JPS62181471A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS62181471A
JPS62181471A JP2352386A JP2352386A JPS62181471A JP S62181471 A JPS62181471 A JP S62181471A JP 2352386 A JP2352386 A JP 2352386A JP 2352386 A JP2352386 A JP 2352386A JP S62181471 A JPS62181471 A JP S62181471A
Authority
JP
Japan
Prior art keywords
thin film
light
film transistor
layer
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2352386A
Other languages
Japanese (ja)
Inventor
Akira Matsuno
明 松野
Tsuneo Miyake
三宅 常夫
Shuji Masumura
増村 修司
Toru Nakagawa
徹 中川
Takashi Nire
孝 楡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2352386A priority Critical patent/JPS62181471A/en
Publication of JPS62181471A publication Critical patent/JPS62181471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make an ON/OFF ratio sufficiently large even at the time of light irradiation by composing a gate insulating film out of an insulating layer consisting of a substance of small light transmittivity. CONSTITUTION:This device is composed of a gate electrode consisting of a pattern of chromium thin film formed on a light-transmitting glass substrate 1, a gate insulating film 3 consisting of a black tantalum oxide layer and a semiconductor active layer 4 consisting of an amorphous silicon I layer which are laminated on said gate electrode 2 in order, and a source electrode 5 and a drain electrode further formed with an interval on the substrate. If light enters from the substrate side, the tantalum oxide film prevents the light from entering into the semiconductor layer and no photocurrent is produced. Thus, as the gate insulating film intercepts the light so as to prevent photoconductive effect in the semiconductor layer, an ON/OFF ratio at the time of light irradiation can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜トランジスタに係り、特に光照射時にお
CプるO N /’OF F比を十分に大きくすること
のできる7a脱トランジスタの構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to thin film transistors, and in particular to a structure of a 7a transistor that can sufficiently increase the O N /'O F ratio during light irradiation. Regarding.

[従来技術およびその問題点] 半導体層としてアモルファスシリコン等を用いた薄膜ト
ランジスタは、ガラス基板のように低廉イ【大面槓塁板
上に2次元的に集積してアクティブ71〜リクスにまと
められ、これと液晶のような光学的活性物質とを紺み合
わせてパネル形ディスプレイを実現したり、スイッチン
グ素子として密着型イメージセンサと同一基板上に形成
されて画像読み取り装置を構成する等、近年注目を集め
ているデバイスである。
[Prior art and its problems] Thin film transistors using amorphous silicon or the like as a semiconductor layer are inexpensive like glass substrates. In recent years, it has attracted attention, such as by combining this with optically active substances such as liquid crystals to realize panel displays, and by forming switching elements on the same substrate as contact image sensors to construct image reading devices. This is a device that I collect.

λ9膜トランジスタの素子@造の代表例としては、第4
図に示す如くゲートTi極100とソースおよびドレイ
ン電極101.102とが半導体薄膜103の同一面側
にあるコプラナ(Cot) 1anar )形と、第5
図に示す如くゲート電極200とソースおよびドレイン
電#A201,202とが半導体薄膜203の異なる側
にあるスタガ(staaqer >形とがある。
A typical example of a λ9 film transistor device is the 4th one.
As shown in the figure, there is a coplanar (Cot) type in which the gate Ti electrode 100 and the source and drain electrodes 101 and 102 are on the same side of the semiconductor thin film 103, and a fifth type.
As shown in the figure, there is a staggered type in which the gate electrode 200 and the source and drain electrodes #A 201 and 202 are on different sides of the semiconductor thin film 203.

スタガ形では、電極金属を2回に分けてJ(L槓、パタ
ーニングする必要があるのでコブツナ形よりも製造]、
程が複雑になる。しかし半導体薄膜層と絶縁体層とを連
続的に形成できるので、この界面の電気的特性が優れ、
したがってトランジスタ特性が良好であることが多い。
For the staggered type, the electrode metal is divided into two parts and J (L, patterning is required, so it is manufactured more than for the kobutsuna type).
The process becomes complicated. However, since the semiconductor thin film layer and the insulator layer can be formed continuously, the electrical properties of this interface are excellent.
Therefore, transistor characteristics are often good.

従来このスタガ形の薄膜トランジスタは、例えば、ガラ
ス基板204上にゲート電V4A200を形成し、この
上にCVD法などによってゲート絶縁膜205を形成し
た後続いて半導体活性層としてのアモルファスシリコン
i IH203、オーミック接触形成層としてのアモル
ファスシリコンn″層(図示せず)を堆積し、最後にソ
ース電極201およびドレイン電極202を形成するこ
とによって作成されている。
Conventionally, this staggered thin film transistor is manufactured by forming a gate voltage V4A200 on a glass substrate 204, forming a gate insulating film 205 thereon by CVD, etc., and then forming an amorphous silicon IH203 as a semiconductor active layer and an ohmic contact. It is created by depositing an amorphous silicon n'' layer (not shown) as a forming layer, and finally forming a source electrode 201 and a drain electrode 202.

ところで、通常、ゲート絶縁膜としては、酸化シリコン
(3102>膜(例えば、特公昭58−190061号
公報参照)、シラン(Siト14)と窒素(N2)との
プラズマ分解による窒化シリコン<Si 3 N4)膜
(例えば、特公昭57−147279号公報参照)等が
使用されている。
By the way, the gate insulating film is usually made of silicon oxide (3102> film (see, for example, Japanese Patent Publication No. 190061/1983), silicon nitride <Si3> formed by plasma decomposition of silane (Sito14) and nitrogen (N2)). N4) membrane (see, for example, Japanese Patent Publication No. 57-147279), etc. are used.

これらのゲート絶縁膜はいずれも、可視光の透過率が8
0%以上と極めて高いため、透光性の基板上に形成され
た薄膜トランジスタにおいては、基板側から、ゲート絶
縁膜を介して半導体層に光が入射する。従って、アモル
ファスシリコン層のように光導電率の高い材料で該半導
体層203が構成されている場合、トランジスタがOF
F状態の時にも光電流が流れるため、0N10FF比が
悪いという問題が生じる。
Both of these gate insulating films have visible light transmittance of 8.
Since it is extremely high at 0% or more, in a thin film transistor formed on a light-transmitting substrate, light enters the semiconductor layer from the substrate side through the gate insulating film. Therefore, when the semiconductor layer 203 is made of a material with high photoconductivity such as an amorphous silicon layer, the transistor is
Since photocurrent flows even in the F state, a problem arises in that the 0N10FF ratio is poor.

この問題を解決するためには、新たに遮光層を設けるよ
うにするか又は、基板を非透光性のセラミック基板で構
成する必要があった。しかし、この上うな構成では、液
晶表示等で用いる場合は、透過モードでの表示が不可能
となり、画質の悪い反射モードでの表示で使用しなけれ
ばならないという問題があった。
In order to solve this problem, it was necessary to provide a new light-shielding layer or to configure the substrate with a non-light-transmitting ceramic substrate. However, with such a configuration, when used in a liquid crystal display or the like, there is a problem in that display in a transmission mode is impossible, and the display must be displayed in a reflection mode with poor image quality.

本発明は、前記実情に鑑みてなされたもので、透光性基
板上に形成された場合にも遮光層を別に設けることなく
、光照射時においても0N10FF比の優れた薄膜トラ
ンジスタを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a thin film transistor that has an excellent 0N10FF ratio even when irradiated with light without providing a separate light-shielding layer even when formed on a transparent substrate. purpose.

E問題点を解決するだめの手段] そこで本発明の薄膜トランジスタでは、ゲート絶縁膜を
光透過率の小さい物質からなる絶縁層で構成するように
している。
[Means for Solving Problem E] Therefore, in the thin film transistor of the present invention, the gate insulating film is composed of an insulating layer made of a substance with low light transmittance.

[作用] すなわち、例えば、ゲート絶縁膜を黒色の酸化タンタル
(Ta Ox 、 x< 2.5)膜で構成することに
より、基板側からの光の入射に対しても、半導体層に光
が入射せしめられることはない。従って、光?tf流は
発生しないため、薄膜トランジスタがOFF状態であれ
ば、電流は流れない。
[Function] That is, for example, by forming the gate insulating film with a black tantalum oxide (TaOx, x<2.5) film, even when light is incident from the substrate side, the light is not incident on the semiconductor layer. You will not be forced to do so. Therefore, light? Since no tf current occurs, no current flows if the thin film transistor is in the OFF state.

このように、ゲート絶縁膜によって光を遮蔽し、半導体
層における光導電効果を防止することにより、光照射時
における0N10FF比を向上せしめることができる。
In this way, by blocking light with the gate insulating film and preventing the photoconductive effect in the semiconductor layer, the 0N10FF ratio during light irradiation can be improved.

[実施例] 以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明実施例の逆スタガ@造の薄膜トランジ
スタの断面図である。
FIG. 1 is a sectional view of an inverted staggered thin film transistor according to an embodiment of the present invention.

この薄膜トランジスタは、第1図(a>に示す如く透光
性のガラス基板1上に形成されたクロム薄膜のパターン
からなるゲート電極2と、この上層に順次積層せしめら
机た黒色の酸化タンタル(Ta Ox 、 x< 2.
5)層からなるゲート絶縁膜3およびアモルファスシリ
コン1層からなる半導体活性層4と、更にこの上層に互
いに離間して形成されたソース電極5およびドレイン電
極とから構成されており、該ソースおよびドレイン電極
はいずれもオーミック接触層7としてのアモルファスシ
リコンn+層を介して半導体活性層上に形成されている
This thin film transistor consists of a gate electrode 2 consisting of a pattern of a chromium thin film formed on a transparent glass substrate 1, as shown in FIG. TaOx, x<2.
5) consists of a gate insulating film 3 consisting of a layer, a semiconductor active layer 4 consisting of one layer of amorphous silicon, and a source electrode 5 and a drain electrode formed on the upper layer at a distance from each other. All electrodes are formed on the semiconductor active layer via an amorphous silicon n+ layer as an ohmic contact layer 7.

次にこの薄膜トランジスタの製造方法について説明する
。    。
Next, a method for manufacturing this thin film transistor will be explained. .

まず透光性のガラス基板(HOYA  NA−40)を
中性洗剤で30分間の超音波洗浄後超純水で洗浄し、リ
ンカ−ドライヤーを用いて充分乾燥させる。
First, a translucent glass substrate (HOYA NA-40) was subjected to ultrasonic cleaning for 30 minutes using a neutral detergent, then washed with ultrapure water, and thoroughly dried using a linker dryer.

このようにして形成された透光性のガラス基板1上に膜
厚150〇へのクロム(C「)蒸着膜を形成した後、こ
れをフォトリソエツチングによりバターニングし、第1
図(b)に示す如くゲート電極2を形成する。(、この
とき圧力は1.3X 10−3次いで、第1図(C)に
示り如く五^な化タンタル(Ta205)をターゲラ1
−として使用し、酸素分圧を下げたRFスパッタリング
法により、ゲート絶縁膜3として膜厚3000人の黒色
の酸化タンタル(Ta Ox )層を形成する。このと
き、ベース圧力をIJx 1O−3P a以下とした後
、アルゴンガスを導入して圧力を3.8x 10”P 
aとし放電電力は500Wどする。
After forming a chromium (C'') vapor-deposited film to a thickness of 1500 mm on the transparent glass substrate 1 thus formed, this was patterned by photolithography, and the first
A gate electrode 2 is formed as shown in Figure (b). (The pressure at this time was 1.3
A black tantalum oxide (TaOx) layer having a thickness of 3,000 wafers is formed as the gate insulating film 3 by RF sputtering with a lower oxygen partial pressure. At this time, after setting the base pressure to IJx 1O-3P a or less, argon gas was introduced to reduce the pressure to 3.8x 10"P.
a, and the discharge power is 500W.

そして、プラズマCVD法により基板上に約3000人
のアモルファスシリコン1liH4を第1図(d)に示
す如く形成する。このとき、基板温度を200℃とし、
ベース圧力を1.3x 10’P aとした後、ト+2
.s;h4を人々流量12SSCM、28SCCMで導
入し、圧力を54Paとする。また放電電力は0.03
W/cdとする。
Then, about 3000 layers of amorphous silicon 1liH4 are formed on the substrate by plasma CVD as shown in FIG. 1(d). At this time, the substrate temperature was 200°C,
After setting the base pressure to 1.3x 10'Pa,
.. s; h4 was introduced at a flow rate of 12 SSCM and 28 SCCM, and the pressure was set to 54 Pa. Also, the discharge power is 0.03
Let it be W/cd.

この後、リフトオフ法により、アモルファスシリコンn
+層7およびソース・ドレイン電極5゜6を形成づる。
After this, amorphous silicon n
+ layer 7 and source/drain electrodes 5.6 are formed.

すなわち、第1図(e)に示す如く、レジストパターン
Rを形成した後、ドーピングガスどして2500ppl
の7オスフア(PI〜13)を303CCMで流ずと共
に、S i l−14を208CCMで流し、圧カフ 
5 Pa放雷電力0.3W / ciiでプラズマCV
D法によって約500人のアモルファスシリコンn+層
を@映する。続いて、膜厚1500人のクロム蒸着膜を
成膜した後、前記レジストパターンRを除去し、リフト
オフ法により、ゲート電+fA2上をはじめ不要部のア
モルファスシリコンn+層およびクロム蒸着膜を除去し
、コンタクト接触層7およびソース・ドレイン電極5.
6のバターニングを行なう。
That is, as shown in FIG. 1(e), after forming the resist pattern R, 2500 ppl of doping gas was added.
7 Ospher (PI ~ 13) was flowed at 303 CCM, S i l-14 was flowed at 208 CCM, and the pressure cuff was
Plasma CV with 5 Pa lightning power 0.3W/cii
Approximately 500 amorphous silicon n+ layers were imaged using the D method. Subsequently, after forming a chromium vapor-deposited film with a thickness of 1,500, the resist pattern R was removed, and unnecessary parts of the amorphous silicon n+ layer and the chromium-deposited film, including on the gate electrode +fA2, were removed by a lift-off method. Contact layer 7 and source/drain electrodes 5.
Perform buttering in Step 6.

このようにして形成された薄膜トランジスタでは、光照
射時においても十分な0N10FF比を得ることができ
る。また製造に際してbゲート電極を黒色の酸化タンタ
ル膜に代えるの志で何ら工程を付加覆ることなく極めて
容易に製造可能である。ただ、ゲート絶縁膜が非透光性
であるため、ソース・ドレインのバターニングに際して
セルフアライメントが不可能である。従って、バターニ
ングの位置合わUに注意が必要である。
In the thin film transistor formed in this manner, a sufficient 0N10FF ratio can be obtained even during light irradiation. Furthermore, by replacing the b gate electrode with a black tantalum oxide film during manufacturing, it can be manufactured extremely easily without any additional steps. However, since the gate insulating film is non-transparent, self-alignment is not possible when patterning the source and drain. Therefore, it is necessary to pay attention to the positioning U of patterning.

この薄膜トランジスタのON時(V(1=15V)およ
びOFF時(V(+ =OV)のドレイン電流1 (た
て軸)と電圧V9.(横軸)との関係を第2図(a)に
夫々曲4Iaおよびb  、b  で示ず。
The relationship between the drain current 1 (vertical axis) and the voltage V9. (horizontal axis) when this thin film transistor is ON (V (1 = 15V) and OFF (V (+ = OV)) is shown in Figure 2 (a). Songs 4Ia and b, respectively, not shown.

b は暗時、blは暗時を示す。このようにす。b indicates dark time, and bl indicates dark time. It's like this.

とblがほぼ等しいすなわち暗時にも電流はほとんど流
れておらず、0N10FF比は十分に大であることがわ
かる。
It can be seen that when and bl are almost equal, that is, almost no current flows even in the dark, and the 0N10FF ratio is sufficiently large.

比較のために、ゲート絶縁膜をSi3N4膜で形成した
従来例の薄膜トランジスタについてのON@(Vo =
15V)およびOFF時(V(+ =0■)のドレイン
電流1.(たて軸)と電圧■O3(横軸)との関係を第
2図(b)に人々曲線a゛およびb  ’、b  ’で
示す。bo゛は暗時、b1゛は暗時を示す特性曲線であ
る。この場合はOFF時にも暗時には光電流が流れてお
り、暗時におれる0N10FF比は十分でない。
For comparison, ON@(Vo =
Figure 2(b) shows the relationship between drain current 1. (vertical axis) and voltage O3 (horizontal axis) when OFF (V (+ = 0)) and when OFF (V (+ = 0)). It is shown by b'. BO' is a characteristic curve showing the dark time, and b1' is the characteristic curve showing the dark time. In this case, a photocurrent flows in the dark time even when it is OFF, and the 0N10FF ratio in the dark time is not sufficient.

第2図(a)および(b)の比較からも本発明の薄膜ト
ランジスタでは従来例の薄膜トランジスタに比べて大幅
に暗時の0N10FF比が改善されていることがわかる
Comparison of FIGS. 2(a) and 2(b) also shows that the thin film transistor of the present invention has a significantly improved 0N10FF ratio in the dark compared to the conventional thin film transistor.

ところで、ゲート絶縁膜としての酸化タンタル膜の成膜
に際しては、酸素ガス(02)を導入しても良いが、そ
の11.? 、Gよ分圧を6x 1O−2P a以下と
する。酸素分圧を6x10’Pa以上とすると、透光性
の五酸化タンタル膜が形成される。第3図に、成膜時の
酸素分圧(Torr)と膜の光透過率(%)との関係を
示づ。このときのスパッタリング条件は基板温度300
℃、印加電力500W、ベース圧力5x 10’Tor
rとした。この図からも酸素分圧を6x10−2Pa以
上とサベきであることがわかる。
By the way, when forming the tantalum oxide film as the gate insulating film, oxygen gas (02) may be introduced, but 11. ? , G, the partial pressure is 6x 1O-2P a or less. When the oxygen partial pressure is 6x10'Pa or more, a translucent tantalum pentoxide film is formed. FIG. 3 shows the relationship between the oxygen partial pressure (Torr) during film formation and the light transmittance (%) of the film. The sputtering conditions at this time were a substrate temperature of 300
°C, applied power 500W, base pressure 5x 10'Tor
It was set as r. This figure also shows that the oxygen partial pressure can be kept at 6x10-2 Pa or higher.

なお、このような非透光性の絶縁膜を表面のパッシベー
ション膜として使用することも可能である。この場合、
薄膜トランジスタの半導体層の両面に遮光性の膜が形成
されているため、更に光の遮蔽効果は高められ、素子の
安定化と共に更に光電流を低減し、0N10FF比の優
れた薄膜トランジスタをIJることか可能となる。
Note that such a non-light-transmitting insulating film can also be used as a surface passivation film. in this case,
Since a light-shielding film is formed on both sides of the semiconductor layer of a thin-film transistor, the light-shielding effect is further enhanced, which stabilizes the device and further reduces the photocurrent, making it possible to create a thin-film transistor with an excellent 0N10FF ratio. It becomes possible.

また、ゲート絶縁膜としては、実施例に限定されること
なく、他の非透光性の絶縁膜も適用IJ能であることは
いうまで−しない。
Further, the gate insulating film is not limited to the embodiments, and it goes without saying that other non-light-transmitting insulating films can also be applied.

更に、薄膜トランジスタの構造どしては、スタガ構造の
みならず、コプラナ憫造の場合にも、イ1効である。
Furthermore, the present invention is effective not only in a staggered structure but also in a coplanar structure.

[効果] 以上説明したように、本発明の薄膜トランジスタによれ
ば、ゲート絶縁膜を非道光性の絶縁膜で形成しているた
め、光電流を低減し、明時にも0N10FF比を十分に
大きくすることが可能で。
[Effects] As explained above, according to the thin film transistor of the present invention, since the gate insulating film is formed of a non-photonic insulating film, the photocurrent is reduced and the 0N10FF ratio is sufficiently increased even during bright times. It is possible.

ある。be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>は、本発明実施例の薄膜トランジスタの断
面MIJaを示す図、第1図(b)乃至(e)は同薄膜
トランジスタの製造工程図、第2図(a)および(b)
は、大々、本発明実施例および従来例の薄膜トランジス
タの電流−雷圧特性曲線を示す図、第3図は、ゲート絶
縁膜としての酸化タンタル層の成膜工程における酸素分
圧と形成された膜の光透過率との関係を示す図、第4図
および第5図は通常の薄膜トランジスタの構造を示ず図
である。 1・・・ガラス基板、2,100,200・・・ゲート
電極、3・・・ゲート絶縁膜(4°aOX>、4,10
3.203・・・半導体6性層、5,101,201・
・・ソース電極、6,102,202・・・ドレイン電
極、7・・・オーミック接触層、205・・・ゲート絶
縁膜。 DS O5 第2図(b) 第3図 第5図
FIG. 1(a) is a diagram showing the cross section MIJa of a thin film transistor according to an embodiment of the present invention, FIGS. 1(b) to (e) are manufacturing process diagrams of the same thin film transistor, and FIGS. 2(a) and (b)
3 is a diagram showing current-lightning pressure characteristic curves of thin film transistors according to an embodiment of the present invention and a conventional example, and FIG. 4 and 5, which are diagrams showing the relationship with the light transmittance of a film, do not show the structure of an ordinary thin film transistor. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2,100,200... Gate electrode, 3... Gate insulating film (4°aOX>, 4,10
3.203...Semiconductor 6-layer, 5,101,201.
...Source electrode, 6,102,202...Drain electrode, 7...Ohmic contact layer, 205...Gate insulating film. DS O5 Figure 2 (b) Figure 3 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)光導電性を有する半導体活性層の一方の側にゲー
ト絶縁膜を介してゲート電極を形成すると共に、該半導
体活性層に対してゲート電極と同じ側又は他方の側にソ
ース・ドレイン電極を形成してなる薄膜トランジスタに
おいて、 前記ゲート絶縁膜が、非透光性の絶縁膜から構成されて
いることを特徴とする薄膜トランジスタ。
(1) A gate electrode is formed on one side of a semiconductor active layer having photoconductivity via a gate insulating film, and a source/drain electrode is formed on the same side as the gate electrode or on the other side of the semiconductor active layer. A thin film transistor formed by forming a thin film transistor, wherein the gate insulating film is composed of a non-light-transmitting insulating film.
(2)前記薄膜トランジスタは、透光性の基板上に、ゲ
ート電極と、ゲート絶縁膜と、半導体活性図と、ソース
・ドレイン電極とが順次積層せしめられた逆スタガ構造
の薄膜トランジスタであることを特徴とする特許請求の
範囲第(1)項記載の薄膜トランジスタ。
(2) The thin film transistor is an inverted staggered thin film transistor in which a gate electrode, a gate insulating film, a semiconductor active layer, and a source/drain electrode are sequentially stacked on a transparent substrate. A thin film transistor according to claim (1).
(3)前記薄膜トランジスタの表面を被覆するパッシベ
ーション膜は、非透光性を有するものであることを特徴
とする特許請求の範囲第(2)項記載の薄膜トランジス
タ。
(3) The thin film transistor according to claim (2), wherein the passivation film covering the surface of the thin film transistor is non-transparent.
(4)前記ゲート絶縁膜は非透光性の酸化タンタル膜(
TaOx、x<2.5)から構成されていることを特徴
とする特許請求の範囲第(1)項乃至第(3)項記載の
薄膜トランジスタ。
(4) The gate insulating film is a non-transparent tantalum oxide film (
3. The thin film transistor according to claim 1, wherein the thin film transistor is made of TaOx, x<2.5.
(5)前記パッシベーション膜は、非透光性の酸化タン
タル膜(TaOx、x<2.5)から構成されているこ
とを特徴とする特許請求の範囲第(3)項記載の薄膜ト
ランジスタ。
(5) The thin film transistor according to claim (3), wherein the passivation film is made of a non-transparent tantalum oxide film (TaOx, x<2.5).
JP2352386A 1986-02-05 1986-02-05 Thin film transistor Pending JPS62181471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2352386A JPS62181471A (en) 1986-02-05 1986-02-05 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2352386A JPS62181471A (en) 1986-02-05 1986-02-05 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS62181471A true JPS62181471A (en) 1987-08-08

Family

ID=12112804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2352386A Pending JPS62181471A (en) 1986-02-05 1986-02-05 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS62181471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103697A (en) * 2010-11-09 2012-05-31 Beijing Boe Optoelectronics Technology Co Ltd Array substrate and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103697A (en) * 2010-11-09 2012-05-31 Beijing Boe Optoelectronics Technology Co Ltd Array substrate and liquid crystal display

Similar Documents

Publication Publication Date Title
US7763490B2 (en) Thin film transistor substrate and method for fabricating the same
KR100515176B1 (en) Liquid crystal display panel having reflection electrodes improved in smooth surface morphology and process for fabrication thereof
TW562961B (en) Liquid crystal display device
JP4657587B2 (en) Thin film transistor display panel
JP2798066B2 (en) Thin film transistor, manufacturing method thereof and display device
KR19990045352A (en) Transverse electric field type active matrix liquid crystal display device and manufacturing method thereof
KR20020042419A (en) Liquid crystal display of reflection type and method of manufacture thereof
JP2780673B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
KR100325072B1 (en) Manufacturing method of high opening rate and high transmittance liquid crystal display device
JPH0926601A (en) Liquid crystal display device and its production
US6452210B2 (en) Thin film transistor substrate and fabricating method thereof
TW200422748A (en) Manufacturing method of optoelectronic substrate, manufacturing method of optoelectronic apparatus, and the optoelectronic apparatus
JP2906470B2 (en) Active matrix substrate
JP2005141250A (en) Method for manufacturing liquid crystal display device
JPS62181471A (en) Thin film transistor
JPH04220625A (en) Manufacture of active matrix liquid crystal display unit
JP2666122B2 (en) Thin film transistor substrate
JPS62232894A (en) Insulating film
JP3011210B2 (en) Active matrix substrate manufacturing method
US5916737A (en) Method for fabricating liquid crystal display device
JPH07142737A (en) Manufacture of thin-film transistor
JPH09179140A (en) Production of liquid crystal display device
JP3375731B2 (en) Liquid crystal display device and manufacturing method thereof
JPH03132626A (en) Semiconductor device and production of semiconductor device
JPH03116778A (en) Manufacture of active matrix substrate and manufacture of display device