JPS621806A - Manufacture of atomized high-carbon steel powder - Google Patents

Manufacture of atomized high-carbon steel powder

Info

Publication number
JPS621806A
JPS621806A JP14028285A JP14028285A JPS621806A JP S621806 A JPS621806 A JP S621806A JP 14028285 A JP14028285 A JP 14028285A JP 14028285 A JP14028285 A JP 14028285A JP S621806 A JPS621806 A JP S621806A
Authority
JP
Japan
Prior art keywords
molten steel
deoxidizing
atomized
steel
deoxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14028285A
Other languages
Japanese (ja)
Inventor
Minoru Nitta
稔 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14028285A priority Critical patent/JPS621806A/en
Publication of JPS621806A publication Critical patent/JPS621806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain atomized high-carbon steel powder contg. a very small amount of hollow or porous particles by adding a deoxidizing agent to molten steel and regulating the temp. of the molten steel to reduce the amount of O in the steel to a value below the limit of deoxidation caused by a C-O reaction and by atomizing the molten steel. CONSTITUTION:When molten steel contg. >=0.2wt% C is atomized, a deoxidizing agent is added beforehand to the molten steel and the molten steel is kept at a proper temp. according to the deoxidizing agent to reduce the amount of O in the molten steel to a value below the limit of deoxidation caused by a C-O reaction. One or more among Si, Ti, Al, Zr, B and Ca are used as the deoxidizing agent. Plural kinds of deoxidizing elements produce a more significant effect than one kind of deoxidizing element.

Description

【発明の詳細な説明】 (産業上の利用分野) この明細書で開示する発明は、空孔が無いかあるいは空
孔が非常に少ない緻密なC含有(>0.2wt%)アト
マイズ鋼粉を製造する技術に係わり、Cを0.2 wt
%以上含む高炭素溶鋼に適切な脱酸剤を選択して加え、
かつタンディシュ内溶鋼温度を適当に維持することによ
り、C−0反応による脱酸限以下の〔%0〕に調節した
溶鋼を準備し、こうした溶鋼をアトマイズすることでア
トマイズ時に発生するCOガスによる中空状粒子あるい
は多孔状粒子の生成を抑制するのに有利な方法を提案す
るものである。
Detailed Description of the Invention (Industrial Application Field) The invention disclosed in this specification is a method for producing dense C-containing (>0.2 wt%) atomized steel powder with no pores or with very few pores. Regarding manufacturing technology, 0.2 wt of C
Select and add an appropriate deoxidizer to high carbon molten steel containing % or more,
By maintaining the temperature of the molten steel in the tundish appropriately, molten steel adjusted to [%0] below the deoxidation limit by C-0 reaction is prepared, and by atomizing such molten steel, the CO gas generated during atomization creates a hollow space. This paper proposes an advantageous method for suppressing the formation of porous particles or porous particles.

本発明に係る方法によって得られる鋼粉は、耐熱、耐摩
耗、耐食性等を要求される部位を粉末冶金法や溶射法、
溶接法等によって加工する場合に用いるものである。
The steel powder obtained by the method according to the present invention can be processed by powder metallurgy, thermal spraying, etc. in areas that require heat resistance, wear resistance, corrosion resistance, etc.
It is used when processing by welding method etc.

(実施例) 従来、炭素含有量の高い(202w t%)銅粉をアト
マイズ法などによって製造しているが、かかる従来製造
法によると、中空状粒子あるいは多孔状粒子を生成する
ことが多く、こうした粉末を用いると充填密度の減少、
圧密材や溶接材、溶射材、肉盛材等においては収縮代の
増大、密度減少あるいは粗大気孔の残留などの問題を生
ずる。この高C含有のアトマイズ鋼粉の中空状あるいは
多礼状粒子の生成防止技術として、昭和48年6月10
日(原本出版)日・ソ通信社発行の刊行物「噴霧金属粉
」には、N2等の不活性ガスでアトマイズすれば緻密粒
子になることが記載されていて、従来はもっばらかかる
不活性ガスアトマイズ法が採用されているのが現状であ
る。
(Example) Conventionally, copper powder with a high carbon content (202wt%) has been produced by an atomization method or the like, but such conventional production methods often produce hollow particles or porous particles. With these powders, the packing density decreases,
Consolidated materials, welded materials, thermal sprayed materials, overlay materials, etc. have problems such as increased shrinkage, decreased density, and residual coarse pores. On June 10, 1971, a technology to prevent the formation of hollow or multi-shaped particles of atomized steel powder containing high C content was developed.
The publication ``Atomized Metal Powder'' published by the Japan-Soviet News Agency (Original Publishing) states that it can be atomized with an inert gas such as N2 to form dense particles; Currently, the gas atomization method is used.

その他の従来技術としては、特公昭49−38547号
公報として開示された方法あるいは特開昭58−158
843号公報として開示された方法等がある。
Other conventional techniques include the method disclosed in Japanese Patent Publication No. 49-38547 and the method disclosed in Japanese Patent Publication No. 58-158.
There is a method disclosed in Japanese Patent Application No. 843.

(発明が解決しようとする問題点) まず、上記刊行物「噴霧金属粉」に開示された方法は、
不規則形状の銅粉しかできないので、冷間成形が難しい
という問題点がある。一方特公昭49−28101号、
同48−38547号にはC含有溶鋼水アトマイズ時に
起る中空・多孔状粒子の生成に論及しているが、例えば
特公昭48−38547号公報には、〔%C〕が0.2
以下の水アトマイズ鋼粉は実質的に均一中実(緻密)で
あることを示唆しているに止まり、また特開昭56−1
58843号公報および特開昭56−158844号公
報には、中空状粒子は〔%C〕が0.40を越えると認
められ、0.80を越えると著しく増加するということ
が開示されているにすぎない。従って、従来技術の場合
〔%C〕と中空状粒子生成の関係は必ずしも明確になっ
ているとはいえず、不活性ガスアトマイズ法を除いては
中空状粒子等生成防止に関する技術は無いのが実情であ
り、有効な技術の開発が待たれていた。
(Problems to be Solved by the Invention) First, the method disclosed in the above publication "Atomized Metal Powder"
The problem is that cold forming is difficult because only irregularly shaped copper powder can be produced. On the other hand, Special Publication No. 49-28101,
Japanese Patent Publication No. 48-38547 mentions the formation of hollow and porous particles that occur during water atomization of C-containing molten steel; for example, in Japanese Patent Publication No. 48-38547, [%C] is 0.2.
It merely suggests that the following water atomized steel powder is substantially uniformly solid (dense), and also that
No. 58843 and Japanese Patent Application Laid-Open No. 158844/1987 disclose that hollow particles are recognized when [%C] exceeds 0.40, and that the content increases significantly when it exceeds 0.80. Only. Therefore, in the case of conventional technology, the relationship between [%C] and the generation of hollow particles is not necessarily clear, and the reality is that there is no technology to prevent the generation of hollow particles, etc., except for the inert gas atomization method. Therefore, the development of effective technology has been awaited.

(問題点を解決するための手段) 本発明は、高炭素含有(>0,2 wt%)アトマイズ
鋼粉を製造する時に起る上述の如き問題点を克服する手
段として、 下記するような強制脱酸剤を溶鋼中に添加し、その脱酸
剤との関連で決まる望ましい溶鋼温度を調節(タンディ
シュ)することにより、鋼中〔%O〕量をC−O反応に
よる脱酸限以下にした溶鋼を得てこれをアトマイズする
ことにより、中空状粒子あるいは多孔状粒子の非常に少
ない緻密な高品質の高炭素鋼粉の製造する方法を提供す
るようにした。
(Means for Solving the Problems) The present invention, as a means to overcome the above-mentioned problems that occur when producing high carbon content (>0.2 wt%) atomized steel powder, By adding a deoxidizing agent to molten steel and adjusting the desired molten steel temperature determined in relation to the deoxidizing agent (tundish), the amount of [%O] in the steel was reduced to below the deoxidation limit due to the C-O reaction. The present invention provides a method for producing dense, high-quality, high-carbon steel powder with very few hollow or porous particles by obtaining molten steel and atomizing it.

上記脱酸剤としては、S i、T i+ A I−、Z
 r 。
As the deoxidizing agent, S i, T i + A I-, Z
r.

BおよびCaのいずれか1種または2種以上よりなるも
のを好適例とする。
Preferable examples include one or more of B and Ca.

(作 用) 本発明は、アトマイズ時に発生するCOガスを起因とす
る上述した不都合を回避するために、予めアトマイズす
べき溶鋼を以下にのべるような性状のものに調整するこ
とを基本としている。
(Function) The present invention is based on adjusting the molten steel to be atomized in advance to have the following properties in order to avoid the above-mentioned disadvantages caused by the CO gas generated during atomization.

溶鋼の炭素含有量〔%C〕が0.20以上のものを対象
としている点について; ■溶鋼中の〔%C〕と〔%O〕との間には、(C)+〔
O〕=COなる反応が起きる。第1図は〔%C〕と平衡
する〔%0〕 に対する転炉、アーク炉、高周波誘導電
気炉、ルツボ炉等の実炉における〔%O〕  の分布を
示すものであり、両者のCt 差、すなわちΔ〔%0〕=〔%0〕  −〔%0〕。
Regarding the point that the carbon content [%C] of molten steel is 0.20 or more; ■ Between [%C] and [%O] in molten steel, (C) + [
The reaction O]=CO occurs. Figure 1 shows the distribution of [%O] in actual furnaces such as converter furnaces, arc furnaces, high-frequency induction electric furnaces, crucible furnaces, etc. with respect to [%0] which is in equilibrium with [%C], and shows the Ct difference between the two. , that is, Δ[%0] = [%0] − [%0].

Ct が過剰酸素となり、これがアトマイズ時の冷却に伴う溶
鋼温度降下で減少する溶解度の影響により溶鋼中の(C
)と反応してCOガスを発生する。発生したCOガスは
凝固粉末中に捕捉されあるいは噴出して中空状または多
孔状粒子粉末を生成する。
Ct becomes excess oxygen, and due to the influence of the solubility, which decreases as the temperature of the molten steel decreases as it cools during atomization, the (Ct) in the molten steel increases.
) to generate CO gas. The generated CO gas is trapped in the coagulated powder or ejected to produce hollow or porous particle powder.

第2図は、鋼粉を10mmのノズルを使って水圧140
kg 7cm2・G 、水量23017m1nでアトマ
イズしたときの結果を示すが、〔%C〕の増加に伴なっ
て中空状あるいは多孔状粒子が増加している。
Figure 2 shows steel powder being sprayed at a water pressure of 140 using a 10 mm nozzle.
The results are shown when atomized with kg 7cm2·G and water amount of 23017mln, and as the [%C] increases, the number of hollow or porous particles increases.

ところが〔%C〕が0.2未満の領域では過剰酸素量:
Δ〔%0〕が少なく、かつ〔C〕の活量も小さいため強
制脱酸剤を添加することなくアトマイズしても緻密な銅
粉を得ることができる。従って、本発明は、〔%C〕が
0.20wt%以上の炭素を含有する溶鋼を対象とする
However, in the region where [%C] is less than 0.2, the amount of excess oxygen:
Since Δ[%0] is small and the activity of [C] is also small, dense copper powder can be obtained even if atomized without adding a forced deoxidizing agent. Therefore, the present invention targets molten steel containing carbon in [%C] of 0.20 wt% or more.

このとき溶鋼中にはT i+ N b、  V、  C
r。
At this time, T i + N b, V, C are in the molten steel.
r.

Mn、Mo、WなどのようにCの飽和溶解度を増加させ
る元素の添加は、Cの活量を低下させるので緻密粒子を
得るためには有利である。
Addition of elements that increase the saturation solubility of C, such as Mn, Mo, W, etc., reduces the activity of C and is therefore advantageous for obtaining dense particles.

これに対し、溶鋼中にCo、Ni、  Cu、3b。On the other hand, Co, Ni, Cu, and 3b are present in molten steel.

4Sn、AJ、S、P、Siなどを添加すると、Cの溶
解度を低下させ、ひいてはCの活量をあげるので、アト
マイズ時にCOガスを発生し易くなるが、〔%C〕が0
.20wt%未満であれば緻密粒子が得られる。
Adding 4Sn, AJ, S, P, Si, etc. reduces the solubility of C and increases the activity of C, making it easier to generate CO gas during atomization, but when [%C] is 0
.. If it is less than 20 wt%, dense particles can be obtained.

なお、第2図の中空状粒子個数は、水アトマイズし乾燥
した粉末を樹脂と混合成形熱硬化後切断研摩し、光学顕
微鏡により100倍で1視野当り100ケ以上の粒子が
存在する個所を10視野検鏡して測定した。
The number of hollow particles in Fig. 2 is determined by mixing water atomized and dried powder with resin, molding, thermosetting, cutting and polishing, and using an optical microscope at 100x magnification to determine the number of hollow particles in 10 areas where there are 100 or more particles per field of view. The visual field was measured using a microscope.

■脱酸剤の種類について; 本発明に適用する脱酸剤の種類を第3図により説明する
。第3図は、1600℃の溶鋼の各00分圧に対する〔
%C〕と〔%0〕との関係および各脱酸元素と〔%C〕
との関係を示したものである。
(2) Types of deoxidizing agents; The types of deoxidizing agents applicable to the present invention will be explained with reference to FIG. Figure 3 shows [ for each 00 partial pressure of 1600℃ molten steel
Relationship between [%C] and [%0] and each deoxidizing element and [%C]
This shows the relationship between

P co ” 1 atmにおいて、Si、Ti、A1
.Zr。
At P co ” 1 atm, Si, Ti, A1
.. Zr.

B、Caのうち1種以上の元素を含む脱酸剤であれば、
C含有溶鋼をC−O反応による脱酸限以下の〔%0〕に
することが可能である。なお、Caについてはその標準
生成自由エネルギーから脱酸力が強いことは明白である
から本発明の脱酸剤として含める。
If the deoxidizing agent contains one or more elements among B and Ca,
It is possible to reduce the C-containing molten steel to [%0] below the deoxidation limit due to the C-O reaction. Note that Ca is included as a deoxidizing agent in the present invention because it is clear from its standard free energy of formation that it has a strong deoxidizing power.

なお、脱酸剤としてはSi、Ti、A/!、Zr。In addition, as a deoxidizing agent, Si, Ti, A/! , Zr.

B、Caを単独で使ってもよいが複数種混合して使って
もよい。すなわち、脱酸元素は単独で溶鋼へ添加するよ
りも一般には複数の脱酸元素を同時に添加することによ
り、〔%○〕をより低くすることができる。もっとも多
用される複合脱酸としては、Si、Mnを同時に添加す
る場合が代表的である。
B and Ca may be used alone or in combination. That is, [%○] can generally be lowered by adding a plurality of deoxidizing elements at the same time rather than adding a single deoxidizing element to molten steel. The most commonly used composite deoxidation is typically the case where Si and Mn are added at the same time.

第5図は、PC,= latm 、 1600℃の溶鋼
におけるCC)、  (、Si)単独および(0,50
%Mn+Si)の脱酸力を比較したものである。この図
かられかるようにStとMnとを同時に添加することに
よって、Si単独の場合よりも脱酸力は大きくなる。
Figure 5 shows PC,=latm, CC), (Si) alone and (0,50
%Mn+Si). As can be seen from this figure, by adding St and Mn simultaneously, the deoxidizing power becomes greater than when Si alone is used.

この複合脱酸効果は、(Mn+47り 、  (Mn+
Si+7N) 、  (Cr+Si) 、  (Cr+
Mn+Si) 、  (Cr+Mn+Si+Ajlりと
いったように種々の組合わせが可能で、要するにSi、
Ti、Aj2.Zr、BおよびCaのうちの1種以上の
元素を含むものであれば良い。−なお、〔%C〕の調節
および強制脱酸剤の添加による脱酸処理は、溶解・精錬
過程におけるほか、溶鋼処理および運搬、移送過程にお
いて、例えば、取鍋中、湯道内、タンディシュ内で溶鋼
温度を調節して行うことができる。
This composite deoxidizing effect is caused by (Mn+47ri, (Mn+
Si+7N), (Cr+Si), (Cr+
Various combinations are possible, such as Mn+Si), (Cr+Mn+Si+Ajl), in short, Si,
Ti, Aj2. Any material containing one or more elements of Zr, B, and Ca may be used. - In addition, deoxidizing treatment by adjusting [%C] and adding a forced deoxidizing agent is carried out not only in the melting and refining process, but also in the molten steel processing, transportation, and transfer process, such as in the ladle, runner, and tundish. This can be done by adjusting the molten steel temperature.

■溶鋼温度について: 本発明は〔%C〕が0 、20w t%以上の溶鋼に上
記脱酸元素を加えたものについて、さらに溶鋼温度を以
下に説明するように調節してC−O反応による脱酸限以
下の〔%O〕に調節したアトマイズ用。
■About molten steel temperature: The present invention applies to molten steel with [%C] of 0.20wt% or more to which the above deoxidizing element is added, and the molten steel temperature is further adjusted as explained below to cause a C-O reaction. For atomization adjusted to [%O] below the deoxidizing limit.

溶鋼を準備する。この溶鋼温度の調節に関し、脱酸剤と
してもっとも多用されるSiを例にとって第4図により
説明する。
Prepare molten steel. This adjustment of the molten steel temperature will be explained with reference to FIG. 4, taking as an example Si, which is most commonly used as a deoxidizing agent.

第4図は、P co ” 1 atmにおける(C)と
(Si)の脱酸力を各溶鋼温度で比較したものである。
FIG. 4 compares the deoxidizing powers of (C) and (Si) at P co '' 1 atm at each molten steel temperature.

これにより任意の〔%C〕の溶鋼において、C−0反応
による脱酸限以下の〔%0〕の溶鋼を得るための〔%S
i)と溶鋼温度を知ることができる。
As a result, in molten steel of arbitrary [%C], [%S
i) and the molten steel temperature.

(実施例) 次に実施例により本発明を説明する。(Example) Next, the present invention will be explained with reference to Examples.

所定成分組成の鋼となるように溶解昇温損失を見込んで
各装入原料を配合し、高周波誘導電気炉により溶解した
。所定温度に昇温後、合金鉄を投入して溶製成分の再調
整を行い、第1表に示す組成の溶鋼を十分予熱したタン
ディシュ内へ出鋼しつつタンディシュの底部に備えた1
0mm口径の耐火物製の溶湯ノズルから自然落下注入し
、水量230j!/min、水圧140 kg / c
m2Gの圧力の逆円錐式の高速水流ジェットによりN2
雰囲気中で水アトマイズした。水アトマイズ後、噴霧槽
内で自然沈降させ、上澄水を排出し、濃縮スラリーを振
動脱水し、200℃で真空乾燥した。この乾燥鋼粉を熱
硬化性樹脂に混合し、成形硬化後切断研摩した粒子断面
を光学顕微鏡により100倍で、1視野当り100個以
上の鋼粉粒子が存在する個所を10視野検鏡したときの
中空状粒子個数と、〔%C〕による〔%0〕平衡値およ
び溶鋼の〔%O〕実測値を第1表にまとめて示す。
Each charging raw material was mixed in anticipation of melting temperature rise loss so as to obtain steel with a predetermined composition, and melted in a high frequency induction electric furnace. After raising the temperature to a predetermined temperature, the molten steel was readjusted by adding ferroalloy, and the molten steel with the composition shown in Table 1 was tapped into a sufficiently preheated tundish.
The amount of water was 230J when injected by gravity from a 0mm diameter refractory molten metal nozzle! /min, water pressure 140 kg/c
N2 by an inverted conical high-speed water jet with a pressure of m2G.
Water was atomized in the atmosphere. After water atomization, it was allowed to settle naturally in a spray tank, the supernatant water was discharged, and the concentrated slurry was subjected to vibration dehydration and vacuum-dried at 200°C. This dried steel powder was mixed with a thermosetting resin, and after molding and curing, the cross section of the particles was cut and polished and examined under an optical microscope at 100x magnification, with 10 fields of view showing areas where 100 or more steel powder particles were present per field of view. The number of hollow particles, the equilibrium value of [%0] according to [%C], and the measured value of [%O] of molten steel are summarized in Table 1.

(発明の効果) 以上説明したように本発明によれば、強制脱酸剤を加え
かつ溶鋼温度を調節することにより、溶鋼中のC−O反
応による脱酸限以下の〔%0〕にした溶鋼を水アトマイ
ズするようにしたので、高C含有域にわたって中空状粒
子が非常に少ない、高品質の含C鋼粉を製造することが
可能になった。
(Effects of the Invention) As explained above, according to the present invention, by adding a forced deoxidizing agent and adjusting the temperature of molten steel, the deoxidization limit due to the C-O reaction in molten steel can be reduced to [%0]. Since the molten steel was water atomized, it became possible to produce high-quality carbon-containing steel powder with very few hollow particles throughout the high carbon content region.

なお、本発明によれば、N2およびAr等の不活性ガス
によるアトマイズはもちろんのこと、空気などの02を
含むガスによりアトマイズしても上記と同様の効果が得
られる他、超音速アトマイズ法、回転ディスク法、真空
アトマイズ法、双ロールアトマイズ法、るつぼ回転法、
衝撃アトマイズ法などにもよっても同様の効果が得られ
る。
According to the present invention, not only can atomization be performed using an inert gas such as N2 and Ar, but also the same effect as described above can be obtained even when atomization is performed using a gas containing 02 such as air, and supersonic atomization method, Rotating disk method, vacuum atomization method, twin roll atomization method, crucible rotation method,
A similar effect can also be obtained by using an impact atomization method or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶鋼中の〔%C〕と〔%0〕の平衡値と実炉
における〔%C〕と〔%O〕の実測値の関係を示すグラ
フ、 第2図は、含C溶鋼を水アトマイズした鋼粉の溶IAC
量〔%C〕と中空状粒子個数の関係を示すグラフ、 第3図は、溶鋼中の各脱酸元素の脱酸平衡図、第4図は
、Pco=1stmでの各溶鋼温度における(C)と(
Si)の脱酸平衡値の比較グラフ、第5図は、P co
 =1 a tmでの1600℃溶鋼における(C)と
(Si)および(0,50% Mn+Si)の脱酸平衡
値を比較したグラフである。
Figure 1 is a graph showing the relationship between the equilibrium values of [%C] and [%0] in molten steel and the measured values of [%C] and [%O] in an actual furnace. Melting IAC of steel powder atomized with water
A graph showing the relationship between the amount [%C] and the number of hollow particles, Figure 3 is a deoxidation equilibrium diagram of each deoxidizing element in molten steel, and Figure 4 is a graph showing the relationship between the amount [%C] and the number of hollow particles. )and(
Fig. 5 is a comparison graph of the deoxidation equilibrium values of Si).
It is a graph comparing the deoxidation equilibrium values of (C), (Si) and (0,50% Mn+Si) in 1600° C. molten steel at =1 atm.

Claims (1)

【特許請求の範囲】 1、アトマイズすべき0.2wt%以上のCを含有、す
る溶鋼を、脱酸剤とそれに対応する適当な溶鋼温度とを
選択、維持することによって、該溶鋼の酸素含有量をC
−O反応による脱酸限以下にしてからアトマイズを行う
ことを特徴とする高炭素アトマイズ鋼粉の製造方法。 2、上記脱酸剤として、Si、Ti、Al、Zr、Bお
よびCaのうちいずれか1種または2種以上の元素を用
いることを特徴とする特許請求の範囲第1項に記載の製
造方法。
[Claims] 1. Oxygen content of the molten steel to be atomized, which contains 0.2 wt% or more of C, is reduced by selecting and maintaining a deoxidizing agent and a corresponding appropriate molten steel temperature. quantity C
A method for producing high carbon atomized steel powder, characterized in that atomization is carried out after the temperature is reduced to below the deoxidation limit by -O reaction. 2. The manufacturing method according to claim 1, wherein any one or more elements among Si, Ti, Al, Zr, B, and Ca are used as the deoxidizing agent. .
JP14028285A 1985-06-28 1985-06-28 Manufacture of atomized high-carbon steel powder Pending JPS621806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14028285A JPS621806A (en) 1985-06-28 1985-06-28 Manufacture of atomized high-carbon steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14028285A JPS621806A (en) 1985-06-28 1985-06-28 Manufacture of atomized high-carbon steel powder

Publications (1)

Publication Number Publication Date
JPS621806A true JPS621806A (en) 1987-01-07

Family

ID=15265151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14028285A Pending JPS621806A (en) 1985-06-28 1985-06-28 Manufacture of atomized high-carbon steel powder

Country Status (1)

Country Link
JP (1) JPS621806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
US10215510B2 (en) 2013-11-12 2019-02-26 Sms Group Gmbh Method for processing heated material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147558A (en) * 1976-06-03 1977-12-08 Int Nickel Co Porosity decrease of pulverized powder by inert gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147558A (en) * 1976-06-03 1977-12-08 Int Nickel Co Porosity decrease of pulverized powder by inert gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
US10215510B2 (en) 2013-11-12 2019-02-26 Sms Group Gmbh Method for processing heated material

Similar Documents

Publication Publication Date Title
KR100584113B1 (en) Method of making a fecral material and such material
CA2104605C (en) Powder metal alloy process
KR101279840B1 (en) Hardfacing ferroalloy materials
KR20220002998A (en) Mechanically alloyed powder feedstock
US20060110278A1 (en) Formation of metallic thermal barrier alloys
JP6249774B2 (en) Method for producing iron-based powder
JPH0369962B2 (en)
JP2002508807A (en) Stainless steel powder
JP7437505B2 (en) Method for additive manufacturing of maraging steel
EP0515018A1 (en) Prealloyed high-vanadium, cold work tool steel particles and method for producing the same
JPH0651239B2 (en) Ni-based alloy powder for powder overlay
KR102064146B1 (en) Method for producing alloyed steel powder for sintered member starting material
KR950704526A (en) ENGINEERING FERROUS METALS, IN PARTICULAR CAST IRON AND STEEL
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
KR102288887B1 (en) Method of manufacturing iron powder and iron powder manufactured thereby
US5834640A (en) Powder metal alloy process
JPS621806A (en) Manufacture of atomized high-carbon steel powder
CN110484911A (en) A kind of alloy powder and preparation method thereof for laser melting coating
JP2612419B2 (en) Method for producing powder for MPP core and method for producing MPP core using the powder
JPS63195254A (en) Production of composite material
JPH04187746A (en) Composite cylinder having lining layer constituted of corrosion resistant and wear resistant sintered alloy
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
Hamill et al. Water atomized fine powder technology
JPS6253561B2 (en)
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder