JPS621814A - Method and apparatus for heating vacuum degassing device - Google Patents

Method and apparatus for heating vacuum degassing device

Info

Publication number
JPS621814A
JPS621814A JP14004585A JP14004585A JPS621814A JP S621814 A JPS621814 A JP S621814A JP 14004585 A JP14004585 A JP 14004585A JP 14004585 A JP14004585 A JP 14004585A JP S621814 A JPS621814 A JP S621814A
Authority
JP
Japan
Prior art keywords
burner
air
pipe
degassing
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14004585A
Other languages
Japanese (ja)
Inventor
Yoshihiro Umegatsuji
梅ケ辻 好博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14004585A priority Critical patent/JPS621814A/en
Publication of JPS621814A publication Critical patent/JPS621814A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To heat a degassing device for a blow-up type vacuum refining method with a simple installation without the wasteful loss of energy by using a burner provided to a degassing vessel and the waste combustion gas thereof to heat the above-mentioned vacuum degassing device. CONSTITUTION:A molten steel in a ladle 1 is lifted into the degassing vessel 4 above said ladle from an immersion pipe 2 in the lower part of the vessel and the molten steel is degassed under the reduced pressure. Fuel is supplied through a piping 6 to the burner 5 in the upper part of the vessel 4 and the O2-enriched air mixed with air and O2 from pipings 14, 15 is supplied into the burner so as to be burned by the burner prior to the above-mentioned treatment. The supply rates of the fuel, air and O2 are controlled by an O2 enriching control device 21, air to fuel ratio setter 10, a thermometer 3, arithmetic controller 22, etc., in accordance with the flow rates of the pipes 6, 14, 15 or the concn. of O2 in the pipe 20 or the temp. in the vessel 4. The inside of the pipe 20 or the temp. in the vessel 4. The inside of the vessel 4 is heated to a target temp. The waste combustion gas is discharged from the top end of the pipe 2 and therefore the need for heating from the pipe 2 is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炉外精錬の真空脱ガス装置の加熱方法及び装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heating method and apparatus for a vacuum degassing apparatus for out-of-furnace refining.

〔従来技術〕[Prior art]

近年、需要者側の鋼使用に関する技術が進み、鋼中のガ
ス、非金属介在物等の減少の要求が高まり、真空脱ガス
精錬法の重要性が増してきた。真空精錬に期待する効果
は、脱炭、税ガス、脱酸。
In recent years, as technology related to the use of steel on the customer side has progressed, demands for reducing gas, nonmetallic inclusions, etc. in steel have increased, and the importance of vacuum degassing refining methods has increased. The expected effects of vacuum refining are decarburization, tax gas, and deoxidation.

介在物浮上等多様であるが、基礎となる真空ネn錬の機
能は循環、攪拌、混合である。真空精錬法の主流をなす
吹上式真空精錬法(Dll法、 RH法)では、鍋内よ
り溶鋼を脱ガス槽内に吸い上げて該脱ガス槽内にて脱ガ
ス処理するので、攪拌力の大きいことが1つの特徴であ
るが、これに伴い、処理中における溶鋼温度低下が不可
避である。そこで1、真空処理中における溶鋼の温度降
下の減少または槽内耐火物へのスプラッシュ付着を防止
するためには、脱ガス槽の真空処理前における予備加熱
が必要である。
Although there are various reasons such as the floating of inclusions, the basic functions of vacuum heating are circulation, stirring, and mixing. In the blow-up vacuum refining method (DLL method, RH method), which is the mainstream vacuum refining method, molten steel is sucked up from the pot into a degassing tank and degassed in the degassing tank, so a large stirring force is required. This is one of the characteristics, but accompanying this, a drop in the temperature of the molten steel during treatment is unavoidable. Therefore, 1. In order to reduce the temperature drop of molten steel during vacuum processing or prevent splash adhesion to the refractories in the tank, it is necessary to preheat the degassing tank before vacuum processing.

このために従来は、脱ガス槽の頂部近くに設置された電
極にてアーク放電して、処理前に槽内を約1050℃に
予備加熱しておくことが行われていた。
For this purpose, conventionally, the inside of the degassing tank was preheated to about 1050° C. by arc discharge using an electrode installed near the top of the tank before treatment.

ところが、前記方法では電極付近は高温にできるが、槽
内におけるガス対流がほとんど起こらないので脱ガス槽
の下部に設けた浸漬管付近は温度が低く、処理中に溶鋼
へ浸漬した場合、浸漬管の破損及び溶鋼温度の低下が生
じる。そこで浸漬管については、燃料ガスを燃焼させて
予備加熱していた。このように、説ガス槽内の加熱につ
いては電極と燃料ガスとの2系統の加熱設備で行われて
いたのが実情である。
However, in the above method, the temperature near the electrodes can be raised to a high temperature, but since there is almost no gas convection within the tank, the temperature near the immersion pipe installed at the bottom of the degassing tank is low, and if it is immersed in molten steel during processing, the immersion pipe may damage and a drop in molten steel temperature. Therefore, the immersion tube was preheated by burning fuel gas. As described above, the reality is that heating within the gas tank is performed using two systems of heating equipment, one for electrodes and one for fuel gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如き従来の方法では、通電を停止すると、アーク
放電用の電極棒が熱応力により破損することが多(、そ
の都度取替えが必要となるため、処理前、処理中、処理
後を問わず常に通電しておく必要があり、不要電力の損
失が多く、また電極の消耗が多く、経済的でないという
欠点があった。
In the conventional method as described above, when electricity is stopped, the electrode rod for arc discharge is often damaged due to thermal stress (and must be replaced each time, so it cannot be used before, during, or after treatment. It has the disadvantage that it is necessary to keep the current on at all times, resulting in a lot of unnecessary power loss, and that the electrodes are consumed a lot, making it uneconomical.

また、真空脱ガス装置内に2系統の加熱装置を配備しな
ければならないという難点があった一上述の方法とは別
に浸漬管先端にバーナを開口させ、該バーナにて燃料ガ
スを燃焼させて塩ガス槽内を加熱する方法もあるが、浸
漬管先端部の破損がひどく、また脱ガス槽内よりの地金
の落下が多くてバーナ詰まりが頻繁に起こるという欠点
があった。
In addition, there was a problem in that two systems of heating devices had to be installed in the vacuum degassing equipment.In addition to the above method, a burner was opened at the tip of the immersion tube and the fuel gas was combusted in the burner. There is also a method of heating the inside of the salt gas tank, but this method has the drawbacks that the tip of the immersion tube is severely damaged, and the burner is frequently clogged due to a large amount of metal falling from the degassing tank.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところは、脱ガス槽の上部にバーナを設置し
て、該バーナからの燃料燃焼により槽内加熱を行い、そ
の燃焼排ガスを脱ガス槽下部に導いて浸漬管より排ガス
を排出させることにより、従来の方法及び装置に較べ設
備が簡略であり、無用のエネルギー損失がない真空脱ガ
ス装置の加熱方法及び装置を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to install a burner at the top of a degassing tank, heat the tank by burning fuel from the burner, and remove the combustion exhaust gas. To provide a heating method and device for a vacuum degassing device, which has simpler equipment compared to conventional methods and devices and eliminates unnecessary energy loss by guiding the exhaust gas to the lower part of the degassing tank and discharging the exhaust gas from a immersion pipe. It is in.

本発明に係る真空脱ガス装置の加熱方法は、鍋内の溶融
金属をその上方の脱ガス槽の下部の浸漬管より脱ガス槽
に吸い上げて、減圧下にて該溶融金属を塩ガス処理する
真空脱ガス装置の加熱方法において、脱ガス槽の上部に
加熱用燃焼バーナを゛設け、該バーナによる燃焼にて槽
内の加熱を行うとともに、燃焼排ガスを浸漬管より排出
することを特徴とする。
The heating method of the vacuum degassing apparatus according to the present invention is to suck up the molten metal in the pot through the immersion pipe at the lower part of the degassing tank above it into the degassing tank, and treating the molten metal with salt gas under reduced pressure. A heating method for a vacuum degassing device is characterized in that a heating combustion burner is provided at the top of the degassing tank, and the burner heats the inside of the tank by combustion, and the combustion exhaust gas is discharged from the immersion pipe. .

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて説明す
る。図面は本発明装置の模式図であり、図中4は塩ガス
槽を示す。説ガス槽4はその下部に、2点破線で示す取
鍋1から溶鋼を吸い上げる浸漬管2を具備している。ま
た塩ガス槽4の側壁は一部開口されていて、ここに先端
が脱ガス槽4内に位置せしめられた2重管構造を有する
バーナ5が取付けられている。
Hereinafter, the present invention will be explained based on drawings showing embodiments thereof. The drawing is a schematic diagram of the apparatus of the present invention, and 4 in the drawing indicates a salt gas tank. The gas tank 4 is provided at its lower part with a dip pipe 2 for sucking up molten steel from the ladle 1, which is indicated by a two-dot broken line. Further, a side wall of the salt gas tank 4 is partially opened, and a burner 5 having a double pipe structure whose tip is positioned inside the degassing tank 4 is attached thereto.

バーナ5の外管には酸素富化空気配管20の先端が開口
しており、酸素富化空気配管20の基端側は空気配管1
4及び酸素配管15に分岐連結されており、空気配管1
4の基端側は図示しない空気源に、また酸素配管15の
基端側は図示しない酸素源に夫々連結されている。
The tip of the oxygen-enriched air pipe 20 is open in the outer tube of the burner 5, and the base end of the oxygen-enriched air pipe 20 is open to the air pipe 1.
4 and oxygen pipe 15, and the air pipe 1
The base end side of the oxygen pipe 15 is connected to an air source (not shown), and the base end side of the oxygen pipe 15 is connected to an oxygen source (not shown).

酸素富化空気配管20の中途には酸素濃度出力計19が
設けられており、酸素濃度が計測され、この出力信号は
酸素富化制御装置21に入力される。酸素富化制御装置
21では、槽内温度を目標値に保つための酸素量の理論
値に基づき、酸素濃度が設定され、酸素富化制御装置2
1より酸素流量指示調整器18には酸素量の指示信号が
、演算制御器22には制御後の酸素濃度の信号が伝送さ
れる。
An oxygen concentration output meter 19 is provided in the middle of the oxygen enriched air pipe 20 to measure the oxygen concentration, and this output signal is input to the oxygen enrichment control device 21. In the oxygen enrichment control device 21, the oxygen concentration is set based on the theoretical value of the amount of oxygen to maintain the temperature inside the tank at the target value, and the oxygen enrichment control device 2
1, an oxygen amount instruction signal is transmitted to the oxygen flow rate indicating regulator 18, and a controlled oxygen concentration signal is transmitted to the arithmetic controller 22.

空気配管14の中途には空気源側から順に、流量計12
、空気供給N調整用バルブ13が取付けられており、空
気源から送られる空気はバルブ13にて流量が調節され
、流量計12により流量が計へ11される。
In the middle of the air piping 14, a flow meter 12 is installed in order from the air source side.
, an air supply N adjustment valve 13 is attached, the flow rate of the air sent from the air source is adjusted by the valve 13, and the flow rate is sent to the meter by a flow meter 12.

流量計12の出力は空気流量指示調節器11に与えられ
るようになっており、空気流量指示調節器11は空燃比
設定器10からの空気量信号と上記流量計12の出力信
号とに基づき、空気の供給量を制御すべくバルブ13の
開度を調整する。
The output of the flow meter 12 is given to the air flow rate indicating regulator 11, and the air flow rate indicating regulator 11, based on the air amount signal from the air-fuel ratio setting device 10 and the output signal of the flow meter 12, The opening degree of the valve 13 is adjusted to control the amount of air supplied.

酸素配管15の中途には酸素源側から順に、流量計17
.酸素供給1ftm整用バルブ16が取付けられており
、酸素源から送られる酸素はバルブ16にて流量が調節
され、流量計17により流量が計測される。
In the middle of the oxygen pipe 15, a flow meter 17 is installed in order from the oxygen source side.
.. An oxygen supply 1 ftm adjustment valve 16 is attached, and the flow rate of oxygen sent from the oxygen source is adjusted by the valve 16, and the flow rate is measured by a flow meter 17.

流量計17の出力は酸素流量指示調節器18に与えられ
るようになっており、酸素流量指示調節器18は酸素富
化制御装置21からの酸素量信号と上記流量計17の出
力信号とに基づき、酸素の供給量を制御すべくバルブ1
6の開度を調整する。
The output of the flow meter 17 is given to an oxygen flow rate indicating regulator 18, and the oxygen flow rate indicating regulator 18 receives the output signal based on the oxygen amount signal from the oxygen enrichment control device 21 and the output signal of the flow meter 17. , valve 1 to control the amount of oxygen supplied.
Adjust the opening degree of 6.

バーナ5の内管には燃料配管6の先端が開口しており、
燃料配管6の基端部は図示しない燃料源に連結されてい
る。燃料配管6の中途には燃帥源側から順に、流量計7
.燃料供給量調整用バルブ9が取付けられており、燃料
源から送られる燃料、例えばCOGガスはバルブ9にて
流量が関節される。
The tip of the fuel pipe 6 is open in the inner pipe of the burner 5.
The base end of the fuel pipe 6 is connected to a fuel source (not shown). A flow meter 7 is installed in the middle of the fuel pipe 6 in order from the fuel source side.
.. A fuel supply amount adjustment valve 9 is attached, and the flow rate of fuel sent from a fuel source, such as COG gas, is adjusted by the valve 9.

そしてその流量が流量計7により計測され、流量計7の
出力信号は燃料流量指示調節器8に入力される。燃料流
量指示関節器8では、槽内温度を目標値に保つための燃
料量の理論値に基づき、燃料量が設定され、燃料流量指
示関節器8より空燃比設定器10に制御後の燃料信号が
伝送される。また燃料流量指示調節器8は燃料の供給量
を制御すべくバルブ9の開度を調整する。
The flow rate is measured by a flow meter 7, and the output signal of the flow meter 7 is input to a fuel flow rate indicating regulator 8. In the fuel flow rate indicator 8, the fuel amount is set based on the theoretical value of the fuel amount to maintain the tank internal temperature at the target value, and the fuel flow rate indicator 8 sends a controlled fuel signal to the air-fuel ratio setting device 10. is transmitted. Further, the fuel flow rate indicating regulator 8 adjusts the opening degree of the valve 9 in order to control the amount of fuel supplied.

演算制御器22には酸素富化制御装置21より酸素濃度
信号が伝送され、演算制御器22において燃料。
An oxygen concentration signal is transmitted from the oxygen enrichment control device 21 to the arithmetic controller 22, and the arithmetic controller 22 receives the fuel.

空気、#I素の供給量が算出され、その算出信号が空燃
比設定器10に゛伝送される。空燃比設定器10におい
て空気と燃料との体積比が設定され、その設定値に基づ
き空気量信号が空気流量指示調節器11に伝送される。
The supply amount of air and #I element is calculated, and the calculated signal is transmitted to the air-fuel ratio setting device 10. The air-to-fuel volume ratio is set in the air-fuel ratio setter 10, and an air amount signal is transmitted to the air flow rate indicator controller 11 based on the set value.

また3は説ガス槽4内に設けた温度計を示す。Further, numeral 3 indicates a thermometer provided in the gas tank 4.

説ガス槽4内の温度に基づいて燃料、空気、酸素の供給
量を制御する場合は、温度計3の温度信号が演算制御器
22に伝送され、演算制御器22はその温度信号に基づ
き、燃料、空気、酸素の供給量を算出して各供給量を制
御する。
When controlling the supply amount of fuel, air, and oxygen based on the temperature inside the gas tank 4, the temperature signal from the thermometer 3 is transmitted to the arithmetic controller 22, and the arithmetic controller 22, based on the temperature signal, Calculates the supply amount of fuel, air, and oxygen and controls each supply amount.

以上の如き本発明装置において脱ガス処理に先立ち、バ
ルブ9.13.16を開いて燃料及び酸素富化空気をバ
ーナ5に供給して燃焼させる。そうすると上記した如き
制御系に基づき槽内は目標温度値にまで加熱される。ま
た、このとき燃焼排ガスは浸漬管2の先端より排出され
る。従って浸漬管2からの加熱は不必要である。
In the apparatus of the present invention as described above, prior to degassing, valves 9, 13, and 16 are opened to supply fuel and oxygen-enriched air to burner 5 for combustion. Then, the inside of the tank is heated to the target temperature value based on the control system as described above. Further, at this time, the combustion exhaust gas is discharged from the tip of the immersion pipe 2. Heating from the dip tube 2 is therefore unnecessary.

一方、脱ガス槽4内の圧力は常に正圧であり侵入空気は
全くなく、それゆえに槽内温度の低下は生じない。また
バーナ5において、燃料に高酸素空気を付加して燃料を
燃焼させるので、槽内を所望の高温にすることが可能で
ある。
On the other hand, the pressure inside the degassing tank 4 is always positive and there is no intruding air, so the temperature inside the tank does not drop. Further, in the burner 5, since the fuel is combusted by adding oxygen-rich air to the fuel, it is possible to bring the inside of the tank to a desired high temperature.

〔効果) 次に本発明の効果をDH法に従来の電極加熱方法及び本
発明の加熱方法を用いた場合夫々につき明らかにする。
[Effects] Next, the effects of the present invention will be explained for the cases where the conventional electrode heating method and the heating method of the present invention are used in the DH method.

f4鋼のi盾環係数は34回/チャージ(1チヤ一ジ2
0分)、浸漬管の内径450n、長さ1400mmの条
件下で実験を行った。従来の電極加熱方法の電力は33
7に−とした。また本発明の加熱方法における燃料はC
OGガスとし、更に酸素富化濃度を35%にし、COG
ガス、酸素の供給量を夫々COGガス−12ONm37
H,O2=72Nm3/llとした。両方法の結果を対
比すると下表に示されるようになった。
The i-shield ring coefficient of f4 steel is 34 times/charge (1 charge 2
The experiment was conducted under conditions where the inner diameter of the immersion tube was 450 nm and the length was 1400 mm. The power of the conventional electrode heating method is 33
7 -. Further, the fuel in the heating method of the present invention is C
OG gas, further increase the oxygen enrichment concentration to 35%, and COG
Supply amount of gas and oxygen respectively COG gas-12ONm37
H, O2 = 72Nm3/ll. A comparison of the results of both methods is shown in the table below.

表から理解されるように、従来の電極加熱方式では炉底
温度1300℃、浸漬管温度540℃となり、温度差は
760℃であったが、本発明の加熱方法では炉底温度1
360℃、浸漬管温度990℃となり、温度差は370
℃であり、炉底温度と浸漬管温度との差が従来方法の半
分以下になった。また溶鋼温度低下は従来30〜40℃
のものが本発明では15〜25℃となり、15℃程度抑
制できた。
As can be seen from the table, in the conventional electrode heating method, the furnace bottom temperature was 1300°C and the immersion tube temperature was 540°C, with a temperature difference of 760°C, but in the heating method of the present invention, the furnace bottom temperature was 1300°C.
360℃, the immersion tube temperature is 990℃, the temperature difference is 370℃.
℃, and the difference between the furnace bottom temperature and the immersion tube temperature was less than half that of the conventional method. In addition, the temperature drop of molten steel is conventionally 30 to 40℃.
However, in the present invention, the temperature was 15 to 25°C, and the temperature could be suppressed by about 15°C.

よって本発明に係る方法により、槽内湯度は高温にして
しかもその均一化が計れ、また溶鋼の温度低下を小規模
に抑制することが可能である。
Therefore, by the method according to the present invention, the temperature in the tank can be made high and uniform, and the temperature drop in the molten steel can be suppressed to a small scale.

更に本発明によると、浸漬管の先端部専用の加熱は不要
であり、また脱ガス処理中、処理後のアーク放電のため
の電力損失及び電極消耗が不要となることに囚っ−ζ、
従来技術に較べ省エネルギー。
Furthermore, according to the present invention, there is no need for dedicated heating of the tip of the immersion tube, and there is no need for power loss and electrode wear due to arc discharge during and after degassing treatment.
Energy saving compared to conventional technology.

省資源が可能である。It is possible to save resources.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す模式図である。 The drawings are schematic diagrams showing embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1、鍋内の溶融金属をその上方の脱ガス槽の下部の浸漬
管より脱ガス槽に吸い上げて、減圧下にて該溶融金属を
脱ガス処理する真空脱ガス装置の加熱方法において、脱
ガス槽の上部に加熱用燃焼バーナを設け、該バーナによ
る燃焼にて槽内の加熱を行うとともに、燃焼排ガスを浸
漬管より排出することを特徴とする真空脱ガス装置の加
熱方法。 2、鍋内の溶融金属をその上方の脱ガス槽の下部の浸漬
管より脱ガス槽に吸い上げて、減圧下にて該溶融金属を
脱ガス処理する真空脱ガス装置の加熱方法において、 脱ガス槽の上部に設けた加熱用バーナと、 該バーナに燃料、空気、及び酸素を供給す るための配管と、 該配管の流量若しくは前記空気と混合して バーナへ供給される酸素濃度、又は脱ガス槽内温度に基
づいて、燃料、空気、酸素の供給料を制御する演算制御
器とを具備することを特徴とする加熱装置。
[Scope of Claims] 1. A vacuum degassing device that sucks up molten metal in a ladle into a degassing tank from an immersion pipe at the bottom of a degassing tank above it, and degasses the molten metal under reduced pressure. In the heating method, a heating combustion burner is provided in the upper part of the degassing tank, and the inside of the tank is heated by combustion by the burner, and the combustion exhaust gas is discharged from the immersion pipe. Method. 2. In a heating method for a vacuum degassing device, in which molten metal in a pot is sucked up into a degassing tank from a dip pipe at the bottom of a degassing tank above it, and the molten metal is degassed under reduced pressure. A heating burner installed at the top of the tank, piping for supplying fuel, air, and oxygen to the burner, the flow rate of the piping, the oxygen concentration mixed with the air and supplied to the burner, or the degassing 1. A heating device comprising: an arithmetic controller that controls the supply of fuel, air, and oxygen based on the temperature inside the tank.
JP14004585A 1985-06-25 1985-06-25 Method and apparatus for heating vacuum degassing device Pending JPS621814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14004585A JPS621814A (en) 1985-06-25 1985-06-25 Method and apparatus for heating vacuum degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14004585A JPS621814A (en) 1985-06-25 1985-06-25 Method and apparatus for heating vacuum degassing device

Publications (1)

Publication Number Publication Date
JPS621814A true JPS621814A (en) 1987-01-07

Family

ID=15259695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14004585A Pending JPS621814A (en) 1985-06-25 1985-06-25 Method and apparatus for heating vacuum degassing device

Country Status (1)

Country Link
JP (1) JPS621814A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147914A (en) * 1990-10-08 1992-05-21 Nippon Steel Corp Method for removing metal in vacuum degassing vessel
JPH11132425A (en) * 1997-10-31 1999-05-21 Sanki Eng Co Ltd Secondary combustion method in refuse incinerator
CN104561452A (en) * 2015-01-16 2015-04-29 东北大学 Device and method for single snorkel vacuum degassing refining of molten steel by employing bottom injection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562118A (en) * 1978-10-30 1980-05-10 Kawasaki Steel Corp Preheating method for degassing vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562118A (en) * 1978-10-30 1980-05-10 Kawasaki Steel Corp Preheating method for degassing vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147914A (en) * 1990-10-08 1992-05-21 Nippon Steel Corp Method for removing metal in vacuum degassing vessel
JPH11132425A (en) * 1997-10-31 1999-05-21 Sanki Eng Co Ltd Secondary combustion method in refuse incinerator
CN104561452A (en) * 2015-01-16 2015-04-29 东北大学 Device and method for single snorkel vacuum degassing refining of molten steel by employing bottom injection

Similar Documents

Publication Publication Date Title
CA1212238A (en) Continuous steelmaking and casting
US3935003A (en) Process for melting metal
WO2021073015A1 (en) Converter co2-o2 mixed injection smelting method and dynamic temperature control method in fire-point region
US4615511A (en) Continuous steelmaking and casting
US5413623A (en) Process and apparatus for vacuum degassing molten steel
JP2005281130A (en) Method for preventing bubble on precious metal component
CN111575443B (en) Gas supply device and method for smelting low-carbon alloy in AOD furnace
CN109182658B (en) RH refining control method and device
JPS621814A (en) Method and apparatus for heating vacuum degassing device
US4405365A (en) Method for the fabrication of special steels in metallurgical vessels
CN206207410U (en) Combustion system and molten aluminum liquid purifying processing device
US4761178A (en) Process for heating molten steel contained in a ladle
CN105506210A (en) Vertical gas furnace and melting method for fusing and reducing metal material
CN214422680U (en) RH refining furnace ascending pipe internal side blowing CO2-Ar refining device
CN202158786U (en) Oxygen blast chronograph
CN220812507U (en) Miniature inclusion removing device for LF-RH furnace
CN112501392A (en) Dehydrogenation method and device for RH furnace
SU1695828A3 (en) Method of blowing melt in furnace
CN112322839A (en) Method for blowing argon and degassing at bottom of intermediate frequency furnace
US3973763A (en) System for melting metal
CN218561646U (en) Gas roasting device for electrolytic cell
CN115820956B (en) Sectional erosion control method for blast furnace hearth
JP3088558B2 (en) Vacuum degassing tank heating device
TWI735668B (en) Method for operating melting/refining furnace and melting/refining furnace
CN115807174A (en) Large-tonnage light alloy melt real-time purification method and system