JPS62183529A - Dry etching apparatus - Google Patents

Dry etching apparatus

Info

Publication number
JPS62183529A
JPS62183529A JP2393586A JP2393586A JPS62183529A JP S62183529 A JPS62183529 A JP S62183529A JP 2393586 A JP2393586 A JP 2393586A JP 2393586 A JP2393586 A JP 2393586A JP S62183529 A JPS62183529 A JP S62183529A
Authority
JP
Japan
Prior art keywords
wall
chamber
film
deposited film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2393586A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Arikado
経敏 有門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2393586A priority Critical patent/JPS62183529A/en
Publication of JPS62183529A publication Critical patent/JPS62183529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To degrade organic polymers by an ultraviolet ray and avoid accumulation of a deposited film by a method wherein, while a specimen is being subjected to etching and treatment with film forming gas, the ultraviolet rays is applied to dust and a deposited film composed of organic polymers which cause defects adhering to the inner wall of a chamber. CONSTITUTION:An ultraviolet ray is applied to an undesirable part other than a specimen to be etched, for instance to an organic polymer film accumulated as a deposited film on the inner wall of a vacuum chamber while a specimen is being subjected to a treatment. As the polymer film which is being deposited during etching is degraded by photoexcitation, the practical deposition speed can be made to be zero or very little. In other words, monomer molecules which are diffused from a plasma onto the inner wall of the vacuum chamber and contain carbon and so forth form deposition of organic polymer by polymerizing reaction on the surface of the inner wall during etching but, at the same time, the polymer is degraded by the ultraviolet ray applied from the outside so that practically the accumulation of the deposited film on the inner wall surface can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路の製造等に使用するドライエ
ツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dry etching apparatus used for manufacturing semiconductor integrated circuits.

〔従来の技術〕[Conventional technology]

近年、高集積デバイスを実現するための方法とれている
。このデバイス構造を実現するためには。
In recent years, methods have been developed to realize highly integrated devices. To realize this device structure.

まず単結晶シリコンを垂直にエツチングしなければなら
ない。
First, the monocrystalline silicon must be vertically etched.

シリコン基板を垂直にエツチングする方法としては、反
応性イオンエツチング(RIE)法が知られているが、
CらやSFG等のハロゲンガスのみでRIEを行なって
も完全な垂直な形状は得られない。例えば第4図(a)
に示す如く、シリコン基板■上に5in2マスク■を図
の如く形成しこのマスク■にそってエツチングすると溝
(19)の中央部は膨曲げられ斜めに入射するためであ
る。
The reactive ion etching (RIE) method is known as a method for vertically etching a silicon substrate.
Even if RIE is performed using only halogen gas such as C or SFG, a perfectly vertical shape cannot be obtained. For example, Fig. 4(a)
As shown in the figure, when a 5in2 mask (2) is formed on a silicon substrate (1) as shown in the figure and etching is performed along this mask (2), the central portion of the groove (19) is bulged and the light is incident obliquely.

ここで最近、エツチングと同時にデポジションを起こし
、第4図(b)に示す如く側壁に重合膜(10)を形成
しながらエツチングすることにより、斜め入射イオンの
効果を抑えて垂直にエツチングする方法が提案されてい
る。
Recently, a method has been developed in which deposition is performed at the same time as etching, and etching is performed while forming a polymer film (10) on the side wall as shown in FIG. 4(b), thereby suppressing the effect of obliquely incident ions and etching vertically. is proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この種の方法にあっては次のような問題
があった。即ち、デポジションを起こすためには、例え
ば炭素を含んだガスをハロゲンガスに混合し、エツチン
グと同時にシリコン基板等の試料上に重合膜を形成する
必要があるが、この重合膜は試料以外の電極面や真空容
器の内面に堆積膜として付着する。そして、容器の内面
等に付着した前記堆積膜が剥がれると、ゴミとなり、素
子に付着し歩留り低下の原因になる問題があった。
However, this type of method has the following problems. That is, in order to cause deposition, it is necessary to mix carbon-containing gas with halogen gas and form a polymeric film on a sample such as a silicon substrate at the same time as etching, but this polymeric film is It adheres as a deposited film on the electrode surface and the inner surface of the vacuum container. When the deposited film adhering to the inner surface of the container or the like is peeled off, it becomes dust, which adheres to the device and causes a decrease in yield.

また、エツチングを繰り返していくうちに、真空容器の
内面に付着する堆積膜が厚くなり、この堆積膜がプラズ
マ発生中に舞う等してエツチングに異状をきたすことも
ある。このため、容器の内面を定期的に洗浄する必要が
あり、装置稼動率の低下を招く欠点があった。
Furthermore, as etching is repeated, the deposited film that adheres to the inner surface of the vacuum container becomes thicker, and this deposited film may fly during plasma generation, causing abnormalities in etching. For this reason, it is necessary to periodically clean the inner surface of the container, which has the disadvantage of lowering the operating rate of the apparatus.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、堆積膜が真空容器に付着するのを少な
くすることができ、ゴミの低減化及び装置稼働率の向上
をはかり得るドライエツチング装置を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and its purpose is to reduce the amount of deposited film adhering to the vacuum container, thereby reducing dust and improving device operating efficiency. An object of the present invention is to provide a dry etching device.

〔問題点を解決するための手段〕 上記目的を達成するために本発明においては、試料が載
置される第1の電極およびこの電極に対向配置された第
2の電極を備え少なくとも紫外線透過性壁を有する真空
容器と、この容器内にエツチング及び膜形成用のガスを
導入する手段と、上記容器内を有する真空容器と、上記
電極間に高周波電圧を印加する手段と、前記紫外線透過
性壁の外部に配置された紫外光源とを具備するドライエ
ツチング装置を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises a first electrode on which a sample is placed and a second electrode disposed opposite to this electrode. a vacuum container having a wall, a means for introducing gas for etching and film formation into the container, a vacuum container having the inside of the container, a means for applying a high frequency voltage between the electrodes, and the ultraviolet-transparent wall. and an ultraviolet light source located outside the dry etching apparatus.

〔作用〕[Effect]

このように構成されたものにおいては試料の加工処理に
おいて、被エツチング試料以外の望ましくない部分、例
えば真空容器内壁に堆積膜として堆積した有機高分子膜
に紫外光を照射し、光励起によりエツチング中に堆積し
つつある上記高分子膜を分解し、実質的な堆積速度をゼ
ロもしくは極めて少なくすることができる。
With this structure, when processing a sample, ultraviolet light is irradiated onto an undesirable part other than the sample to be etched, such as an organic polymer film deposited on the inner wall of a vacuum chamber, and the etching process is performed by photoexcitation. The polymer film that is being deposited can be decomposed, and the actual deposition rate can be reduced to zero or extremely low.

即ち、エツチング中にプラズマから真空容器内壁に拡散
してきた炭素等を含んだモノマー分子は。
That is, monomer molecules containing carbon and the like diffused from the plasma to the inner wall of the vacuum chamber during etching.

内壁表面で重合反応を起こし有機高分子の堆積を一3= 形成していくが、同時に外側から照射される紫外光によ
り分解されていくので、実質的には内壁面の堆積膜の堆
積は抑えられる。
A polymerization reaction occurs on the inner wall surface, forming a deposit of organic polymers, but at the same time, it is decomposed by ultraviolet light irradiated from the outside, so the accumulation of the deposited film on the inner wall surface is effectively suppressed. It will be done.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本実施例に係わるドライエツチング装置を示す
概略構成図である。この装置はチャンバー■と、このチ
ャンバー■の外側に配置された光源部0と前記チャンバ
ーω内にガスを供給するガス供給部■、チャンバーω内
を排気するポンプ系■並びに電源部に)、(ハ)から構
成されている。
FIG. 1 is a schematic diagram showing a dry etching apparatus according to this embodiment. This device consists of a chamber (■), a light source part 0 placed outside this chamber (2), a gas supply part (2) that supplies gas into the chamber (ω), a pump system (■) that exhausts the inside of the chamber (ω), and a power supply part). c).

先ず本実施例の主要部であるチャンバー■及び光源部0
について説明する。チャンバー■□は、第1の電極(陰
極)としての金属電極(13)とこの電極(13)に対
向配置されている第2の電極(29)とこの両者(13
)及び(29)に挟み込まれるように保持された紫外線
透過性の石英製壁面(11)によってその外壁を形成し
、前記石英製壁面(11)と金属電極(13)及び第2
の電極(29)の間はそれぞれ真空シール用ラバー(1
2)によって絶縁されるとともにチャンバー内部の密封
性を保っている。金属電極(13)には水冷管(14)
が溶接され電極(13)全体を水冷するようになってい
る。更に金属電極(13)は、例えば、ICパターンが
形成された半導体基板の如き試料(15)を保持するた
めの静電気力を発生する前記静電気力発生用電源部に)
とプラズマ発生用電源部■とに電気的に接続されている
。更に又、光源部0は低圧水銀灯(16)と凹面鏡(1
7)から構成されている。低圧水銀灯(16)は石英製
壁面(11)の外側に配置されており、この壁面(11
)を通してその紫外光を直接あるいは凹面鏡(17)に
反射して前記チャンバー■の内部壁面に照射する。
First, the main parts of this embodiment, the chamber ■ and the light source part 0
I will explain about it. The chamber ■□ has a metal electrode (13) as a first electrode (cathode), a second electrode (29) placed opposite to this electrode (13), and both of these electrodes (13).
) and (29), its outer wall is formed by an ultraviolet-transparent quartz wall surface (11) held so as to be sandwiched between the quartz wall surface (11), a metal electrode (13), and a second
vacuum sealing rubber (1) between the electrodes (29).
2) provides insulation and maintains hermeticity inside the chamber. A water-cooled tube (14) is attached to the metal electrode (13).
are welded and the entire electrode (13) is water-cooled. Further, the metal electrode (13) is connected to the electrostatic force generation power supply unit that generates electrostatic force for holding a sample (15) such as a semiconductor substrate on which an IC pattern is formed.
and the plasma generation power supply unit ■. Furthermore, the light source unit 0 includes a low-pressure mercury lamp (16) and a concave mirror (16).
7). The low-pressure mercury lamp (16) is placed outside the quartz wall (11);
), the ultraviolet light is irradiated directly or reflected by a concave mirror (17) onto the inner wall surface of the chamber (2).

次に第1図の他の部分、つまりポンプ系■、ガス供給部
(3)、並びに電源部に)、■について説明する。
Next, other parts of FIG. 1, namely, the pump system (1), the gas supply section (3), and the power supply section), and (2) will be explained.

ポンプ系■は前記チャンバー■の第2の電極(29)と
真空シール用ラバー(12’ )を介して接続されてい
る金属排気管(21)とこの金属排気管(21)に直結
したメインバルブ(22)とこのバルブ(22)を通じ
て前記チャンバーω内を真空にひく油回転ポンプ(24
)、油拡散ポンプ(23)からなり、ガス供給部■は、
前記チャンバーωへの流量を制御するマスフローコント
ローラ(19)及びバルブ(18)とこれらを介してチ
ャンバー■内へガスを供給するガス供給管(20)から
成る。
The pump system (2) includes a metal exhaust pipe (21) connected to the second electrode (29) of the chamber (2) via a vacuum sealing rubber (12'), and a main valve directly connected to this metal exhaust pipe (21). (22) and an oil rotary pump (24) that vacuums the inside of the chamber ω through this valve (22).
), an oil diffusion pump (23), and the gas supply section ■:
It consists of a mass flow controller (19) and a valve (18) that control the flow rate to the chamber ω, and a gas supply pipe (20) that supplies gas into the chamber ω through these.

又、電源部に)、■はそれぞれ前記チャンバーωにコイ
ル(27)を介して試料(15)固定用の静電気力を供
給する直流電源(28)から成る静電気力発生用電源部
と前記チャンバーのにプラズマを発生させるマツチング
回路(25)及び高周波電源(26)から成るプラズマ
発生用電源部である。
In addition, the power supply section) and (2) are respectively a power supply section for generating electrostatic force consisting of a DC power supply (28) that supplies electrostatic force for fixing the sample (15) to the chamber ω via a coil (27), and a power supply section for generating electrostatic force in the chamber. This is a plasma generation power supply section consisting of a matching circuit (25) and a high frequency power supply (26) for generating plasma.

次に上述した実施例の効果について述べる。ま1n ず、石英製壁面(11)にCBrF3ガスを20ta 
Qh濯でガス供給部■から供給し、チャンバー内部の圧
力が0.08Torrになるようにバルブ(22)を調
節した。次に高周波電力300W を電極(13)に印
加し、プラズマを発生させた。そしてプラズマ発生中、
500Wの低圧水銀灯(16)の紫外光をチャンバー■
の壁面(11) (ここでは、堆積膜厚モニター用とし
て石英ガラスを用いた。)に照射した。この石英ガラス
−7+ 上にプラズマ中のCBrF、ガスとプラズマ中の電子の
衝突によって発生したモノマー分子(この場合、CF或
いはCVX )から形成された堆積膜の膜厚をプラズマ
の放電時間の関数で示したのが第2図である。
Next, the effects of the above-described embodiment will be described. First, apply 20ta of CBrF3 gas to the quartz wall (11).
During the Qh rinse, gas was supplied from the gas supply section (2), and the valve (22) was adjusted so that the pressure inside the chamber was 0.08 Torr. Next, a high frequency power of 300 W was applied to the electrode (13) to generate plasma. And while plasma is being generated,
Ultraviolet light from a 500W low-pressure mercury lamp (16) is applied to the chamber■
The wall surface (11) (here, quartz glass was used for monitoring the deposited film thickness) was irradiated. The thickness of the deposited film formed on this silica glass-7+ from CBrF in the plasma and monomer molecules (in this case, CF or CVX) generated by the collision of gas and electrons in the plasma is determined as a function of the plasma discharge time. This is shown in Figure 2.

これより水銀灯(16)を点灯しない場合(図中、0で
示す)は直線Aで示される如く1分間50人程度の堆積
がおこるのに対し、水銀灯(16)を点灯した場合(図
中、・で示す)には直線Bで示される如く膜の堆積は無
視できるほどに小さいことがわかる。
From this, it can be seen that when the mercury lamp (16) is not turned on (indicated by 0 in the figure), about 50 people per minute accumulate as shown by straight line A, whereas when the mercury lamp (16) is turned on (indicated by 0 in the figure), about 50 people accumulate per minute. As shown by straight line B, it can be seen that the film deposition is negligibly small.

隙 第3図は、実璽に試料(15)としてのウェハーをエツ
チングした場合のウェハーの処理枚数に対するゴミ発生
量の変化を示す図である。水銀ランプ(16)を点灯し
た場合(直線C:図中、・で示す)は、点灯しない場合
(直線D;同図中0で示す)と比較して明らかにゴミの
発生量が低下している。
FIG. 3 is a diagram showing the change in the amount of dust generated with respect to the number of wafers processed when a wafer as a sample (15) is etched on a real seal. When the mercury lamp (16) is turned on (straight line C, indicated by . in the figure), the amount of dust generated is clearly lower than when it is not lit (straight line D; indicated by 0 in the figure). There is.

なお上記実施例においては、石英製壁面(11)を用い
たが、その代わりにステンレス製のチャンバー壁面を用
い、その内側に石英製板を配置してチャンバー内部を2
重構造として、その間に水銀灯を設けてもよい。
In the above embodiment, the quartz wall surface (11) was used, but instead a stainless steel chamber wall surface was used, and a quartz plate was placed inside the wall surface, so that the interior of the chamber was divided into two parts.
As a layered structure, a mercury lamp may be provided between them.

光源は上述した低圧水銀灯(16)に限定されるもので
はなく、300nm以下の紫外光であれば良いし、壁面
(11)は壁面全体が石英でなくても良く、又、石英に
限定されるものではない。要は光源の発生する紫外線が
直接あるいは凹面鏡(17)の如き反射鏡の反射によっ
て紫外線透過性の板を通してチャンバー内部の堆積膜が
付着している壁面に照射され前記堆積膜の形成が軽減さ
れる構成であればどのようなものでもよい。
The light source is not limited to the above-mentioned low-pressure mercury lamp (16), and any ultraviolet light of 300 nm or less may be used, and the entire wall surface (11) does not need to be made of quartz, and is limited to quartz. It's not a thing. In short, the ultraviolet rays generated by the light source are irradiated directly or by reflection from a reflecting mirror such as a concave mirror (17) through an ultraviolet-transparent plate to the wall surface on which the deposited film is attached inside the chamber, thereby reducing the formation of the deposited film. Any configuration may be used.

又、エツチング及び膜形成用のガスとしては、力で固定
する必要はなく機械的に固定してもよい。
Furthermore, the gas for etching and film formation need not be fixed by force, but may be fixed mechanically.

〔効果〕〔effect〕

以上述べてきたように、本発明によればエツチング及び
膜形成用ガスによる試料の処理中、紫外光をチャンバー
内壁に付着したゴミや不良の原因となる有機高分子から
なる堆積膜に照射することにより、紫外光が有機高分子
を分解し堆積膜の付−心 − 着を防止若しくは極めて少なくすることができる。
As described above, according to the present invention, during etching and processing of a sample with a film-forming gas, ultraviolet light can be irradiated onto the deposited film made of organic polymers that may cause dust or defects adhering to the inner wall of the chamber. This allows the ultraviolet light to decompose organic polymers and prevent or extremely reduce adhesion of the deposited film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に関わるドライエツチング装
置を示す概略構成図、第2図及び第3図は本発明の効果
を示す特性図、第4図は上記例を説明するための説明図
である。 1・・・チャンバー、  6・・・光源部、11・・・
石英製壁面、  12・・・真空シール用ラバー、13
・・・第1の金属電極(陰極)、 15・・・試料、     16・・・低圧水銀灯、1
7・・・凹面鏡、    29・・・第2の電極(陽極
)。 代理人 弁理士 則 近 憲 佑 同  竹花喜久男 放’tt呵両[分] 第2図 うI八−肖火ヨ!ギス電(暉く 第8図 第4 図
FIG. 1 is a schematic configuration diagram showing a dry etching apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are characteristic diagrams showing the effects of the present invention, and FIG. 4 is an explanation for explaining the above example. It is a diagram. 1... Chamber, 6... Light source section, 11...
Quartz wall surface, 12... Rubber for vacuum sealing, 13
...first metal electrode (cathode), 15...sample, 16...low-pressure mercury lamp, 1
7... Concave mirror, 29... Second electrode (anode). Agent Patent Attorney Noriyuki Ken Yudo Takehana Kikuo Ho'tt2 [minutes] Figure 2 U8-Shobiyo! Gisu Electric (Fig. 8) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 試料が載置される第1の電極およびこの電極に対向配置
された第2の電極を備え少なくとも紫外線透過性壁を有
する真空容器と、この容器内にエッチング及び膜形成用
のガスを導入する手段と、上記容器を排気する手段と、
上記電極間に高周波電圧を印加する手段と、前記紫外線
透過性壁の外部に配置された紫外光源とを具備するドラ
イエッチング装置。
A vacuum container including a first electrode on which a sample is placed and a second electrode placed opposite to this electrode and having at least an ultraviolet-transparent wall, and means for introducing gas for etching and film formation into the container. and means for evacuating said container;
A dry etching apparatus comprising means for applying a high frequency voltage between the electrodes and an ultraviolet light source disposed outside the ultraviolet transmitting wall.
JP2393586A 1986-02-07 1986-02-07 Dry etching apparatus Pending JPS62183529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2393586A JPS62183529A (en) 1986-02-07 1986-02-07 Dry etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2393586A JPS62183529A (en) 1986-02-07 1986-02-07 Dry etching apparatus

Publications (1)

Publication Number Publication Date
JPS62183529A true JPS62183529A (en) 1987-08-11

Family

ID=12124385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2393586A Pending JPS62183529A (en) 1986-02-07 1986-02-07 Dry etching apparatus

Country Status (1)

Country Link
JP (1) JPS62183529A (en)

Similar Documents

Publication Publication Date Title
EP0416774B1 (en) A method of treating a sample of aluminium-containing material
US5795831A (en) Cold processes for cleaning and stripping photoresist from surfaces of semiconductor wafers
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
US20060090773A1 (en) Sulfur hexafluoride remote plasma source clean
US5178721A (en) Process and apparatus for dry cleaning by photo-excited radicals
JPH0622222B2 (en) Light processing equipment
KR930003876B1 (en) Plasma ashing method
JP3520577B2 (en) Plasma processing equipment
KR20020081556A (en) Method of forming a thin film
JPS62183529A (en) Dry etching apparatus
JPH10233389A (en) Semiconductor treatment apparatus and its cleaning method as well as manufacture of semiconductor device
JP3164188B2 (en) Plasma processing equipment
JPS6191930A (en) Cleaning method of semiconductor substrate
JP3357737B2 (en) Discharge plasma processing equipment
KR100639517B1 (en) Chemical vapor deposition equipment having a diffuser
JP3373466B2 (en) Plasma processing apparatus and plasma processing method
JP3009209B2 (en) Surface protection method
JPS61174725A (en) Thin film forming apparatus
JP2001207269A (en) Plasma treating system
JPH0729829A (en) Method and system for dc discharge plasma processing
JPH0766171A (en) Fabrication system semiconductor device
JPH04330723A (en) Semiconductor manufacturing apparatus and manufacture of semiconductor device
JPH07105346B2 (en) Radical beam photo CVD equipment
JPH0717146Y2 (en) Wafer processing equipment
JPH03139838A (en) Manufacture of semiconductor device