JPS62182554A - Compression cooler - Google Patents

Compression cooler

Info

Publication number
JPS62182554A
JPS62182554A JP2315986A JP2315986A JPS62182554A JP S62182554 A JPS62182554 A JP S62182554A JP 2315986 A JP2315986 A JP 2315986A JP 2315986 A JP2315986 A JP 2315986A JP S62182554 A JPS62182554 A JP S62182554A
Authority
JP
Japan
Prior art keywords
temperature
compressor
bypass
refrigerant
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315986A
Other languages
Japanese (ja)
Inventor
晴雄 岡田
小田中 住男
唐沢 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2315986A priority Critical patent/JPS62182554A/en
Publication of JPS62182554A publication Critical patent/JPS62182554A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は合成樹脂成形機、各種工作機械等に用いられ
る圧縮冷却器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compression cooler used in synthetic resin molding machines, various machine tools, and the like.

[従来の技術] 射出成形用金型では、溶融樹脂の射出充填により金型温
度が上昇し、樹脂は金型内で冷却され固化する。
[Prior Art] In an injection mold, the temperature of the mold increases as molten resin is injected and filled, and the resin is cooled and solidified within the mold.

射出成形における金型の温度変化が製品寸法に及ぼす影
響については、金型温度1℃の変化は、ノズル部樹脂温
度1℃、保圧力10Kg/cI+!の変化より大きいこ
と、−例として70s X 70trvn %厚さ3M
のポリアセタール平板では金型温度が1℃変化すると製
品寸法が0.01 M変化することが報告されているよ
うに、成形品の精密化、均質化のために、金型の温度制
御は重要なものである。
Regarding the influence of mold temperature changes on product dimensions during injection molding, a 1°C change in mold temperature is equivalent to a 1°C change in nozzle resin temperature and a holding pressure of 10 kg/cI+! greater than the change in - e.g. 70s x 70trvn % thickness 3M
It has been reported that in the case of polyacetal flat plates, the product dimensions change by 0.01 M when the mold temperature changes by 1°C, and mold temperature control is important for precision and homogenization of molded products. It is something.

特にポリオレフィン系の樹脂のように溶融潜熱の大きい
物、厚肉成形品、発泡成形品などでは精度の高い制御が
必要とされる。
In particular, highly accurate control is required for materials such as polyolefin resins that have a large latent heat of melting, thick-walled molded products, and foamed molded products.

一般的な圧縮冷却器は、フロンガス、メチルクロライド
、アンモニア等の冷媒を圧縮器ににつて加圧吐出し、凝
縮器内で液化させてのち、膨張弁により熱交換器内で気
化させ、そのときの気化熱をもって媒体から熱を奪う構
造よりなる。また媒体の温度制御は以下の如く行なって
いる。
In a typical compression cooler, a refrigerant such as fluorocarbon gas, methyl chloride, or ammonia is discharged under pressure through a compressor, liquefied in a condenser, and then vaporized in a heat exchanger using an expansion valve. It has a structure that removes heat from the medium with the heat of vaporization. Further, the temperature of the medium is controlled as follows.

(イ)媒体の温度を検知し、設定温度に応じて圧縮器を
起動、停止させて制御する。
(b) Detects the temperature of the medium and controls the compressor by starting and stopping it according to the set temperature.

(ロ)媒体の温度を検知し、設定温度に応じて圧縮器の
回転数をインバータ制御して行なう。
(b) The temperature of the medium is detected and the rotation speed of the compressor is controlled by an inverter according to the set temperature.

(ハ)媒体の発熱量に見合った冷却能力の冷却器を選択
する。
(c) Select a cooler with a cooling capacity commensurate with the calorific value of the medium.

(ニ)媒体が必要とする冷却能力以上の冷却器を用いる
と共に媒体の加熱手段を設け、媒体の瀉痕を検知し、設
定温度に応じて加熱手段を制御する。
(d) A cooler with a cooling capacity higher than that required by the medium is used, and a means for heating the medium is provided, traces of the medium are detected, and the heating means is controlled according to the set temperature.

[発明が解決しようとする問題点] 上記従来の冷却器の温度制御方法には以下の如き問題点
がある。
[Problems to be Solved by the Invention] The conventional cooler temperature control method described above has the following problems.

(イ)の方法にあっては、圧縮器の起動、停止を繰り返
すため、圧縮器の特性により応答に「れを生じ、媒体温
度が大きく波を打ち、温度制御を正確に行なうことがで
きないばかりか圧縮器の短命化を招き、(ロ)の方法で
は制御装置が高価であるため装置価格が上昇する。また
(ハ)の方法は、異なった発熱量の対象物を冷却すると
きは、冷却器をも変更しなくてはならず、選択も困難で
あり、く二)の方法では加熱手段を付加するため装置が
大型化、複雑化しやすく、コストも上昇する他、エネル
ギー消費が大きく、ランニングコストが高いなどである
In method (a), since the compressor is repeatedly started and stopped, the characteristics of the compressor cause a response error, the medium temperature fluctuates greatly, and temperature control cannot be performed accurately. In method (b), the control device is expensive, which increases the cost of the equipment.Also, in method (c), when cooling objects with different calorific values, the cooling The equipment also has to be changed, making it difficult to select one, and in method 2), a heating means is added, which tends to make the equipment larger and more complex, which increases costs, consumes a lot of energy, and requires less running time. For example, the cost is high.

[問題点を解決するだめの手段] この発明は上記事情に鑑みてなされたものであって、簡
単な構成で温度制御精度の良い圧縮冷却器を提供するこ
とを目的とするものである。
[Means for Solving the Problems] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a compression cooler with a simple configuration and high temperature control accuracy.

上記目的によるこの発明は、圧縮器の吐出側から吸込側
にわたる冷媒の循環路を有し、その循環路に吐出側から
順に凝縮器とキレピラリ−チューブ、膨脹弁及び熱交換
器を設けた圧縮冷却器において、上記循環路の吐出側と
吸込側とにわたりバイパスを設けるとともに、そのバイ
パスに温度センサーと温度設定器とを備えたコントロー
ラからの電気信号により作動する電磁弁を設けてなるこ
とを要旨とする。
This invention has a refrigerant circulation path extending from the discharge side to the suction side of a compressor, and the circulation path is provided with a condenser, a refill tube, an expansion valve, and a heat exchanger in order from the discharge side. In the device, a bypass is provided between the discharge side and the suction side of the circulation path, and the bypass is provided with a solenoid valve operated by an electric signal from a controller equipped with a temperature sensor and a temperature setting device. do.

[作 用] 上記構成からなる冷却器では、媒体の温度を温度センサ
ーで検出し、その検出値と設定値とをコントローラ内で
比較演算し、検出値の方が大きか一、j− った場合には、電磁弁が作動してバイパスが開くか、ま
たは流量が増加する。
[Function] In the cooler configured as described above, the temperature of the medium is detected by a temperature sensor, the detected value and the set value are compared and calculated in the controller, and the detected value is larger or not. If so, the solenoid valve is activated to open the bypass or increase the flow rate.

それにより圧縮器で加圧された冷媒の一部は、電磁弁の
開度に応じて圧縮器吸込側に流出し、その分冷却能力が
低下するので媒体の温度が上昇する。
As a result, a part of the refrigerant pressurized by the compressor flows out to the compressor suction side depending on the opening degree of the solenoid valve, and the cooling capacity decreases accordingly, so that the temperature of the medium increases.

そして、媒体の温度が上昇して設定値より高くなったら
、電磁弁が上記とは逆に作動してバイパスを閉じるか、
または流量が減じて、冷却能力が上り、媒体の温度が下
がる。
Then, when the temperature of the medium rises and becomes higher than the set value, the solenoid valve operates in the opposite way to the above to close the bypass or
Or the flow rate is reduced, increasing the cooling capacity and lowering the temperature of the medium.

[実施例] 本発明を射出成形機の金型の冷却に用いた場合の例を図
を参照して説明する。
[Example] An example in which the present invention is used for cooling a mold of an injection molding machine will be described with reference to the drawings.

1は圧縮器で、吐出側から吸込側にわたる冷媒の循環路
2を有し、その循環路2に吐出側2aから順に凝縮器3
、キャピラリーチューブ4、膨張弁5、熱交換器6が設
けである。
A compressor 1 has a refrigerant circulation path 2 extending from a discharge side to a suction side, and a condenser 3 is connected to the circulation path 2 in order from a discharge side 2a.
, a capillary tube 4, an expansion valve 5, and a heat exchanger 6 are provided.

上記熱交換器6には、ポンプ7を備えた冷却路8が設け
てあり、この冷却路8は、金型9の内部の通路9aとの
接続により循環路を形成する。
The heat exchanger 6 is provided with a cooling path 8 equipped with a pump 7, and this cooling path 8 is connected to a passage 9a inside the mold 9 to form a circulation path.

10は上記循環路2の吐出側2aと吸込側2bとに近接
した部分に設けたバイパスで、電気信号により開閉作動
する電磁切換弁11が設けである。
Reference numeral 10 denotes a bypass provided in a portion close to the discharge side 2a and suction side 2b of the circulation path 2, and is provided with an electromagnetic switching valve 11 which is opened and closed by an electric signal.

12は熱交換器6の媒体、即ち冷却水の温度を検出する
温度センサーで、温度設定器13と共にコントローラ1
4に電気的に接続しである。このコントローラ14は検
出温度と設定温度とを比較し、そこに温度差が生じたと
きに、コントローラ14に電気的に接続した上記電磁弁
11に信号を送って、電磁弁11を開閉作動し、冷媒の
バイパス流量を調整する。
Reference numeral 12 denotes a temperature sensor that detects the temperature of the medium of the heat exchanger 6, that is, the cooling water.
It is electrically connected to 4. The controller 14 compares the detected temperature and the set temperature, and when a temperature difference occurs, sends a signal to the solenoid valve 11 electrically connected to the controller 14 to open and close the solenoid valve 11, Adjust the refrigerant bypass flow rate.

第2図に示す実施例は、上記電磁切換弁11を電11流
量弁11aに代えた場合を示すものである。なお15は
凝縮器3のファンである。
The embodiment shown in FIG. 2 shows a case where the electromagnetic switching valve 11 is replaced with an electromagnetic flow valve 11a. Note that 15 is a fan of the condenser 3.

しかして、圧縮器1及びファン2を定常的に運転すると
、フロンガスなどの冷媒は圧縮器1により加圧されて凝
縮器3に送られ、ここで液化されたのら、キャピラリー
チューブ4を通過し、膨張弁5を経て熱交換器6に送ら
れる。
When the compressor 1 and fan 2 are operated steadily, refrigerant such as fluorocarbon gas is pressurized by the compressor 1 and sent to the condenser 3, where it is liquefied and then passed through the capillary tube 4. , and is sent to the heat exchanger 6 via the expansion valve 5.

膨張弁5では高圧の液状冷媒が解放されるため、冷媒は
膨張してガス状となり、その際、周囲から気化熱を奪う
ので、熱交換器6内にて水が冷却される。温度センサー
12によって検出された検出値が、設定値より小さくな
ると、」ントローラ14から信号が発せられて電磁切換
弁11または電磁流量弁11aが、図示と逆のシンボル
に作動する。
Since the high-pressure liquid refrigerant is released in the expansion valve 5, the refrigerant expands and becomes gaseous. At this time, the water is cooled in the heat exchanger 6 because the heat of vaporization is taken away from the surroundings. When the detected value detected by the temperature sensor 12 becomes smaller than the set value, a signal is issued from the controller 14, and the electromagnetic switching valve 11 or the electromagnetic flow valve 11a operates in a direction opposite to that shown in the drawing.

それにより圧縮器1からの吐出されたガス状の冷媒の一
部がバイパス10へ流入し、膨張弁5に至る循環路2の
圧力が低下し、膨張弁前後の差圧が小さくなる。この結
果、膨張弁5における冷媒の気化量が減少し、それに伴
って冷却能力が小さくなり、金型9の発熱量が勝って温
度が上昇する。
As a result, part of the gaseous refrigerant discharged from the compressor 1 flows into the bypass 10, the pressure in the circulation path 2 leading to the expansion valve 5 decreases, and the differential pressure across the expansion valve decreases. As a result, the amount of vaporized refrigerant in the expansion valve 5 decreases, the cooling capacity decreases accordingly, and the amount of heat generated by the mold 9 becomes greater, causing the temperature to rise.

以上のように電磁切換弁の開閉制御により温度制御が行
なわれる。
As described above, temperature control is performed by controlling the opening and closing of the electromagnetic switching valve.

なお、図示の例では、温度センサー12を熱交換器6に
設けたが、金型温度を検出して制御を行ってもよい。
In the illustrated example, the temperature sensor 12 is provided in the heat exchanger 6, but the mold temperature may be detected and controlled.

第3図は冷媒の温度変化を示すもので、上記実施例によ
る場合の温度Aは、設定温度にほぼ等しく制御され、圧
縮器1の0N−OFFごとに上下変動する従来の場合の
温度Bに比べて変動も少ない。
FIG. 3 shows the temperature change of the refrigerant. The temperature A in the above embodiment is controlled to be almost equal to the set temperature, and the temperature B in the conventional case fluctuates up and down every time the compressor 1 is turned on and off. There is less variation compared to

[発明の効果] この発明は上述のように、圧縮器の循環路に、吐出側の
冷媒の一部を吸込側に流出させるバイパスを設け、その
バイパスをもって吐出側冷媒の流量を調整し、冷媒によ
る冷却能力の制御を行うことができるようにしたことか
ら、従来のように圧縮器の起動、停止或は回転数の制御
などの手段を用いず温度制御を行うことができる。
[Effects of the Invention] As described above, the present invention provides a bypass in the circulation path of the compressor that allows a part of the refrigerant on the discharge side to flow out to the suction side, and uses the bypass to adjust the flow rate of the refrigerant on the discharge side. Since the cooling capacity can be controlled by the compressor, the temperature can be controlled without using conventional means such as starting and stopping the compressor or controlling the rotation speed.

またバイパス流量は、温度センサーと温度設定器とを備
えたコントローラからの電気信号により作動する電磁弁
の開度によって調整されるので、常に設定温度に応じた
流量調整がなされ、簡単な構造でありながら応答性もよ
く、安定性をも有するなどの特長を有する。
In addition, the bypass flow rate is adjusted by the opening of a solenoid valve that is activated by an electric signal from a controller equipped with a temperature sensor and a temperature setting device, so the flow rate is always adjusted according to the set temperature and has a simple structure. However, it has features such as good responsiveness and stability.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明に係る圧縮冷却器の実施例を示すもので
、第1図は回路図、第2図は他の実施例の要部の回路図
、第3図は温度状態図である。 1・・・圧縮器      2・・・循環路2a・・・
吐出側     2b・・・吸込側3・・・凝縮器  
    5・・・膨張弁6・・・熱交換器     1
0・・・バイパス11・・・電磁切換弁    11a
・・・電磁流量弁12・・・温度センサー   13・
・・温度設定器14・・・コントローラ 特許出願人   日精樹脂工業株式会社手続補正書 1.事件の表示 昭和61年特許願第23159 号 2、発明の名称 圧縮冷却器 3、補正をする者 事件との関係  出 願 人 (ほか1名) 5、補正命令の日付(自発) (発送日)昭和  年  月  8 補  正  明  細  書 1、発明の名称 圧縮冷却器 2、特許請求の範囲 圧縮器の吐出側から吸込側にわたる冷媒の循環路を有し
、その循環路に吐出側から順に凝縮器とキャピラリーチ
ューブ、膨脹弁及び熱交換器を設けた圧縮冷却器におい
て、上記循環路の圧縮器と凝縮器の間の吐出路と膨張弁
と圧縮器の間の吸込路とにわたりバイパス路を設けると
ともに、そのバイパス路に被冷却物の温度を検出する温
度センサーと被冷却物の温度を設定する温度設定器とを
備えたコントローラからの冷却力低下指令信号によりバ
イパス路の開度を調整作動する電磁弁を設けてなること
を特徴とする圧縮冷却器。 3、発明の詳細な説明 [産業上の利用分野] この発明は合成樹脂成形機、各種工作機械等に用いられ
る圧縮冷却器に関する。 [従来の技術] 射出成形用金型では、溶融樹脂の射出充填により金型温
度が上昇し、樹脂は金型内で冷却され固化する。 射出成形における金型の温度変化が製品寸法に及ぼず影
響については、金型温度1℃の変化は、ノズル部樹脂温
度1℃、保圧力1089/ctAの変化より大きいこと
、−例として70sX70m、厚さ3 mmのポリアセ
タール平板では金型温度が1℃変化すると製品寸法が0
.01 、変化することが報告されているように、成形
品の精密化、均質化のために、金型の温度制御は重要な
ものである。 特にポリオレフィン系の樹脂のように溶融潜熱の大きい
物、厚肉成形品、発泡成形品などでは精度の高い制御が
必要とされる。 一般的な圧縮冷却器は、フロンガス、メチルクロライド
、アンモニア等の冷媒を圧縮器によって加圧吐出し、凝
縮器内で液化させてのち、膨張弁により熱交換器内で気
化させ、そのときの気化熱をもって被冷却物から熱を奪
う構造よりなる。また被冷却物の湿度制御は以下の如く
行なっている。 (イ)被冷却物の温度を検知し、設定温度に応じて圧縮
器を起動、停止させて制御する。 (ロ)被冷却物の温(資)を検知し、設定温度に応じて
圧縮器の回転数をインバータ制御して行なう。 (ハ)被冷却物の発熱量に見合った冷却能力の冷却器を
選択づる。 (ニ)被冷却物が必要とする冷却能力以上の冷却器を用
いると共に被冷却物の加熱手段を設け、被冷却物の温度
を検知し、設定温度に応じて加熱手段を制御する。 [発明が解決しようとする問題点] 上記従来の冷却器の温度制御方法には以下の如き問題点
がある。 (イ)の方法にあっては、圧縮器の起動、停止を繰り返
すため、圧縮器の特性により応答に遅れを生じ、被冷却
物の温度が大きく波を打ち、温度制御を正確に行なうこ
とができないばかりか圧縮器の短命化を招き、(口〉の
方法では制御装置が高価であるため装置価格が上昇する
。また(ハ)の方法は、異なった発熱量の対象物を冷却
するときは、冷却器をも変更しなくてはならず、選択も
困難であり、(ニ)の方法では加熱手段を付加するため
装置が大型化、複雑化しやすく、コストも上昇する他、
エネルギー消費が大きく、ランニングコストが高いなど
である。 [問題点を解決するための手段] この発明は上記事情に鑑みてなされたものであって、簡
単な構成で温度制御精度の良い圧縮冷却器を提供するこ
とを目的とするものである。 上記目的によるこの発明は、圧縮器の吐出側から吸込側
にわたる冷媒の循環路を有し、その循環路に吐出側から
順に凝縮器とキャピラリーチューブ、膨脹弁及び熱交換
器を設けた圧縮冷却器において、上記循環路の圧縮器と
凝縮器の間の吐出路と膨張弁と圧縮器の間の吸込路とに
わたりバイパス路を設けるとともに、そのバイパス路に
被冷却物の温度を検出する湿度センサーと被冷却物の温
度を設定する温度設定器とを備えたコントローラからの
冷却力低下指令信号によりバイパス路を開通作動する電
磁弁を設けてなることを要旨とする。 [作 用] 上記構成からなる冷却器では、被冷却物の温度を温度セ
ンサーで検出し、その検出値と設定値とをコントローラ
内で比較演算し、検出値の方が高かった場合には、電磁
弁が作動してバイパス路が開くか、または流量が増加す
る。 それにより圧縮器で加圧された冷媒の一部は、電磁弁の
開疫に応じて圧縮器吸込側に流出し、その分冷却能力が
低下するので被冷却物の温度が1臂する。 そして、媒体の温度が上昇して設定値より高くなったら
、電磁弁が上記とは逆に作動してバイパスを閉じるか、
または流量が減じて、冷却能力が上り、媒体の温度が下
がる。 [実施例] 本発明を射出成形機の金型の冷却に用いた場合の例を図
を参照して説明する。 1は圧縮器で、吐出側から吸込側にわたる冷媒の循環路
2を有し、その循環路2に吐出側2aから順に凝縮器3
、キャピラリーチューブ4、膨張弁5、熱交換器6が設
けである。 上記熱交換器6には、ポンプ7を備えた冷却路8が設け
てあり、この冷却路8は、金型9の内部の通路9aとの
接続により循環路を形成する。 10は上記循環路2の吐出側2aと吸込側2bとに近接
した部分に設けたバイパス路で、電気信号により開閉作
動する電磁切換弁11が設けである。 12は熱交換器6の冷却媒体、即ち冷却水の温度を検出
する温度センサーで、温度設定器13と共にコントロー
ラ14に電気的に接続しである。このコントローラ14
は検出温度と設定温度とを比較し、そこに温度差が生じ
たときに、コントローラ14に電気的に接続した上記電
磁弁11に信号を送って、電磁弁11を開閉作動し、冷
媒のバイパス流量を調整する。 第2図に示す実施例は、上記電磁切換弁11を電磁流量
弁11aに代えた場合を示すものである。なお15は凝
縮器3のファンである・ しかして、圧縮器1及びファン2を定常的に運転すると
、フロンガスなどの冷媒は圧縮器1により加圧されて凝
縮器3に送られ、ここで液化されたのち、キャピラリー
チューブ4を通過し、膨張弁5を経て熱交換器6に送ら
れる。 膨張弁5では高圧の液状冷媒が解放されるため、冷媒は
膨張してガス状となり、その際、周囲から気化熱を奪う
ので、熱交換器6内にて水が冷却される。温度センサー
12によって検出された検出値が、設定値より低くなる
と、コントローラ14がら信号が発せられて電磁切換弁
11または電磁流量弁11aが、バイパス路を開通する
かまたは開度を増す方向に作動する。 それにより圧縮器1からの吐出されたガス状の冷媒の一
部がバイパス路10へ流入し、膨張弁5に至る循環路2
の圧力が低下し、膨張弁前後の差圧が小さくなる。この
結果、膨張弁5における冷媒の気化量が減少し、それに
伴って冷却能力が小さくなり、金型9の発熱量が勝って
温度が上昇する。 以上のように電磁切換弁の開閉制御により温度制御が行
なわれる。 なお、図示の例では、温度センサー12を熱交換器6に
設けたが、金型温度を検出して電磁弁の制御を行っても
よい。 第3図は冷媒の温度変化を示すもので、上記実施例によ
る場合の温度Aは、設定温度にほぼ等しく制御され、圧
縮器1の0N−OFFごとに上下変動する従来の場合の
温度Bに比べて変動も少ない。 [発明の効果] この発明は上述のように、圧縮器の循環路に、吐出側の
冷媒の一部を吸込側に流出させるバイパス路を設け、そ
のバイパス路をもって吐出側冷媒の流量を調整し、冷媒
による冷却能力の制御を行うことができるようにしたこ
とから、従来のように圧縮器の起動、停止或は回転数の
制御などの手段を用いず温度制御を行うことができる。 またバイパス流量は、コントローラからの電気信号によ
り作動する電磁弁の開度によって調整されるので、常に
設定温度に応じた流量調整がなされ、簡単な構造であり
ながら応答性もよく、安定性をも有するなどの特長を有
する。 4、図面の簡単な説明 図面はこの発明に係る圧縮冷却器の実施例を示すもので
、第1図は回路図、第2図は他の実施例の要部の回路図
、第3図は湿度状態図である。 1・・・圧縮器      2・・・循環路2a・・・
吐出路     2b・・・吸込路3・・・凝縮器  
    5・・・膨張弁6・・・熱交換器     1
0・・・バイパス路11・・・電磁切換弁    11
a・・・電磁流量弁12・・・温度センサー   13
・・・温度設定器14・・・コントローラ
The drawings show an embodiment of the compression cooler according to the present invention, and FIG. 1 is a circuit diagram, FIG. 2 is a circuit diagram of a main part of another embodiment, and FIG. 3 is a temperature state diagram. 1...Compressor 2...Circulation path 2a...
Discharge side 2b...Suction side 3...Condenser
5... Expansion valve 6... Heat exchanger 1
0... Bypass 11... Solenoid switching valve 11a
...Solenoid flow valve 12...Temperature sensor 13.
... Temperature setting device 14 ... Controller patent applicant Nissei Jushi Kogyo Co., Ltd. Procedural amendment 1. Indication of the case Patent Application No. 23159 of 1985 2. Name of the invention Compression cooler 3. Person making the amendment Relationship to the case Applicant (1 other person) 5. Date of the amendment order (voluntary) (Date of dispatch) Amended Specification 1, Title of the Invention Compression Cooler 2, Claims The compressor has a refrigerant circulation path extending from the discharge side to the suction side, and a condenser is connected to the circulation path in order from the discharge side. In a compression cooler equipped with a capillary tube, an expansion valve, and a heat exchanger, a bypass path is provided across the discharge path between the compressor and the condenser of the circulation path and the suction path between the expansion valve and the compressor. , an electromagnetic system that adjusts the opening degree of the bypass path in response to a cooling power reduction command signal from the controller, which is equipped with a temperature sensor that detects the temperature of the object to be cooled and a temperature setting device that sets the temperature of the object to be cooled. A compression cooler characterized by being equipped with a valve. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a compression cooler used in synthetic resin molding machines, various machine tools, and the like. [Prior Art] In an injection mold, the temperature of the mold increases as molten resin is injected and filled, and the resin is cooled and solidified within the mold. Regarding the influence of mold temperature changes on product dimensions during injection molding, a 1°C change in mold temperature is greater than a 1°C change in nozzle resin temperature and a holding force of 1089/ctA, for example 70s x 70m. For a polyacetal flat plate with a thickness of 3 mm, the product size will change to 0 if the mold temperature changes by 1°C.
.. 01, temperature control of the mold is important for precision and homogenization of molded products, as reported to vary. In particular, highly accurate control is required for materials such as polyolefin resins that have a large latent heat of melting, thick-walled molded products, and foamed molded products. A typical compression cooler uses a compressor to pressurize and discharge a refrigerant such as fluorocarbon gas, methyl chloride, or ammonia, liquefies it in a condenser, and then vaporizes it in a heat exchanger using an expansion valve. It has a structure that uses heat to remove heat from the object to be cooled. The humidity of the object to be cooled is controlled as follows. (a) Detects the temperature of the object to be cooled and controls the compressor by starting and stopping it according to the set temperature. (b) The temperature of the object to be cooled is detected and the rotation speed of the compressor is controlled by an inverter according to the set temperature. (c) Select a cooler with cooling capacity commensurate with the calorific value of the object to be cooled. (d) A cooler with a cooling capacity higher than that required by the object to be cooled is used, a means for heating the object to be cooled is provided, the temperature of the object to be cooled is detected, and the heating means is controlled according to the set temperature. [Problems to be Solved by the Invention] The conventional cooler temperature control method described above has the following problems. In method (a), since the compressor is repeatedly started and stopped, there is a delay in response due to the characteristics of the compressor, and the temperature of the object to be cooled fluctuates widely, making it difficult to accurately control the temperature. Not only is this impossible, but it also shortens the compressor's lifespan. In method (2), the control device is expensive, which increases the cost of the equipment. In addition, method (3) is effective when cooling objects with different calorific values. , it is necessary to change the cooler, and selection is difficult; method (d) requires additional heating means, which tends to make the device larger and more complex, and increases costs;
Energy consumption is large and running costs are high. [Means for Solving the Problems] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a compression cooler with a simple configuration and high temperature control accuracy. The present invention has a refrigerant circulation path extending from the discharge side to the suction side of the compressor, and a compression cooler in which the circulation path is provided with a condenser, a capillary tube, an expansion valve, and a heat exchanger in order from the discharge side. A bypass path is provided across the discharge path between the compressor and the condenser of the circulation path and the suction path between the expansion valve and the compressor, and a humidity sensor for detecting the temperature of the object to be cooled is provided in the bypass path. The gist of the present invention is to provide a solenoid valve that opens the bypass passage in response to a cooling power reduction command signal from a controller that includes a temperature setting device that sets the temperature of the object to be cooled. [Function] In the cooler having the above configuration, the temperature of the object to be cooled is detected by a temperature sensor, and the detected value and the set value are compared and calculated in the controller, and if the detected value is higher, The solenoid valve is actuated to open the bypass or increase the flow rate. As a result, a part of the refrigerant pressurized by the compressor flows out to the compressor suction side in response to the opening of the solenoid valve, and the cooling capacity decreases accordingly, so that the temperature of the object to be cooled decreases. Then, when the temperature of the medium rises and becomes higher than the set value, the solenoid valve operates in the opposite way to the above to close the bypass or
Or the flow rate is reduced, increasing the cooling capacity and lowering the temperature of the medium. [Example] An example in which the present invention is used for cooling a mold of an injection molding machine will be described with reference to the drawings. A compressor 1 has a refrigerant circulation path 2 extending from a discharge side to a suction side, and a condenser 3 is connected to the circulation path 2 in order from a discharge side 2a.
, a capillary tube 4, an expansion valve 5, and a heat exchanger 6 are provided. The heat exchanger 6 is provided with a cooling path 8 equipped with a pump 7, and this cooling path 8 is connected to a passage 9a inside the mold 9 to form a circulation path. Reference numeral 10 designates a bypass path provided in a portion close to the discharge side 2a and suction side 2b of the circulation path 2, and is provided with an electromagnetic switching valve 11 that is opened and closed by an electric signal. A temperature sensor 12 detects the temperature of the cooling medium of the heat exchanger 6, that is, the cooling water, and is electrically connected to the controller 14 together with the temperature setting device 13. This controller 14
compares the detected temperature and the set temperature, and when a temperature difference occurs, sends a signal to the solenoid valve 11 electrically connected to the controller 14, opens and closes the solenoid valve 11, and bypasses the refrigerant. Adjust the flow rate. The embodiment shown in FIG. 2 shows a case where the electromagnetic switching valve 11 is replaced with an electromagnetic flow valve 11a. Note that 15 is a fan of the condenser 3. When the compressor 1 and fan 2 are operated steadily, refrigerant such as fluorocarbon gas is pressurized by the compressor 1 and sent to the condenser 3, where it is liquefied. After that, it passes through a capillary tube 4 and is sent to a heat exchanger 6 via an expansion valve 5. Since the high-pressure liquid refrigerant is released in the expansion valve 5, the refrigerant expands and becomes gaseous. At this time, the water is cooled in the heat exchanger 6 because the heat of vaporization is taken away from the surroundings. When the detection value detected by the temperature sensor 12 becomes lower than the set value, a signal is issued from the controller 14, and the electromagnetic switching valve 11 or the electromagnetic flow valve 11a operates in the direction of opening the bypass passage or increasing the opening degree. do. As a result, a part of the gaseous refrigerant discharged from the compressor 1 flows into the bypass path 10 and the circulation path 2 leading to the expansion valve 5.
pressure decreases, and the differential pressure across the expansion valve decreases. As a result, the amount of vaporized refrigerant in the expansion valve 5 decreases, the cooling capacity decreases accordingly, and the amount of heat generated by the mold 9 becomes greater, causing the temperature to rise. As described above, temperature control is performed by controlling the opening and closing of the electromagnetic switching valve. In the illustrated example, the temperature sensor 12 is provided in the heat exchanger 6, but the solenoid valve may be controlled by detecting the mold temperature. FIG. 3 shows the temperature change of the refrigerant. The temperature A in the above embodiment is controlled to be almost equal to the set temperature, and the temperature B in the conventional case fluctuates up and down every time the compressor 1 is turned on and off. There is less variation compared to [Effects of the Invention] As described above, the present invention provides a bypass path in the circulation path of the compressor that allows part of the refrigerant on the discharge side to flow out to the suction side, and uses the bypass path to adjust the flow rate of the refrigerant on the discharge side. Since the cooling capacity of the refrigerant can be controlled, the temperature can be controlled without using conventional means such as starting and stopping the compressor or controlling the rotation speed. In addition, the bypass flow rate is adjusted by the opening of a solenoid valve operated by an electric signal from the controller, so the flow rate is always adjusted according to the set temperature, and although it has a simple structure, it has good responsiveness and stability. It has features such as: 4. Brief description of the drawings The drawings show an embodiment of the compression cooler according to the present invention. Fig. 1 is a circuit diagram, Fig. 2 is a circuit diagram of the main part of another embodiment, and Fig. 3 is a circuit diagram of a main part of another embodiment. It is a humidity state diagram. 1...Compressor 2...Circulation path 2a...
Discharge path 2b...Suction path 3...Condenser
5... Expansion valve 6... Heat exchanger 1
0... Bypass path 11... Solenoid switching valve 11
a...Solenoid flow valve 12...Temperature sensor 13
... Temperature setting device 14 ... Controller

Claims (1)

【特許請求の範囲】[Claims] 圧縮器の吐出側から吸込側にわたる冷媒の循環路を有し
、その循環路に吐出側から順に凝縮器とキャピラリーチ
ューブ、膨脹弁及び熱交換器を設けた圧縮冷却器におい
て、上記循環路の吐出側と吸込側とにわたりバイパスを
設けるとともに、そのバイパスに温度センサーと温度設
定器とを備えたコントローラからの電気信号により作動
する電磁弁を設けてなることを特徴とする圧縮冷却器。
A compression cooler having a refrigerant circulation path extending from the discharge side to the suction side of the compressor, and in which the circulation path is provided with a condenser, a capillary tube, an expansion valve, and a heat exchanger in order from the discharge side. A compression cooler characterized in that a bypass is provided between the side and the suction side, and the bypass is provided with a solenoid valve operated by an electric signal from a controller equipped with a temperature sensor and a temperature setting device.
JP2315986A 1986-02-05 1986-02-05 Compression cooler Pending JPS62182554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315986A JPS62182554A (en) 1986-02-05 1986-02-05 Compression cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315986A JPS62182554A (en) 1986-02-05 1986-02-05 Compression cooler

Publications (1)

Publication Number Publication Date
JPS62182554A true JPS62182554A (en) 1987-08-10

Family

ID=12102820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315986A Pending JPS62182554A (en) 1986-02-05 1986-02-05 Compression cooler

Country Status (1)

Country Link
JP (1) JPS62182554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526197A (en) * 2006-02-07 2009-07-16 ブルックス オートメーション インコーポレイテッド Freezing prevention and temperature control method for cryogenic mixed refrigerant system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826968A (en) * 1981-08-08 1983-02-17 太平洋工業株式会社 Method of controlling cooling circuit
JPS59140523A (en) * 1983-01-31 1984-08-11 Kanto Seiki Kk Controller for liquid temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826968A (en) * 1981-08-08 1983-02-17 太平洋工業株式会社 Method of controlling cooling circuit
JPS59140523A (en) * 1983-01-31 1984-08-11 Kanto Seiki Kk Controller for liquid temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526197A (en) * 2006-02-07 2009-07-16 ブルックス オートメーション インコーポレイテッド Freezing prevention and temperature control method for cryogenic mixed refrigerant system

Similar Documents

Publication Publication Date Title
US4338068A (en) Injection molding device and method
US4548773A (en) Injection molding method
US4623497A (en) Passive mold cooling and heating method
US7249940B2 (en) Temperature regulator of temperature regulating part under hopper of injection molding machine
US4526012A (en) Liquid temperature regulator
KR880010295A (en) Refrigeration cycle
JPS60245963A (en) Method of operating refrigeration system and control system of refrigeration system
KR980003346A (en) Mixed refrigerant injection method and apparatus
JPS62182554A (en) Compression cooler
US5105632A (en) Refrigeration system having liquefied refrigerant control
JPS60196559A (en) Air conditioner for computer chamber
JP3516984B2 (en) Oil temperature control device in hydraulic equipment
JPS55159952A (en) Cooling method for metal mold at injection molding
JPS6146211B2 (en)
JP2002022337A (en) Liquid temperature controller of cooler
JPH0344509Y2 (en)
JPH0511525B2 (en)
JPH11245256A (en) Method for injection molding of non-crystalline thermoplastic resin
JPH04147656A (en) Cooling mechanism for electronic component
KR20010067984A (en) Thermal Control System of Mold
JPS63144220U (en)
JPS63128911A (en) System for controlling rotational frequency of compressor in cooling system of mold
JP2001160128A (en) Method for molding ic card, and ic card
JP2583395Y2 (en) Temperature control device for plastic molds
JPH04334419A (en) Injection molding die