-mixing of liquids, there is an advantage that even reactions where product inhibition occurs can be carried out with high efficiency.

この反応器への通液方法としては、上向、下向流がある
が、バックフローを防止し、プラグフローで効率良く反
応させることを考えた場合下向流の方が効果的である。
There are upward and downward flow methods for passing liquid into the reactor, but downward flow is more effective in terms of preventing backflow and efficiently reacting with plug flow.

しかし、下向流では基質が固定化生体触媒に付着し易い
ものであったり、又基質を含む溶液中にそのようなもの
が共存している場合、圧力損失は経時的に増大する。
However, in a downward flow, if the substrate tends to adhere to the immobilized biocatalyst, or if such substances coexist in the solution containing the substrate, the pressure loss increases over time.

又、上向流では圧力損失は小さいが、充填層内の流れ易
い部分を集中的に流れる現象、すなわちチャネリングが
起こり反応効率が低下する。
In addition, although the pressure loss is small in the upward flow, a phenomenon in which the flow concentrates in the easily flowing portion of the packed bed, that is, channeling occurs, and the reaction efficiency decreases.

特に、反応器の径が大きくなる程、その傾向は顕著であ
る。
In particular, this tendency becomes more pronounced as the diameter of the reactor increases.

(問題点を解決するための手段) したがって本発明の技術的課題は、固定化生体触媒と基
質との接触の向上を図り反応効率を高めることのできる
上向流式の充填層型固定化生体触媒用反応器をうろこと
を目的とするもので、この技術的課題を解決する本発明
の技術的手段は、固定化生体触媒を充填した縦型カラム
内のその充填層中心部および外周部に独立して低速で駆
動される攪拌翼を設置し、かつ縦型カラムの下部に基質
入口を設けてその下部基質入口から連続的に供給される
基質と、前記充填された固定化生体触媒とを前記攪拌翼
の攪拌作用により接触させて反応を行わせるようにした
ものである。
(Means for Solving the Problems) Therefore, the technical problem of the present invention is to provide an upflow type packed bed type immobilized biocatalyst that can improve the contact between the immobilized biocatalyst and the substrate and increase the reaction efficiency. The purpose of the present invention is to scale a catalyst reactor, and the technical means of the present invention to solve this technical problem is to fill the center and outer periphery of a packed bed in a vertical column packed with an immobilized biocatalyst. A stirring blade that is independently driven at a low speed is installed, and a substrate inlet is provided at the bottom of the vertical column, and the substrate that is continuously supplied from the lower substrate inlet and the packed immobilized biocatalyst are mixed. The reaction is brought into contact by the stirring action of the stirring blade.

(発明の効果) 本発明は反応器の充填層部に攪拌翼を設置し、これを低
速で回転させて固定化生体触媒を攪拌する方式をとって
いるもので、回転が低速であるため、この攪拌による軸
方向の流れは生じない。そして、充填層が常に周方向に
動いているため、チャネリングが防止でき、反応効率が
向上するという特徴がある。
(Effects of the Invention) The present invention employs a system in which a stirring blade is installed in the packed bed portion of the reactor and is rotated at a low speed to stir the immobilized biocatalyst. No axial flow occurs due to this stirring. Since the packed bed is always moving in the circumferential direction, channeling can be prevented and reaction efficiency can be improved.

(実施例) 以下、図面に示す実施例について説明する。(Example) The embodiments shown in the drawings will be described below.

縦型コラム本体外周は温度保持用ジャケット(1)に構
成されていて、(la)  (lb)はその温水の入口
と出口である。
The outer periphery of the vertical column main body is constituted by a temperature-maintaining jacket (1), and (la) and (lb) are the hot water inlet and outlet.

本体内は固定化生体触媒充填部(13)を構成しており
、これに中心部攪拌H(2)と外周部攪拌H(3)とが
多段に形成されていて、中心部攪拌翼(2)は軸(4)
に取付けられ、外周部攪拌翼(3)はフレーム(5)に
形成されている。
The inside of the main body constitutes an immobilized biocatalyst filling part (13), in which central stirring H (2) and outer peripheral stirring H (3) are formed in multiple stages, and central stirring blades (2) are formed in multiple stages. ) is the axis (4)
The outer stirring blade (3) is attached to the frame (5).

軸(4)はモーター(6)で直接駆動され、フレーム(
5)はモーター(7)から駆動されるが、モーター(7
)はプリー(8)からベルトを介してプリー(9)を駆
動し、プリー(9)から軸(4)に外嵌されたパイプ(
1o)を駆動し、パイプ(10)でフレーム(5)を駆
動している。
The shaft (4) is directly driven by the motor (6) and is connected to the frame (
5) is driven by the motor (7);
) drives the pulley (9) from the pulley (8) via the belt, and the pipe (
1o), and the frame (5) is driven by the pipe (10).

図示の軸(4)の下端はフレーム(5)の中心部に設け
られたナイフィジ(11)に支持され、ナイフイジ(1
1)は縦型コラムの下部に配置した支持針(12)で支
持されている。
The lower end of the illustrated shaft (4) is supported by a knife jigs (11) provided in the center of the frame (5).
1) is supported by support needles (12) located at the bottom of the vertical column.

縦型コラムの下部の円錐部(14)には、又ジャケット
(15)が形成されており、(15a )  (15b
 )は温水の入口と出口である。
The lower conical part (14) of the vertical column is also formed with a jacket (15), (15a) (15b
) are the hot water inlet and outlet.

又、(16)は円錐部(14)に形成された基質入口で
ある。
Further, (16) is a substrate inlet formed in the conical part (14).

更に、円錐部(14)には泡抜、きパイプ(17)が形
成され、これが気泡排出用パイプ(19)につながって
いて切り抜きコック(18)の開で泡を排出せしめるこ
とができる。
Furthermore, a bubble removal pipe (17) is formed in the conical part (14), and this is connected to a bubble discharge pipe (19), so that bubbles can be discharged by opening the cutout cock (18).

泡抜きパイプ(17)の中心部には前記した支持針(1
2)が直立している。
At the center of the bubble removal pipe (17) is the support needle (1).
2) is upright.

固定化生体触媒充填部(13)と円錐部(14)との境
界には固定化生体触媒充填層支持用円錐状網(20)が
ある。
At the boundary between the immobilized biocatalyst filling part (13) and the conical part (14), there is a conical network (20) for supporting the immobilized biocatalyst packed layer.

図示のものは支持針(12)の先端部が網(2o)の中
心部で支持された形となっている。
In the illustrated example, the tip of the support needle (12) is supported by the center of the net (2o).

縦型コラム本体の上部円筒(24)には、固定化生体触
媒流出防止用網(21)が張設され、これに沿って回転
する気泡分離用掻き取り翼(22)があり、フレーム(
5)の駆動パイプ(1o)に取付けられている。
An immobilized biocatalyst outflow prevention net (21) is stretched over the upper cylinder (24) of the vertical column body, and there is a scraping blade (22) for air bubble separation that rotates along this net, and the frame (
5) is attached to the drive pipe (1o).

(23)は円筒部(24)に引き続いて形成された半球
部(25)における生体物出口である。
(23) is a living organism outlet in a hemispherical part (25) formed following the cylindrical part (24).

本反応器は以上の如く固定化生体触媒充填部(13) 
、固定化生体触媒充填層支持用円錐状網(20) 、中
心部の充填層を攪拌するための多段に設置した中心攪拌
翼(2)と外周部を攪拌するため多段に設置した外周攪
拌翼(3)、網(20)の下面に滞留する気泡の排出パ
イプ(19)、温度保持用ジャケラ) (1) 、各攪
拌翼を回転するためのモーター(6)(7)、固定化生
体触媒流出防止用網(21)および浮上しその下面に堆
積する固定化生体触媒に付着する気泡の分離用掻き取り
! (22)からなっている。
This reactor has the immobilized biocatalyst filling section (13) as described above.
, a conical net for supporting the packed bed of immobilized biocatalyst (20), a central stirring blade (2) installed in multiple stages to stir the packed bed in the center, and an outer peripheral stirring blade installed in multiple stages to stir the outer periphery. (3), Exhaust pipe (19) for air bubbles remaining on the bottom surface of the net (20), Jacket for temperature maintenance) (1), Motors (6) and (7) for rotating each stirring blade, Immobilized biocatalyst Scraping to separate air bubbles adhering to the outflow prevention net (21) and the immobilized biocatalyst that floats and accumulates on its underside! It consists of (22).

次に、基質の流れにしたがって作用を説明すると、反応
温度まで昇温された基質は熔存ガスを放出し、それが気
泡となり反応器下部の充填層支持用網(20)の頂部に
集まる。
Next, to explain the action according to the flow of the substrate, the substrate heated to the reaction temperature releases dissolved gas, which becomes bubbles and collects at the top of the packed bed support net (20) at the bottom of the reactor.

この気泡はパイプ(17)を介し、排出パイプ(19)
から図示しない定量ポンプにより排出される。
The air bubbles pass through the pipe (17) and the discharge pipe (19).
It is discharged from there by a metering pump (not shown).

気泡が除去された基質は充填層支持用網(20)から固
定化生体触媒充填部(13)へ至り、固定化生体触媒(
a)により反応される。
The substrate from which air bubbles have been removed passes from the packed bed support net (20) to the immobilized biocatalyst filling section (13), and the immobilized biocatalyst (
Reacted by a).

ここでは、固定化生体触媒は低速で回転する翼(2)(
3)により攪拌される。
Here, the immobilized biocatalyst is attached to a blade (2) rotating at low speed (
3).

なお、中心部と外周部に取付けられたこれら翼(2)(
3)は通常それら先端の速度が同一になるように調整し
て回転される。
In addition, these wings (2) (attached to the center and outer periphery)
3) are usually adjusted and rotated so that the speeds of their tips are the same.

このようにして、充填層を攪拌翼により攪拌することに
よって口径の大きい反応器であってもチャネリングが生
ぜず、固定化生体触媒と基質とが効率良く接触し反応効
率が向上する。
In this way, by stirring the packed bed with a stirring blade, channeling does not occur even in a reactor with a large diameter, and the immobilized biocatalyst and substrate come into contact with each other efficiently, improving reaction efficiency.

充填層を通過することにより生成した反応物は、固定化
生体触媒流出防止用網を通り次工程に至る。
The reactants generated by passing through the packed bed pass through a net for preventing outflow of the immobilized biocatalyst and reach the next step.

そして反応物と共に、微細な気泡を伴い浮上した固定化
生体触媒は固定化生体触媒流出防止用網(21)下面ま
で至り堆積する。この堆積した層を掻き取り翼(22)
によって低速で攪拌することにより微細な気泡は固定化
生体触媒と分離され、固定化生体触媒流出防止用IM 
(21)を介し出口(23)から排出される。
Then, the immobilized biocatalyst that floats together with the reactants along with fine bubbles reaches the lower surface of the immobilized biocatalyst outflow prevention net (21) and accumulates thereon. The blade (22) scrapes off this accumulated layer.
By stirring at low speed, fine air bubbles are separated from the immobilized biocatalyst, and the IM for preventing the immobilized biocatalyst from flowing out is separated.
(21) and is discharged from the outlet (23).

気泡と分離された固定化生体触媒は、反応液の流れ方向
と逆向きの流れを発生させるプロペラ型の掻き取り翼(
22)によってスムーズに固定化生体触媒充填層部(1
3)へと戻される。
The immobilized biocatalyst separated from the bubbles is removed by a propeller-type scraping blade (
22) to smoothly immobilize the biocatalyst packed bed part (1
Returned to 3).

実施例のものによれば、充填層支持用網(20)下面に
滞留する気泡をその下面に近接した位置に取り付けた泡
抜きパイプ(17)により連続又は間歇的に排出するこ
とができ、気泡の滞留による基質の偏流が防止され反応
効率が向上することができる。
According to the embodiment, the air bubbles accumulated on the lower surface of the packed bed support net (20) can be continuously or intermittently discharged by the air bubble removing pipe (17) attached to the lower surface of the net (20). Unbalanced flow of the substrate due to stagnation can be prevented, and reaction efficiency can be improved.

更に実用規模の反応器では、反応器の径を大きくしなけ
れば■圧損が大きい、■反応器下部の固定化生体触媒が
圧壊される等の問題が生じる。
Furthermore, in a practical-scale reactor, unless the diameter of the reactor is increased, problems such as (1) large pressure drop and (2) crushing of the immobilized biocatalyst at the bottom of the reactor will occur.

そのため、必然的に反応器の径を大きくしなければなら
ない。
Therefore, the diameter of the reactor must necessarily be increased.

このように径の大きい反応器で一軸方式の攪拌機1台に
より充填層を攪拌した場合、その攪拌翼中心部とその先
端では攪拌速度が大きく異なる。しかるに実施例のよう
に独立した攪拌機を複数設置し、それぞれ周速が等しく
なるよう各々が異なる回転数で回転されるようにするこ
とができる。
When a packed bed is stirred by one uniaxial stirrer in such a large-diameter reactor, the stirring speed differs greatly between the center of the stirring blade and its tip. However, as in the embodiment, a plurality of independent stirrers may be installed and each stirrer may be rotated at different rotational speeds so that the circumferential speeds thereof are equal.

この方法により大口径の反応器であっても、攪拌状態が
均一化され、チャネリングが防止され、反応効率は向上
する。
By this method, even in a large-diameter reactor, the stirring state is made uniform, channeling is prevented, and the reaction efficiency is improved.

なお、各攪拌機は正逆回転可能なものを設置してもよい
In addition, each stirrer may be installed so that it can rotate in forward and reverse directions.

又、低温に保持された基質溶液中に溶存している気体が
反応温度まで昇温された時、気泡となり、充填支持用t
PW4(20)下面に滞留する。そのため、その部分の
流れが阻止され充填層(13)に至る前に偏流が生じ、
それが充填層内でのチャネリングの原因となる場合もあ
る。
In addition, when the gas dissolved in the substrate solution kept at a low temperature is heated to the reaction temperature, it becomes bubbles and the filling support t
It stays on the bottom surface of PW4 (20). Therefore, the flow in that part is blocked and a biased flow occurs before reaching the packed bed (13).
It may also cause channeling within the packed bed.

そこで充填層支持用網(20)を円錐状とし、その頂部
に気泡を集めパイプ(17)を介して定量ポンプにより
糸外に排出できる。
Therefore, the packed bed support net (20) is formed into a conical shape, and air bubbles are collected at the top of the net and can be discharged to the outside of the yarn via a pipe (17) by a metering pump.

又、微細な気泡は充填層内に至り、固定化生体触媒に付
着する場合もある。
Further, fine air bubbles may reach the inside of the packed bed and adhere to the immobilized biocatalyst.

このように気泡のついた固定化生体触媒は浮力を増し、
固定化生体触媒流出防止用綱部(21)まで浮上する。
In this way, the immobilized biocatalyst with air bubbles increases its buoyancy,
It floats up to the rope part (21) for preventing outflow of the immobilized biocatalyst.

このため網下面に固定化生体触媒が堆積されるもので、
そこで網下面に接するように回転する攪拌翼(22)が
設置されており、この翼を低速で回転させることにより
気泡と固定化生体触媒とを分離できるもので、分離され
た固定化生体触媒は沈下する。
For this reason, the immobilized biocatalyst is deposited on the underside of the net.
Therefore, a rotating stirring blade (22) is installed so as to be in contact with the bottom surface of the screen, and by rotating this blade at a low speed, the air bubbles and the immobilized biocatalyst can be separated, and the separated immobilized biocatalyst is sink.

それは、攪拌翼(22)の回転方向が前述したように下
向き流れとなる方向に回転するからである。
This is because the stirring blade (22) rotates in the direction of downward flow as described above.

このように網下面での固定化生体触媒の堆積がないこと
から、反応器内での圧力損失の増大は生じない。
Since there is no accumulation of immobilized biocatalyst on the bottom surface of the screen, no increase in pressure loss occurs within the reactor.

以下、具体的な実験例について説明する。A specific experimental example will be described below.

く実験1〉 径0.7mφのアルミナ(密度3.5g/cIi1)に
共有結合法で固定化し、作成した固定化プロテアーゼを
攪拌式充填層型反応器(160mφ)に入れ、下部から
10%カゼイン熔液ζ50℃)をSV:lOで通液して
反応した。ここで、SVとは5pace Veloci
ty (空間速度)のことである。この場合、充填層部
を攪拌する攪拌°機の回転数は、中心部(翼径70m)
のものを3Orpm 、そして外周部(翼径1506)
のものを14rpmとし、周速がほぼ同じになるように
した。
Experiment 1> The immobilized protease was covalently immobilized on alumina (density 3.5 g/cIi1) with a diameter of 0.7 mφ, and the created immobilized protease was placed in a stirred packed bed reactor (160 mφ), and 10% casein was added from the bottom. A reaction was carried out by passing a molten solution (ζ50°C) at SV:1O. Here, SV is 5 pace Veloci
ty (space velocity). In this case, the rotation speed of the stirrer that stirs the packed bed section is at the center (blade diameter 70 m).
3 Orpm, and the outer circumference (blade diameter 1506)
The speed was set to 14 rpm so that the circumferential speeds were almost the same.

また、10%カゼイン溶液中に溶存されている気体が気
泡となり、充填層支持網下面頂部に滞留するため、これ
をバイブを介し、定量ポンプにて除去した。このように
、充填層支持網下面頂部に滞留する気泡を除去しながら
、二重式の攪拌機にて充填層を低速で攪拌することによ
り、チャネリングは生ぜず、また攪拌によるバックフロ
ーも生ずることなく反応できた。
Further, the gas dissolved in the 10% casein solution became bubbles and remained at the top of the lower surface of the packed bed support network, so these were removed using a metering pump via a vibrator. In this way, by stirring the packed bed at low speed using a dual-type stirrer while removing air bubbles that remain at the top of the bottom surface of the packed bed support network, channeling does not occur, and no backflow occurs due to stirring. I was able to react.

この場合の分解率は、最も反応効率の良い下向流方式で
の分解率を100%とすると約93〜97%であった。
The decomposition rate in this case was about 93 to 97%, assuming that the decomposition rate in the downward flow method, which has the highest reaction efficiency, was 100%.

なお、充填層を攪拌しない場合での上向流方式の充填層
型反応器では70〜85%であった。
In addition, it was 70 to 85% in an upward flow type packed bed reactor in which the packed bed was not stirred.

アルミナは密度が3.5g/cdと重く、そのため微細
な気泡が付着し、固定化生体触媒流出防止用網下面まで
浮上するようなものは認められなかった。したがって、
この場合、掻き取り用翼は設置しなくても良いことがわ
かった。
Alumina has a heavy density of 3.5 g/cd, so fine bubbles were attached to it, and no bubbles were observed floating to the bottom surface of the immobilized biocatalyst outflow prevention net. therefore,
In this case, it was found that it was not necessary to install a scraping blade.

く実験例2〉 Aspergillus oryzae起源のβ−ガラ
クトシダーゼをフェノールホルマリン系樹脂に固定化し
たものを実験例1に示した攪拌式充填層型反応器に入れ
、上向流で12%還元脱脂乳(45℃)を5V=14で
通液した。攪拌機の回転数は中心部のものをlOrpm
に、また外周部のものを4.6rpmに設定し、周速が
ほぼ同じになるようにした。実験例1同様、還元して調
製したものであるため、多量の気泡を含有しており、こ
れらが充填層支持網下面頂部に集まり滞留した。そこで
、定量ポンプにてバイブを介し、はぼ連続的に除去した
Experimental Example 2 β-galactosidase originating from Aspergillus oryzae immobilized on phenol-formalin resin was placed in the stirred packed bed reactor shown in Experimental Example 1, and 12% reduced skim milk (45% ℃) was passed at 5V=14. The rotation speed of the stirrer is 1Orpm at the center.
In addition, the outer circumferential speed was set to 4.6 rpm so that the circumferential speeds were almost the same. As in Experimental Example 1, since it was prepared by reduction, it contained a large amount of air bubbles, which gathered and remained at the top of the lower surface of the packed bed support network. Therefore, it was removed almost continuously using a metering pump via a vibrator.

また、この樹脂は密度が1.1g/cjと軽く、そのた
め微細な気泡が付着した固定化β−ガラクトシダーゼは
固定化生体触媒流出防止用網下面まで浮上した。そして
、これらの固定化β−ガラクトシダーゼを気泡分離用掻
き取り用賀によって攪拌したところ、気泡が分離し、こ
れらの固定化酵素はこの翼によって生ずる下方の流れお
よび自重により充填層部へと沈降した。
Further, this resin had a light density of 1.1 g/cj, and therefore the immobilized β-galactosidase with fine bubbles attached thereto floated to the bottom surface of the immobilized biocatalyst outflow prevention mesh. When these immobilized β-galactosidase were agitated using a scraper for separating air bubbles, the air bubbles were separated, and these immobilized enzymes settled into the packed bed part due to the downward flow generated by the blades and their own weight.

以上のような条件で反応を行ったところ、分解率は攪拌
しない場合に比べ1.1倍となり、下向流で通液した場
合での分解率に近い値となった。
When the reaction was carried out under the above conditions, the decomposition rate was 1.1 times that of the case without stirring, which was close to the decomposition rate when the liquid was passed in a downward flow.

何れにしても本発明のものは、従来の充填層型反応器に
おける上向流の現象を改善したもので、低速で回転する
攪拌翼により充填層を攪拌して反応効率を向上させるよ
うにしたものである。
In any case, the present invention improves the upward flow phenomenon in conventional packed bed reactors, and improves reaction efficiency by stirring the packed bed using stirring blades rotating at low speed. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明反応器を示す断面図である。 (1)・・・・ジャケット (2)(3)  ・・攪拌翼 (13)・・・・固定化生体触媒充填部(16)・・・
・基質入口 (17)・・・・泡抜きバイブ (20)・・・・固定化生体触媒充填層支持用円錐状網 (21)  ・・・・固定化生体触媒流出防止用網(2
2)・・・・気泡分離用掻き取り翼(23)・・・・生
成物出口
The drawing is a sectional view showing the reactor of the present invention. (1) ... Jacket (2) (3) ... Stirring blade (13) ... Immobilized biocatalyst filling part (16) ...
- Substrate inlet (17)...Bubble removal vibe (20)...Conical net for supporting the packed bed of immobilized biocatalyst (21)...Net for preventing outflow of the immobilized biocatalyst (2
2) Scraping blade for bubble separation (23) Product outlet

Claims (1)

【特許請求の範囲】[Claims] 固定化生体触媒を充填した縦型カラム内のその充填層中
心部および外周部に独立して低速で駆動される攪拌翼を
設置し、かつ縦型カラムの下部に基質入口を設けて、そ
の下部基質入口から連続的に供給される基質と、前記充
填された固定化生体触媒とを前記攪拌翼の攪拌作用によ
り接触させて反応を行わせることを特徴とする攪拌式充
填層型反応器。
Stirring blades that are independently driven at low speed are installed at the center and outer periphery of the packed bed in a vertical column filled with an immobilized biocatalyst, and a substrate inlet is provided at the bottom of the vertical column. A stirred packed bed reactor characterized in that a substrate continuously supplied from a substrate inlet and the filled immobilized biocatalyst are brought into contact with each other by the stirring action of the stirring blade to cause a reaction.
JP2500086A 1986-02-07 1986-02-07 Stirring type packed bed reactor Granted JPS62183848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2500086A JPS62183848A (en) 1986-02-07 1986-02-07 Stirring type packed bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2500086A JPS62183848A (en) 1986-02-07 1986-02-07 Stirring type packed bed reactor

Publications (2)

Publication Number Publication Date
JPS62183848A true JPS62183848A (en) 1987-08-12
JPH042302B2 JPH042302B2 (en) 1992-01-17

Family

ID=12153698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2500086A Granted JPS62183848A (en) 1986-02-07 1986-02-07 Stirring type packed bed reactor

Country Status (1)

Country Link
JP (1) JPS62183848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237938A (en) * 1986-04-09 1987-10-17 Res Assoc Util Of Light Oil Reaction apparatus using immobilized biocatalyst
JPH01155398U (en) * 1988-04-14 1989-10-25
JP2017511811A (en) * 2014-02-10 2017-04-27 ハネウェル・インターナショナル・インコーポレーテッド Reactor for liquid phase fluorination reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162873A (en) * 1983-03-09 1984-09-13 Hitachi Ltd Immobilized enzyme reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162873A (en) * 1983-03-09 1984-09-13 Hitachi Ltd Immobilized enzyme reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237938A (en) * 1986-04-09 1987-10-17 Res Assoc Util Of Light Oil Reaction apparatus using immobilized biocatalyst
JPH01155398U (en) * 1988-04-14 1989-10-25
JP2017511811A (en) * 2014-02-10 2017-04-27 ハネウェル・インターナショナル・インコーポレーテッド Reactor for liquid phase fluorination reaction

Also Published As

Publication number Publication date
JPH042302B2 (en) 1992-01-17

Similar Documents

Publication Publication Date Title
TW497990B (en) Two stage reactor for continuous three phase slurry hydrogenation and method of operation
KR100463630B1 (en) Reactor and method for solid phase peptide synthesis_
EP0224962A1 (en) Apparatus for the continuous cultivation of microorganisms in a culture liquid
US4955586A (en) Apparatus for treating slurry by gas-liquid contact method
JP3731681B2 (en) Method for producing high purity terephthalic acid
RU2505524C2 (en) Reactor of paraxylol oxidation for obtaining terephthalic acid
US7655097B2 (en) Method of washing solid grain
KR920001251B1 (en) Continuous extraction apparatus and process
JPS62183848A (en) Stirring type packed bed reactor
KR100534290B1 (en) Method and apparatus for mixing
US5013446A (en) Chromatographic gel contactor and process
US3387832A (en) Apparatus for dispersing a gas in a liquid
JPH0340160Y2 (en)
JP2001029975A (en) Carrier stirring and separating apparatus
CA1155403A (en) Treatment apparatus
JP2936609B2 (en) Particle flow type gas-liquid-solid three-phase reactor
JPH01168271A (en) Stirring apparatus
RU2283349C2 (en) Method for preparing molasses from starch
JP2003236303A (en) Concentrating crystallization apparatus
JPS6346103Y2 (en)
CN218962641U (en) Polycarboxylic acid mother liquor synthesis equipment
JPH0353678Y2 (en)
SU882575A1 (en) Decomposer
JP3205214B2 (en) Sedimentation equipment
JP2959819B2 (en) Reactor with built-in catalyst settling section