JPS621807A - Manufacture of metallic powder - Google Patents

Manufacture of metallic powder

Info

Publication number
JPS621807A
JPS621807A JP13990385A JP13990385A JPS621807A JP S621807 A JPS621807 A JP S621807A JP 13990385 A JP13990385 A JP 13990385A JP 13990385 A JP13990385 A JP 13990385A JP S621807 A JPS621807 A JP S621807A
Authority
JP
Japan
Prior art keywords
metal
temp
powder
drops
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13990385A
Other languages
Japanese (ja)
Other versions
JPS6331522B2 (en
Inventor
Eiichi Asada
栄一 浅田
Shinichi Ono
信一 小野
Minoru Matsuo
稔 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP13990385A priority Critical patent/JPS621807A/en
Publication of JPS621807A publication Critical patent/JPS621807A/en
Publication of JPS6331522B2 publication Critical patent/JPS6331522B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture spherical metallic powder useful to form a thick paste film having a smooth surface by atomizing a metallic salt soln. to form drops of the soln. and by heating the drops at a temp. satisfying specified conditions. CONSTITUTION:A metallic salt soln. A contg. one or more kinds of metallic salts is sent from a tank 1 to a double tube type atomizer 2 and atomized with compressed air B to form drops of the soln. in a ceramic pipe 4. The drops are heated to a temp. above the decomposition temp. of the metallic salt and below the m.p. of the metal with an electric furnace 3. When the metal forms oxide at a temp. below the m.p. of the metal, the drops are heated to a temp. above the decomposition temp. of the oxide. Metallic powder produced by thermal decomposition is collected in a cyclone 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属粉末の製造方法、特に厚膜ペースト用に有
用な金属粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing metal powders, particularly metal powders useful for thick film pastes.

エレクトロニクス分野において、電子回路や抵抗、コン
デンサ、ICパッケージ等の部品を製造するために、導
体ペーストや抵抗ペーストなどの厚膜ペーストが使用さ
れている。これは金属、合金や金属酸化物の粉末を、必
要に応じてガラス質結合剤やその他の添加剤と共に有機
ビヒクル中に均一に混合分散させてペースト状としたも
のであり、基板上に適用した侵高温で焼付けするか、又
は比較的低温で加熱乾燥することによって導体被膜、抵
抗被膜を形成する。
In the electronics field, thick film pastes such as conductor pastes and resistor pastes are used to manufacture components such as electronic circuits, resistors, capacitors, and IC packages. This is a paste made by uniformly mixing and dispersing metal, alloy, or metal oxide powders in an organic vehicle along with a glassy binder and other additives as needed, and then applying it onto a substrate. A conductive film or a resistive film is formed by baking at an invasive temperature or heating and drying at a relatively low temperature.

このような厚膜ペースト用金属粉末としては次のような
性質を有するものが望まれている。
Such metal powder for thick film paste is desired to have the following properties.

■緻密で均一な被膜を形成するため、塗料中での分散が
良好であること。
■It must be well dispersed in the paint to form a dense and uniform film.

■不純物が少いこと。■Less impurities.

不純物が多いと半導体とのオーム接合性、耐腐食性、耐
環境性その他の電気特性に悪影響を及ぼすので、できる
だけ低レベルに抑える必要がある。
A large amount of impurities will adversely affect ohmic contact with semiconductors, corrosion resistance, environmental resistance, and other electrical properties, so it is necessary to keep the level as low as possible.

■結晶性が良好であること。■Have good crystallinity.

特に高温焼成タイプのペーストでは結晶性が良くないと
焼成過程において金属粉末の焼結が早すぎるため溶けた
ガラス質結合剤が基板側に移行せず、接着不良となった
り、ガラスが膜表面に浮いて導電性や半田付は性を阻害
するなどの問題を引起こす。従って結晶性が良く、結晶
の方向が揃っていることが望ましい。
In particular, with high-temperature firing type pastes, if the crystallinity is not good, the metal powder will sinter too quickly during the firing process, and the molten glassy binder will not transfer to the substrate side, resulting in poor adhesion or glass sticking to the film surface. Floating leads to problems such as conductivity and inhibiting soldering. Therefore, it is desirable that the crystallinity is good and the directions of the crystals are aligned.

0粒径がほぼ0.1〜10^1の範囲で、粒子形状が揃
っていること。
The particle size should be in the range of approximately 0.1 to 10^1 and the particle shape should be uniform.

正11日U( 厚膜ペーストに使用される金属粉末としては、従来より
金属化合物の溶液に還元剤を作用させて湿式還元する方
法、金属の溶湯をアトマイズする方法、あるいは金属を
真空中又は不活性ガス中で蒸発させて微粉化する方法な
どが知られている。
(Metal powders used in thick film pastes have conventionally been produced by wet reduction methods in which a reducing agent is applied to a solution of metal compounds, by atomizing molten metals, or by atomizing metals in a vacuum or in a vacuum. A method of pulverization by evaporation in an active gas is known.

発明が解決しようとする問題点 湿式還元法は、出発塩や還元剤の種類と濃度、反応条件
のコントロールにより種々の形状、粒径の金属粉末を容
易に製造できる利点があるものの、分散性の良好な粉末
を得ようとすると普通解膠剤を多く使用するので反応液
からの固液分離が困難になり、不純物量も増す。又結晶
性を良好にするためには反応速度を極めて遅くする必要
があり、生産性が悪い。
Problems to be Solved by the Invention Although the wet reduction method has the advantage of being able to easily produce metal powders of various shapes and particle sizes by controlling the type and concentration of the starting salt and reducing agent, as well as the reaction conditions, it has problems with dispersibility. In order to obtain a good powder, a large amount of deflocculant is usually used, which makes solid-liquid separation from the reaction solution difficult and increases the amount of impurities. Furthermore, in order to improve crystallinity, the reaction rate must be extremely slow, resulting in poor productivity.

アトマイズ法では、生成する粉末の粒径が大きく、微粉
化が困難である。又パラジウム、白金等高融点の金属に
関しては設備費が高くなる欠点がある。
In the atomization method, the particle size of the powder produced is large and it is difficult to pulverize it. Furthermore, high melting point metals such as palladium and platinum have the disadvantage of high equipment costs.

蒸発法では逆に粒径が小さすぎ、又分散性の良いものが
得られない。更にこの方法はコストが高く、かつ大量生
産ができない。
In the evaporation method, on the other hand, the particle size is too small and particles with good dispersibility cannot be obtained. Furthermore, this method is expensive and cannot be mass-produced.

従ってこれらの方法では、適度の粒度を有し、塗料中で
の分散性及び結晶性が良好でしかも高純度の金属粉末を
得るのには限界がある。
Therefore, with these methods, there is a limit to the ability to obtain metal powders with appropriate particle size, good dispersibility and crystallinity in paints, and high purity.

本発明は厚膜ペースト用として前述の望ましい性質を有
する金属粉末を、容易にかつ低コストで製造することを
目的とする。
The object of the present invention is to easily and at low cost produce a metal powder having the above-mentioned desirable properties for use in thick film pastes.

問題点を解決するための手又 本発明は、1種又は2種以上の金属塩を含む溶液を噴霧
して液滴にし、その液滴を該金属塩の分解温度より高く
、かつ金属の融点より高い温度であって、しかも金属の
融点以下の温度で金属が酸化物を形成する場合にはその
酸化物の分解温度より高い温度で加熱することを特徴と
する金属粉末の製造方法である。尚本発明でいう金属粉
末は、単一の金属のみならず合金粉末をも含むものとす
る。
Another method for solving the problem is that a solution containing one or more metal salts is sprayed into droplets, and the droplets are formed at a temperature higher than the decomposition temperature of the metal salt and at a temperature higher than the melting point of the metal. This method of producing metal powder is characterized by heating at a higher temperature, and in the case where the metal forms an oxide at a temperature below the melting point of the metal, heating is performed at a temperature higher than the decomposition temperature of the oxide. Note that the metal powder as used in the present invention includes not only a single metal but also an alloy powder.

作用 金属塩としては、加熱分解により目的とする金属、例え
ば金、銀、白金、パラジウム等の貴金属や銅、ニッケル
、コバルト、鉄、アルミニウム、モリブデン、タングス
テン等の卑金属又はこれらの酸化物を析出するものであ
ればいかなるものでも良く、−例としてこれらの金属の
硝酸塩、硫酸塩、塩化物、アンモニウム塩、リン酸塩、
カルボン酸塩、金属アルコラード、樹脂酸塩などが挙げ
られる。単一金属について異なる複数の塩を併用するこ
ともできる。2種以上の金属の塩を混合使用しても良く
、又複塩や錯塩を使用しても良い。
As the working metal salt, the target metal, such as noble metals such as gold, silver, platinum, and palladium, and base metals such as copper, nickel, cobalt, iron, aluminum, molybdenum, and tungsten, or oxides thereof, is precipitated by thermal decomposition. Any of these metals may be used - for example, nitrates, sulfates, chlorides, ammonium salts, phosphates,
Examples include carboxylates, metal alcoholades, resinates, and the like. A plurality of different salts of a single metal can also be used together. A mixture of salts of two or more metals may be used, or a double salt or a complex salt may be used.

これら金属塩の1種又は2種以上を、水や、アルコール
、アセトン、エーテル等の有機溶剤あるいはこれらの混
合溶剤中に溶解して金属塩溶液を作成する。単一の金属
の塩溶液を用いれば純金属粉末が得られるが、合金を形
成する2種以上の金属を溶解した溶液を用いれば合金粉
末を製造することができる。尚混合する2種以上の金属
が合金を生成しないものであれば混合粉末が得られるこ
ともある。
A metal salt solution is prepared by dissolving one or more of these metal salts in water, an organic solvent such as alcohol, acetone, or ether, or a mixed solvent thereof. Pure metal powder can be obtained by using a salt solution of a single metal, but alloy powder can be produced by using a solution in which two or more metals forming an alloy are dissolved. A mixed powder may be obtained if the two or more metals to be mixed do not form an alloy.

金属塩溶液は、噴霧器により噴霧して液滴とし、次いで
金属塩の分解温度より高くかつ金属の融点より高い温度
であって、しかも金属の融点以下の温度で金属が酸化物
を形成する場合にはその酸化物の分解温度より高い温度
で加熱を行うことにより、球状で表面の平滑な金属粉末
が生成する。得られた粉末は結晶性が非常に良く、又塗
料化した場合の分散性も良い。分解温度が金属の融点よ
り低温であると、球状粉末ができず、密度も低いのでペ
ースト用には好ましくない。従って少くとも融点より高
温で加熱する必要がある。望ましくは目的金属の融点よ
り100℃以上高温で加熱を行うのがよい。又金属塩が
分解する際、あるいは分解した後、金属の融点より低い
温度で酸化物を形成するような金属においては、少くと
も該酸化物が分解する温度まで加熱することが必要であ
る。
The metal salt solution is atomized into droplets by an atomizer, and then at a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal, but below the melting point of the metal, when the metal forms an oxide. By heating at a temperature higher than the decomposition temperature of the oxide, a spherical metal powder with a smooth surface is produced. The obtained powder has very good crystallinity and also has good dispersibility when made into a paint. If the decomposition temperature is lower than the melting point of the metal, spherical powder will not be formed and the density will be low, making it undesirable for use in pastes. Therefore, it is necessary to heat at least at a temperature higher than the melting point. Preferably, the heating is performed at a temperature 100° C. or more higher than the melting point of the target metal. In addition, for metals that form oxides at temperatures lower than the melting point of the metal when or after the metal salt decomposes, it is necessary to heat the metal to at least the temperature at which the oxide decomposes.

尚、合金を形成する2種以上の金属塩を形成する場合に
は、加熱温度は塩の分解温度以上であってかつ該金属を
構成成分とする合金の融点より高い温度であればよい。
In addition, when forming two or more types of metal salts forming an alloy, the heating temperature may be a temperature higher than the decomposition temperature of the salt and higher than the melting point of the alloy containing the metal as a constituent component.

水沫において、加熱時の雰囲気としては金属の種類、加
熱温度などに応じて酸化性、還元性、不活性雰囲気が適
宜選択される。
In water droplets, the atmosphere during heating is appropriately selected from oxidizing, reducing, and inert atmospheres depending on the type of metal, heating temperature, and the like.

金属粉末の粒径は金属塩の濃度、溶媒の種類及び混合比
、噴霧速度、噴霧液滴の大きさ、及び加熱温度に依存す
るので、これらの条件を適宜設定することにより容易に
コントロールすることができる。特に粒径に直接関係す
るとみられる噴霧液滴のサイズについては、噴霧した液
体を更に固体の障害物や回転体に衝突させることによっ
て小さくすることができる。又溶媒の沸点が低いと加熱
時の沸騰により液滴の分裂が起こり易く、液滴が微細化
するため、生成する金属粉末の粒径が小さくなると考え
られる。
The particle size of the metal powder depends on the concentration of the metal salt, the type and mixing ratio of the solvent, the spray speed, the size of the spray droplets, and the heating temperature, so it can be easily controlled by appropriately setting these conditions. Can be done. In particular, the size of the sprayed droplets, which seems to be directly related to the particle size, can be reduced by further colliding the sprayed liquid with a solid obstacle or rotating body. Furthermore, if the boiling point of the solvent is low, droplets are likely to break up due to boiling during heating, and the droplets become finer, which is thought to reduce the particle size of the produced metal powder.

本発明の金属粉末の製造方法について図面に基づき説明
する。第1図は金属塩溶液の噴霧及び熱分解装置の一例
を示すものであり、金゛属塩溶液Aはタンク1から二重
管式噴霧器2に送られ、電気炉3で加熱されたセラミッ
ク管4中に圧縮空気Bを用いて噴霧され、熱分解される
。生成した金属粉末はサイクロン5中に捕集される。
The method for producing metal powder of the present invention will be explained based on the drawings. FIG. 1 shows an example of a metal salt solution spraying and pyrolysis apparatus, in which metal salt solution A is sent from a tank 1 to a double pipe sprayer 2, and is passed through a ceramic pipe heated in an electric furnace 3. 4 using compressed air B and pyrolyzed. The generated metal powder is collected in the cyclone 5.

実施例 次に実施例及び比較例をあげて本発明を具体的に説明す
る。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例I AQ NO3結晶をエタノール80%を含むエタノール
−水混合溶媒に溶解し、0.511101/λの溶液を
作成した。この溶液を二重管式噴霧器を用いて二流体ノ
ズル内筒より2.0xl1分の流量で流出させると同時
に外筒より10ぶ7分の流量で圧縮空気を流し、電気炉
で1100℃に加熱されたセラミック管中に溶液を噴霧
した。このとき二流体ノズルの外側に二次流として20
ぶ7分の割合で空気を流して、噴霧された液滴がうまく
加熱ゾーンに導かれるようにする。液滴は加熱ゾーンを
通って加熱分解され、サイクロン及びガラスフィルター
で捕集された。得られた粉末は最大粒径1.7.Ml、
最小粒径0.5.Mllで、非常に結晶性が良く表面平
滑な完全球形のAg粉末であった。
Example I AQ NO3 crystals were dissolved in an ethanol-water mixed solvent containing 80% ethanol to prepare a solution of 0.511101/λ. This solution is flowed out from the inner cylinder of the two-fluid nozzle using a double pipe sprayer at a flow rate of 2.0 x 1 min, and at the same time compressed air is flowed through the outer cylinder at a flow rate of 10 x 7 min, and heated to 1100°C in an electric furnace. The solution was sprayed into a ceramic tube. At this time, 20
Flow the air at a rate of 7 minutes to ensure that the atomized droplets are well directed to the heating zone. The droplets were thermally decomposed through a heating zone and collected with a cyclone and glass filter. The obtained powder has a maximum particle size of 1.7. Ml,
Minimum particle size 0.5. It was a perfectly spherical Ag powder with a size of Mll, very good crystallinity, and a smooth surface.

比較例1 加熱温度を500℃及び900℃とする以外は実施例1
と同様にして、AIJ粉末を製造した。いずれの場合も
球形の粒子は得られず、不定形で最大粒径10Al、最
小粒径1肩であった。
Comparative Example 1 Example 1 except that the heating temperature was 500°C and 900°C
AIJ powder was produced in the same manner as above. In all cases, spherical particles were not obtained, but were irregularly shaped, with a maximum particle size of 10 Al and a minimum particle size of 1.

仕較試験 実施例1と比較例1(加熱温度900℃)で製造された
A(+粉末及び湿式還元法で作った最大粒径1.5肩、
最小粒径0.5sのAg粉末を用い、以下の配合で導体
ペーストを作成した。
Comparative Test Example 1 and Comparative Example 1 (heating temperature 900°C) A (+ powder and maximum particle size 1.5 made by wet reduction method,
A conductive paste was prepared using Ag powder with a minimum particle size of 0.5 s and the following formulation.

A(I粉末         100gガラスフリット
        5g Bi2O58g 有機ビヒクル        30Q これら3種のペーストをそれぞれアルミナ基板上に印刷
し、800℃で焼成し、通常の厚膜導体の評価方法で試
験を行った結果を表1に示す。
A(I powder 100g Glass frit 5g Bi2O58g Organic vehicle 30Q These three pastes were printed on an alumina substrate, fired at 800℃, and tested using the usual evaluation method for thick film conductors. Table 1 shows the results. show.

表1 *接着強度は1.5酊ロバターンで評価した。Table 1 *Adhesive strength was evaluated using a 1.5 hardness pattern.

エージング強度は150℃24時間放置後の値である。The aging strength is the value after being left at 150°C for 24 hours.

表1から明らかなように、本発明によって得られたAg
粉末は厚膜ペースト用粉末として優れた特性を示す。即
ち上のペーストの例では、スクリーン印刷のためには理
想的な粘度特性を有しており、印刷性が良好である。又
従来より半田濡れ性と接着強度とは相反する特性として
知られていたが、この結果かられかるように、従来法で
ある湿式還元法で製造した粉末を用いた場合よりも半田
濡れ性、接着強度共に優れていることがわかる。
As is clear from Table 1, Ag obtained by the present invention
The powder exhibits excellent properties as a thick film paste powder. That is, the paste example above has ideal viscosity characteristics for screen printing and has good printability. In addition, it has been known that solder wettability and adhesive strength are contradictory properties, but these results show that solder wettability and adhesive strength are better than when using powder produced by the conventional wet reduction method. It can be seen that both adhesive strength is excellent.

これは本発明で作ったAO粉末が凝集がなく、ペースト
中での分散性に優れているため緻密な膜を作ることがで
き、なおかつ個々の粒子の結晶性が良いのでペースト焼
成過程で焼結を遅くすることができ、その結果ガラスの
基板への移行がスムーズに行われたためと思われる。
This is because the AO powder made according to the present invention has no agglomeration and has excellent dispersibility in the paste, making it possible to form a dense film.In addition, the individual particles have good crystallinity, so they are sintered during the paste firing process. This is thought to be due to the fact that the transition from glass to substrate was smooth as a result.

実施例2 AIJNO3及びPd(NO3)2を、メタノール50
%を含むメタノール−水混合溶媒に溶解し、0.5mo
l/βの溶液を作った。但しAClNO3とPd(NO
3)2の混合割合は、A(lとPdの重量比が8:2と
なるようにした。この溶液を、実施例1と同様にして、
電気炉で1200℃に加熱されたセラミック管中に噴霧
し、捕集した。得られた粉末は最大粒径2.5μm、最
小粒径1.5鳩で結晶性の良い表面平滑な球状Ag/P
d合金粉末であった。
Example 2 AIJNO3 and Pd(NO3)2 were mixed with methanol 50
Dissolved in methanol-water mixed solvent containing 0.5 mo
A solution of l/β was made. However, AClNO3 and Pd(NO
3) The mixing ratio of 2 was such that the weight ratio of A(l and Pd) was 8:2.This solution was prepared in the same manner as in Example 1,
It was sprayed into a ceramic tube heated to 1200°C in an electric furnace and collected. The obtained powder is a spherical Ag/P with a maximum particle size of 2.5 μm and a minimum particle size of 1.5 μm and a smooth surface with good crystallinity.
d alloy powder.

実施例3 HAu Cl 4結晶をエタノールに溶解し、0゜5m
ol/βの溶液を作成した。この溶液を、実施例2と同
様にして噴霧熱分解し、最大粒径1.0肩、最小粒径0
.5gで結晶性の良い球状AU粉末を得た。
Example 3 HAu Cl 4 crystals were dissolved in ethanol and 0°5m
A solution of ol/β was prepared. This solution was subjected to spray pyrolysis in the same manner as in Example 2, with a maximum particle size of 1.0 and a minimum particle size of 0.
.. 5 g of spherical AU powder with good crystallinity was obtained.

効果 実施例からも明らかな通り、本発明の製法によれば球状
で結晶性が良く、しかも高分散性の金属粉末が製造でき
る。しかも湿式還元法と異なり固液分離の必要がないの
で製造が容易であり、又純度に影響を及ぼす添加剤を使
用しなくてもすむのでほとんど不純物を含まない高純度
の粉末が得られ、粒度の調整も容易である。従って本発
明によって得られる金属粉末は特に厚膜ペースト用に好
適に使用できる。
As is clear from the effect examples, according to the production method of the present invention, metal powder that is spherical, has good crystallinity, and is highly dispersible can be produced. Moreover, unlike the wet reduction method, there is no need for solid-liquid separation, making it easy to manufacture.Also, since there is no need to use additives that affect purity, a highly pure powder containing almost no impurities can be obtained, and the particle size It is also easy to adjust. Therefore, the metal powder obtained by the present invention can be particularly suitably used for thick film pastes.

更に本方法は簡単な装置で実施でき、製造コストも安く
、大量生産できる利点がある。
Furthermore, this method has the advantage that it can be carried out using simple equipment, has low manufacturing costs, and can be mass-produced.

尚、厚膜ペースト用の用途についてのみ説明したが、水
沫で製造される金属粉末は厚膜ペーストだけでなく、装
飾用、触媒用その他の用途にも有効に使用することがで
きる。
Although only the application for thick film paste has been described, the metal powder produced by water droplets can be effectively used not only for thick film paste but also for decoration, catalyst use, and other applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法で金属粉末を製造するために用
いる装置の一例を示す図である。
FIG. 1 is a diagram showing an example of an apparatus used for producing metal powder by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 1種又は2種以上の金属塩を含む溶液を噴霧して液
滴にし、その液滴を該金属塩の分解温度より高く、かつ
金属の融点より高い温度であって、しかも金属の融点以
下の温度で金属が酸化物を形成する場合にはその酸化物
の分解温度より高い温度で加熱することを特徴とする金
属粉末の製造方法。 2 2種以上の金属の塩が、合金を形成する金属の塩で
ある特許請求の範囲第1項記載の金属粉末の製造方法。 3 金属の融点が合金の融点である特許請求の範囲第1
項又は第2項記載の金属粉末の製造方法。
[Claims] 1. A solution containing one or more metal salts is sprayed into droplets, and the droplets are heated to a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal. , and furthermore, when the metal forms an oxide at a temperature below the melting point of the metal, heating is carried out at a temperature higher than the decomposition temperature of the oxide. 2. The method for producing metal powder according to claim 1, wherein the salts of two or more metals are salts of metals forming an alloy. 3 Claim 1 in which the melting point of the metal is the melting point of the alloy
A method for producing metal powder according to item 1 or 2.
JP13990385A 1985-06-26 1985-06-26 Manufacture of metallic powder Granted JPS621807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990385A JPS621807A (en) 1985-06-26 1985-06-26 Manufacture of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990385A JPS621807A (en) 1985-06-26 1985-06-26 Manufacture of metallic powder

Publications (2)

Publication Number Publication Date
JPS621807A true JPS621807A (en) 1987-01-07
JPS6331522B2 JPS6331522B2 (en) 1988-06-24

Family

ID=15256307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990385A Granted JPS621807A (en) 1985-06-26 1985-06-26 Manufacture of metallic powder

Country Status (1)

Country Link
JP (1) JPS621807A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593167A1 (en) * 1992-10-09 1994-04-20 Shoei Chemical Inc. Internal electrode for multilayer ceramic capacitor
US5421854A (en) * 1992-10-05 1995-06-06 E. I. Du Pont De Nemours And Company Method for making palladium and palladium oxide powders by aerosol decomposition
EP0662521A2 (en) * 1994-01-05 1995-07-12 E.I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by areosol decomposition
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
EP0761349A1 (en) * 1995-08-25 1997-03-12 E.I. Du Pont De Nemours And Company Method for making gold powders by aerosol decomposition
CN1087669C (en) * 1997-10-17 2002-07-17 昭荣化学工业株式会社 Nickel powder and preparation process thereof
CN1093020C (en) * 1997-05-26 2002-10-23 昭荣化学工业株式会社 Nickel powder and process for preparing same
US6551527B2 (en) 2000-08-29 2003-04-22 Shoei Chemical Inc. Conductive paste comprising N-acylamino acid
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2005218938A (en) * 2004-02-04 2005-08-18 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle manufacturing apparatus
CN100406166C (en) * 1997-06-02 2008-07-30 昭荣化学工业株式会社 Metal powder and preparing method thereof
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US7704297B2 (en) 2006-04-27 2010-04-27 Shoei Chemical Inc. Nickel powder manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231122U (en) * 1988-08-22 1990-02-27
EP2185304B1 (en) * 2007-09-07 2013-07-17 E. I. du Pont de Nemours and Company Method for the production of a multi-element alloy powder containing silver and at least two non-silver containing elements
CN109982798B (en) 2016-11-16 2022-09-06 昭荣化学工业株式会社 Method for producing metal powder
JPWO2023080027A1 (en) 2021-11-02 2023-05-11
CN118176261A (en) 2021-11-02 2024-06-11 昭荣化学工业株式会社 Heat-curable conductive resin composition and method for producing electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137856A (en) * 1974-04-11 1975-11-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137856A (en) * 1974-04-11 1975-11-01

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421854A (en) * 1992-10-05 1995-06-06 E. I. Du Pont De Nemours And Company Method for making palladium and palladium oxide powders by aerosol decomposition
CN1056327C (en) * 1992-10-05 2000-09-13 E·I·内穆尔杜邦公司 Method for making silver powder by aerosol decomposition
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
CN1056328C (en) * 1992-10-05 2000-09-13 E·I·内穆尔杜邦公司 Method for making palladium and palladium oxide powders by aerosol decomposition
CN1043447C (en) * 1992-10-09 1999-05-19 昭荣化学工业株式会社 Multilayered ceramic capacitor
US5420744A (en) * 1992-10-09 1995-05-30 Shoei Chemical Inc. Multilayered ceramic capacitor
EP0593167A1 (en) * 1992-10-09 1994-04-20 Shoei Chemical Inc. Internal electrode for multilayer ceramic capacitor
JPH07216417A (en) * 1994-01-05 1995-08-15 E I Du Pont De Nemours & Co Production of silver - palladium alloy powder by aerosol decomposition
EP0662521A3 (en) * 1994-01-05 1995-10-11 Du Pont Method for making silver-palladium alloy powders by areosol decomposition.
EP0662521A2 (en) * 1994-01-05 1995-07-12 E.I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by areosol decomposition
CN1094405C (en) * 1994-01-05 2002-11-20 纳幕尔杜邦公司 Method for making silver-palladium alloy powders by aerosol decomposition
EP0761349A1 (en) * 1995-08-25 1997-03-12 E.I. Du Pont De Nemours And Company Method for making gold powders by aerosol decomposition
CN1093020C (en) * 1997-05-26 2002-10-23 昭荣化学工业株式会社 Nickel powder and process for preparing same
CN100406166C (en) * 1997-06-02 2008-07-30 昭荣化学工业株式会社 Metal powder and preparing method thereof
CN1087669C (en) * 1997-10-17 2002-07-17 昭荣化学工业株式会社 Nickel powder and preparation process thereof
US6551527B2 (en) 2000-08-29 2003-04-22 Shoei Chemical Inc. Conductive paste comprising N-acylamino acid
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
US7416795B2 (en) 2001-05-30 2008-08-26 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2005218938A (en) * 2004-02-04 2005-08-18 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle manufacturing apparatus
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US7704297B2 (en) 2006-04-27 2010-04-27 Shoei Chemical Inc. Nickel powder manufacturing method

Also Published As

Publication number Publication date
JPS6331522B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
EP0591881B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
JPS621807A (en) Manufacture of metallic powder
DE69132237T2 (en) HIGH TEMPERATURE BURNING PASTE
JP3277823B2 (en) Production method of metal powder
KR101671324B1 (en) Copper powder
EP0662521B1 (en) Method for making silver-palladium alloy powders by areosol decomposition
CA2437781C (en) Method for manufacturing metal powder
KR102430857B1 (en) Silver powder and manufacturing method thereof
KR101264964B1 (en) Electro-conducitve copper powder coated with anti-oxidizng material and method for preparing the same
KR102574302B1 (en) Silver alloy powder and manufacturing method thereof
KR20180075582A (en) Silver powder and method for producing the same
US6403218B1 (en) Nickel composite particle and production process therefor
JPS622404A (en) Thick film paste
JP2008108716A (en) Conductive paste composition for low-temperature firing
EP0834369B1 (en) Process for preparing metal powder
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder
JP2018123427A (en) Silver alloy powder and manufacturing method therefor
KR20100137633A (en) Metal-glass nano composite powders
US3708313A (en) Metalizing compositions
KR101046629B1 (en) Spherical Composite Powder of Ag and Glass
JP3727904B2 (en) Metal powder and method for producing the same
KR830001482B1 (en) Nickel Alloy Paste for Electric Conductor Formation
JP2002275502A (en) Method for manufacturing noble metal alloy powder, and gold-palladium alloy powder
JPH0412608B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees