JPS62181638A - Resin mold type stepping motor - Google Patents

Resin mold type stepping motor

Info

Publication number
JPS62181638A
JPS62181638A JP2082786A JP2082786A JPS62181638A JP S62181638 A JPS62181638 A JP S62181638A JP 2082786 A JP2082786 A JP 2082786A JP 2082786 A JP2082786 A JP 2082786A JP S62181638 A JPS62181638 A JP S62181638A
Authority
JP
Japan
Prior art keywords
resin
stator
bearing housing
winding
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2082786A
Other languages
Japanese (ja)
Other versions
JPH0652979B2 (en
Inventor
Satoshi Sanzen
智 三千
Kagetaka Matsuzaki
松▲崎▼ 景孝
Masato Nanba
灘灘 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61020827A priority Critical patent/JPH0652979B2/en
Publication of JPS62181638A publication Critical patent/JPS62181638A/en
Publication of JPH0652979B2 publication Critical patent/JPH0652979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

PURPOSE:To make it possible to seal a stator winding using an extrafine wire and to contrive higher productivity by integrally forming a bearing housing into a stator portion with thermal plastic fiber reinforced polyethylenetere phthalate resin. CONSTITUTION:A stator winding is sealed up by a bearing housing 13 integrally resin-molded together with a stator 1. In this case the bearing housing 13 is formed with a thermal plastic fiber reinforced polyethyleneterephthalate resin where the combination amounts (portions) of e.g. the polyethyleneterephthalate, crystalization accelerator, low-temperature shrinkage agent, thermal-resistant processor and impact resistant improvement agent are 100, 1, 20, 20 and 5, while the combination amounts (%) of the glass fiber, beads or disc filler, thermal stabilizer and carbon black are 15, 25, 0.1 and 0.3. Thus, the low-pressure- sealed molding can be implemented, so that the coil sealing without burnout, etc. is all right even if an extrafine wire is used for winding; higher productivity can be worked for accordingly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、事務機器、産業用機器に用いられるステッピ
ングモータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a stepping motor used in office equipment and industrial equipment.

従来の技術 一般的にハイブリッド型のステッピングモータにおいて
は、第2図(a)及び(b)に示す構成が知られている
。以下、その構成を図面にもとづいて説明すると、1は
内周に複数の磁極歯(図示せず)が形成された磁極2を
有するステータで、磁極2には合成樹脂製の絶縁枠3を
介してステータ巻線4が巻装されている。5はステータ
lを支持する一対のハウジングで、中央部には回転軸6
を回転自在に支持する軸受7を装着するための保持部5
aが形成されている。8はステータ1に対向して回転軸
6に固定されたロータで、永久磁石9と、この永久磁石
9の両側に位置し、ステータの磁極歯に対応する複数の
磁極歯を有するロータコア10とにより構成している。
2. Description of the Related Art In general, a configuration shown in FIGS. 2(a) and 2(b) is known for a hybrid stepping motor. The structure will be explained below based on the drawings. Reference numeral 1 denotes a stator having a magnetic pole 2 with a plurality of magnetic pole teeth (not shown) formed on the inner periphery. A stator winding 4 is wound thereon. Reference numeral 5 designates a pair of housings that support the stator l, with a rotating shaft 6 in the center.
A holding part 5 for mounting a bearing 7 that rotatably supports the
a is formed. A rotor 8 is fixed to a rotating shaft 6 facing the stator 1, and is composed of a permanent magnet 9 and a rotor core 10 located on both sides of the permanent magnet 9 and having a plurality of magnetic pole teeth corresponding to the magnetic pole teeth of the stator. It consists of

11はステータ巻線4とハウジング5との絶縁を図るた
めの絶縁材で、ステータ巻線4を被っている。
Reference numeral 11 is an insulating material for insulating the stator winding 4 and the housing 5, and covers the stator winding 4.

発明が解決しようとする問題点 しかしながら、上記構成においては、下記する欠点があ
った。
Problems to be Solved by the Invention However, the above configuration has the following drawbacks.

(1)  ステータ巻線巻装後の絶縁処理は自動化が困
難で手が掛るものであった。
(1) Insulation treatment after stator winding is difficult to automate and requires a lot of effort.

(2)組立部品点数が多く、ステータ内周とロータ回転
軸の同軸度を得るため、各部品毎の加工精度を上げねば
ならず原価を引き上げる原因となっている。
(2) There are a large number of assembled parts, and in order to achieve coaxiality between the stator inner periphery and the rotor rotating shaft, the processing accuracy of each part must be increased, which causes an increase in cost.

近年これらの解決策として熱硬化性樹脂(例えば不飽和
ポリエステル、エポキシ樹脂)によるステータ彷線部の
封入とハウジングの一部を合体化同時成形する方法を採
用したステッピングモータが増加の傾向にある。しかし
、この熱硬化性樹脂による方法は既知のごとく、生産性
が悪く設備、金型の装備費比率が高くなることが欠点で
あった。
In recent years, as a solution to these problems, there has been an increasing trend in the number of stepping motors that employ a method in which the stator trunk is encapsulated with a thermosetting resin (for example, unsaturated polyester or epoxy resin) and a portion of the housing is simultaneously molded. However, as is known, this method using a thermosetting resin has the disadvantage of poor productivity and high equipment and mold equipment costs.

一方、熱可塑性樹脂による方法は、射出成形時の樹脂充
填圧力による巻線コイル絶縁皮膜へのダメージや断線が
生じ易いことから極細の巻線コイルを使用するステッピ
ングモータでは実用化が困難とされていた。
On the other hand, the method using thermoplastic resin is difficult to put to practical use in stepping motors that use ultra-thin wire-wound coils because the resin filling pressure during injection molding tends to damage the wire-wound coil insulation film and cause wire breakage. Ta.

コイル封入熱可塑性樹脂に要求される性能は、従来の熱
硬化性樹脂が有する高電気絶縁性、寸法安定性、耐ヒー
トシヨツク性、機械強度など基本性能として要求される
が、金型への樹脂充填圧力が低いことが最大のポイント
である。
The performance required for coil-encapsulated thermoplastic resin is the basic performance required of conventional thermosetting resin, such as high electrical insulation, dimensional stability, heat shock resistance, and mechanical strength. The most important point is that the filling pressure is low.

一般的に使用されているステッピングモータのポリウレ
タン銅線(線形0.1mm)の破断応力(F)はF崎3
X10” N/r& (0,310,062πkg/馴
2)ポリマー流動時の発生応力; 〇−η ・d y / dχ (dy/dχ= 4 Q
 、/’πR2)でF>Oが要求される。
The breaking stress (F) of the polyurethane copper wire (linear 0.1 mm) of commonly used stepping motors is 3.
X10"N/r& (0,310,062πkg/stress 2) Stress generated during polymer flow; 〇-η ・dy / dχ (dy/dχ= 4 Q
, /'πR2), F>O is required.

また一方ではモータとしてのハウシングの大部分を樹脂
により形成することになる点から、耐ヒートシヨツク性
、寸法安定性が要求される。次表に従来のモールド型ス
テッピングモータに使mされる材料の使用例とそのとき
の各種の特性例を示す。
On the other hand, since most of the housing of the motor is made of resin, heat shock resistance and dimensional stability are required. The following table shows examples of materials used in conventional molded stepping motors and examples of their various characteristics.

第1表 以上の結果となり熱可塑性樹脂についても第−表の特性
を満足する材料の開発が望まれている。
The results are as shown in Table 1, and it is desired to develop a thermoplastic resin material that satisfies the properties shown in Table 1.

問題点を解決するための手段 前記問題点を解決するため本発明は、材料の溶融粘度が
低く、寸法安定性に優れた熱可塑性ポリエチレンテレフ
タレート(PET)樹脂をベースにした繊維強化ポリニ
レテンテレフタレート(FR−PET)樹脂にて軸受ハ
ウジングをステータT)での極細巻線ステータのコイル
封入とハウジングの合体化成形が可能となり、熱硬化性
樹脂による方法に比べ、著しく生産性を向上させること
が可能となる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides fiber-reinforced polynylene terephthalate based on thermoplastic polyethylene terephthalate (PET) resin, which has a low melt viscosity and excellent dimensional stability. Using (FR-PET) resin, it is possible to mold the bearing housing into a stator T) by enclosing the coils of the ultra-fine winding stator and the housing, significantly improving productivity compared to methods using thermosetting resin. It becomes possible.

実施例 第1図は本発明の実施例を示すものである。なお、上記
従来の構成と同一構成品は同一符号を付して説明する。
Embodiment FIG. 1 shows an embodiment of the present invention. Note that components that are the same as those in the conventional configuration described above will be described with the same reference numerals.

図において、1は巻線4が巻装されたステータで、巻線
4は絶縁枠3により、ステータ1と絶縁されている。1
2は回転IpH16を回転自在に支持する軸受7を支持
するボスで、ステータ1と一体に樹脂モールドされた軸
受ハウジング13により固定されている。この樹脂モー
ルドの軸受ハウシング13はステータ1の巻&’i14
を完全に密封すると共にモータフランジ14を磁気シー
ルドリンク15を介して溶着カシメを行い組立てられる
構造となっている。16は7ランジ14に出力側の回転
軸の軸受7を装着保持するボスで、軸受ハウジング5と
同様の樹脂により形成され、回転軸の精度を維持する構
成となっている。
In the figure, 1 is a stator around which a winding 4 is wound, and the winding 4 is insulated from the stator 1 by an insulating frame 3. 1
A boss 2 supports a bearing 7 that rotatably supports the rotating IpH 16, and is fixed by a bearing housing 13 that is molded with resin integrally with the stator 1. This resin molded bearing housing 13 is the winding &'i14 of the stator 1.
It has a structure in which the motor flange 14 is completely sealed and assembled by welding and caulking via the magnetic shield link 15. Reference numeral 16 denotes a boss for attaching and holding the bearing 7 of the output side rotating shaft to the 7 flange 14, and is made of the same resin as the bearing housing 5, and is configured to maintain the accuracy of the rotating shaft.

次に上記軸受ハウジング13の構成について説明する。Next, the structure of the bearing housing 13 will be explained.

第2表は軸受ハウジング13に使用する樹脂の基本配合
例を示す。第3表は本発明の軸受ハウシング13に使用
した樹脂と在来の樹脂との成形性と品質に関する影響を
まとめたちのである。
Table 2 shows basic formulation examples of resins used for the bearing housing 13. Table 3 summarizes the effects of the resin used in the bearing housing 13 of the present invention and conventional resins on moldability and quality.

第2表 第3表 ガラス繊維15%、その他フィラー25%含有の同等ク
ラス樹脂で比較。またガラス繊維20%以上含有の樹脂
ではコイル断線及びレアーショートが発生した。
Table 2 Table 3 Comparison of equivalent class resins containing 15% glass fiber and 25% other fillers. Further, with resin containing 20% or more of glass fiber, coil breakage and layer shorting occurred.

発明の効果 以上の記述から明らかな様に本発明によると、下記の効
果を奏する。
Effects of the Invention As is clear from the above description, the present invention provides the following effects.

1)熱可塑性樹脂は困難とされていたポリウレタン銅線
の如(極細線をステータ巻線に用いた際にも断線、レア
ーショートが発生しない低圧封入成形で実現出来ること
により、従来の熱硬化性樹脂による方法と比べ、著しく
生産性を向上させることが出来る。
1) Thermoplastic resins are difficult to use, such as polyurethane copper wires. Compared to the method using resin, productivity can be significantly improved.

2)熱可塑性樹脂であるため、組立構造においても超音
波溶着や熱溶着が可能で接着剤やビス等の副資材を要し
ないため、組立工程の合理化が図れる。
2) Since it is a thermoplastic resin, ultrasonic welding and thermal welding are possible in the assembly structure, and auxiliary materials such as adhesives and screws are not required, so the assembly process can be streamlined.

3)上記利点により、安価で高品質のステッピングモー
タの提供が実現できる。
3) Due to the above advantages, it is possible to provide an inexpensive and high quality stepping motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す樹脂モールド型ステッ
ピングモータの縦断面図、第2図(a〉。 (b)は従来のハイブリッド型ステッピングモータの縦
断面図および横断面図である。 1・・・・・・ステータ、4・・・・・・ステータ巻線
、13・・・・・・軸受ハウジング。
FIG. 1 is a longitudinal cross-sectional view of a resin-molded stepping motor showing an embodiment of the present invention, and FIG. 2 (a) is a vertical cross-sectional view and a cross-sectional view of a conventional hybrid stepping motor. 1... Stator, 4... Stator winding, 13... Bearing housing.

Claims (1)

【特許請求の範囲】[Claims]  複数の磁極にステータ巻線が巻装された回転磁界を形
成するステータ部に熱可塑性繊維強化ポリエチレンテレ
フタレート樹脂よりなる軸受ハウジングを一体に形成し
てなる樹脂モールド型ステッピングモータ。
A resin-molded stepping motor in which a bearing housing made of thermoplastic fiber-reinforced polyethylene terephthalate resin is integrally formed with a stator part that forms a rotating magnetic field in which stator windings are wound around a plurality of magnetic poles.
JP61020827A 1986-01-31 1986-01-31 Resin mold type stepping motor Expired - Lifetime JPH0652979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020827A JPH0652979B2 (en) 1986-01-31 1986-01-31 Resin mold type stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020827A JPH0652979B2 (en) 1986-01-31 1986-01-31 Resin mold type stepping motor

Publications (2)

Publication Number Publication Date
JPS62181638A true JPS62181638A (en) 1987-08-10
JPH0652979B2 JPH0652979B2 (en) 1994-07-06

Family

ID=12037873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020827A Expired - Lifetime JPH0652979B2 (en) 1986-01-31 1986-01-31 Resin mold type stepping motor

Country Status (1)

Country Link
JP (1) JPH0652979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503300A (en) * 1995-04-03 1999-03-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Injection molding motor assembly and manufacturing method
KR100433941B1 (en) * 2001-09-07 2004-06-07 남동전동기주식회사 Case of fan coil unit electric motor
JP2017051014A (en) * 2015-09-03 2017-03-09 日立オートモティブシステムズ株式会社 Motor control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489415U (en) * 1977-12-08 1979-06-25
JPS55162359U (en) * 1979-05-10 1980-11-21
JPS59108520A (en) * 1982-12-14 1984-06-23 松下電器産業株式会社 Electromotive cooking machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489415U (en) * 1977-12-08 1979-06-25
JPS55162359U (en) * 1979-05-10 1980-11-21
JPS59108520A (en) * 1982-12-14 1984-06-23 松下電器産業株式会社 Electromotive cooking machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503300A (en) * 1995-04-03 1999-03-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Injection molding motor assembly and manufacturing method
KR100433941B1 (en) * 2001-09-07 2004-06-07 남동전동기주식회사 Case of fan coil unit electric motor
JP2017051014A (en) * 2015-09-03 2017-03-09 日立オートモティブシステムズ株式会社 Motor control device

Also Published As

Publication number Publication date
JPH0652979B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US4868970A (en) Method of making an electric motor
US4954739A (en) Servo motor with high energy product magnets
US3863336A (en) Method of manufacturing flat-type rotors
JP6243208B2 (en) Motor and motor manufacturing method
US10312763B2 (en) Stator, method for manufacturing stator, and motor
CN1757945A (en) Field coil assembly of an electromagnetic clutch for a compressor
AU2019442093B2 (en) Stator, motor, fan, air conditioner, and manufacturing method of stator
CN101208850A (en) Electric motor stator
GB1436298A (en) Electrical motor construction
CN208479317U (en) Brshless DC motor, motor stator and its conflux disk
JPS62181638A (en) Resin mold type stepping motor
JP2009254025A (en) Cylindrical linear motor and its manufacturing method
JP3483835B2 (en) Armature assembly method for movable armature type linear motor
EP0519163A1 (en) Wire-connecting configuration of a resin-molded electric motor
JP6402231B2 (en) Motor and motor manufacturing method
JPH07222388A (en) Coil for generator and manufacture thereof
JPS5849074A (en) Brushless motor
AU2020431615B2 (en) Motor, fan, and air conditioner
JP2018143049A (en) Method of manufacturing motor and motor
JPWO2021124972A5 (en)
JPH01138936A (en) Manufacture of induction motor stator
US11811265B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
JP3316380B2 (en) Mold motor
CN216356174U (en) Brushless motor and stator module thereof
KR102236789B1 (en) Stator and its manufacturing method of clutch system for rear wheel drive of electric vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term