JPS62180213A - Rotary differential transformer - Google Patents

Rotary differential transformer

Info

Publication number
JPS62180213A
JPS62180213A JP61022596A JP2259686A JPS62180213A JP S62180213 A JPS62180213 A JP S62180213A JP 61022596 A JP61022596 A JP 61022596A JP 2259686 A JP2259686 A JP 2259686A JP S62180213 A JPS62180213 A JP S62180213A
Authority
JP
Japan
Prior art keywords
core
magnetic flux
rotating shaft
induced
primary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61022596A
Other languages
Japanese (ja)
Inventor
Hideo Niwa
英夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmei Electric Co Ltd
Original Assignee
Sanmei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanmei Electric Co Ltd filed Critical Sanmei Electric Co Ltd
Priority to JP61022596A priority Critical patent/JPS62180213A/en
Publication of JPS62180213A publication Critical patent/JPS62180213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect the angle of rotation of a transformer and to make the structure of the transformer simple and inexpensive by providing a rotary core and a primary coil which produce magnetic flux extending to the core and also providing a couple of secondary cores at the outer peripheral side of the core. CONSTITUTION:A since wave voltage for excitation is impressed from an oscillation circuit to the primary coil 5 and the primary coil 5 produces the magnetic flux. Then, this magnetic flux enters the center part of the rotary core 3 after passing through a rotating shaft 1, and reaches a magnetic pole member 6a and 6b and then the rotating shaft 1 by penetrating yokes 9 and 8. Consequently, a large voltage is induced across one secondary coil 7a and only a small voltage is induced across the other secondary coil 7b. The voltages induced across the secondary coils 7a and 7b are rectified by rectifying elements 11a and 11b of a detecting circuit 10 respectively and further smoothed by a capacitor, resistance, etc., to appear at output terminals 14a and 14b. Consequently, an output signal corresponding to the angle of rotation of the rotary core is obtained.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする。[Detailed description of the invention] The present invention aims to solve the following problems.

(産業上のfjj用分野) この発明は例えば工業用ロ
ボットの椀の軸に連結してその腕の角度位置(状態)を
検出したり、ACサーボモータにおけろロータに連結し
てそのロータの回転角を検出する為に用いられる回転型
差動トランスに関する。
(Industrial fjj field) This invention can be connected to the shaft of an industrial robot's bowl to detect the angular position (state) of its arm, or connected to the rotor of an AC servo motor to detect the rotor. This invention relates to a rotary differential transformer used to detect a rotation angle.

(従来の技術) 上記のような検出を行う為の装置とし
てレゾルバがあるが、それは1・rめて高価であるとい
う問題点があった。
(Prior Art) There is a resolver as a device for performing the above-mentioned detection, but it has the problem of being 1.r expensive.

(発明が解決しようとする問題点) この発明は上記従
来の問題点を除き、上記レゾルバと同様に回転角の検出
を行うことができ、しかも構造簡易で安価な提供が可能
となるようにした回転型差動トランスを提供しようとす
るものである。
(Problems to be Solved by the Invention) This invention eliminates the above-mentioned conventional problems, and can detect rotation angles in the same way as the above-mentioned resolver, and can be provided with a simple structure and low cost. The present invention aims to provide a rotary differential transformer.

本願発明の構成は次の通りである。The configuration of the present invention is as follows.

(問題点を解決する為の手段) 本願発明は前記請求の
範囲記載の通りの手段を講じたものであってその作用は
次の通りである。
(Means for Solving the Problems) The present invention takes the measures as described in the claims above, and its effects are as follows.

(作用)  1次巻綿で発生された磁束は回転コアの中
央部に及ぼされる。回転コアは被検出部材に連結されて
回転することにより、その大径部が一方の2次巻線に近
接したり或いは他方の2次巻線に近接したりする。その
結果、上記各2次巻線には上記大径部の近接状態に応じ
た、即ち回転コアの回転角に応じた信号を得ることがで
きる。
(Function) The magnetic flux generated by the primary cotton wrap is applied to the center of the rotating core. When the rotating core is connected to the detected member and rotates, its large diameter portion approaches one of the secondary windings or the other secondary winding. As a result, a signal can be obtained from each of the secondary windings according to the proximity state of the large diameter portion, that is, according to the rotation angle of the rotating core.

(実施例)以下本願の実施例を示す図面について説明す
る。第1図乃至第4図において、1は回転軸で、軸受2
により回転自在に支えられている。
(Embodiments) The drawings showing the embodiments of the present application will be explained below. In Figures 1 to 4, 1 is a rotating shaft, and bearing 2
It is rotatably supported by

この回転軸lは本実施例においては後述の如く1次巻線
で発生される磁束を通す為のヨークをも兼ねている為、
パーマロイ等の(〃気持性の良好な金属材料で形成され
ており、又軸受2は非金属材料で形成されている。3は
回転コアで、平面形状を円形に形成され、偏心状態で回
転軸1に連結しである。その結果、この回転コア3は一
方の側は大きい回転半径Raを有する大径部3aとなっ
ており、他方の側は小さい回転半径Rbを有する小径部
3bとなっている。又この回転コアは上記回転軸と同様
にパーマロイ等の磁気特性の良好な金属材料で形成しで
ある。尚、この回転コア3の外形形状は、後述の如き得
ようとする出力波形の形状に応して任意の形状にするこ
とができる。その形状は例えば角部にRをもたせた三角
形(おむすび形)や四角形でもよい。5は1次巻線で、
前記回転コア3の中央部に磁束を及ぼす為のものである
In this embodiment, this rotating shaft l also serves as a yoke for passing the magnetic flux generated by the primary winding, as will be described later.
The bearing 2 is made of a non-metallic material such as Permalloy, etc., and the bearing 2 is made of a non-metallic material. 3 is a rotating core, which has a circular planar shape, and is eccentrically connected to the rotating shaft. As a result, this rotating core 3 has a large diameter portion 3a with a large rotation radius Ra on one side, and a small diameter portion 3b with a small rotation radius Rb on the other side. Also, like the above-mentioned rotating shaft, this rotating core is made of a metal material with good magnetic properties such as permalloy.The outer shape of this rotating core 3 is determined according to the output waveform to be obtained as described below. It can be made into any shape depending on the shape.The shape may be, for example, a triangle (rice ball shape) with rounded corners or a square.5 is the primary winding;
This is for applying magnetic flux to the central portion of the rotating core 3.

5a、  6bは回転コア3の外周側において回転コア
3の回転中心から等距離に配設した二つ一組の磁極部材
を示し、相互には位置を異ならしめて(一方に大径部3
aが対向したとき他方に小径部が対向する関係となる位
置に)配設しである。各々の外周には二つ一組の2次巻
線7a、7bが個別にYA ’7fされている。8.9
は夫々円板状及び筒状のヨークで、前記ヨークとしての
回転軸1と共に1次巻線5で発生されろ(d束を回転コ
ア3と(磁極部材6a、6bとに導く為に設けられたも
のであり、パーマロイ、珪素鋼を反等の磁気特性の良好
な材料で形成される。10は検波回路を示し、整流素子
113.Ilb、平滑用のコンデンサ12a、12b及
び抵抗13a、13bからなる。14 a 、 14 
b 、 14 cは出力端子を夫々示す。
5a and 6b indicate a pair of magnetic pole members disposed on the outer circumferential side of the rotary core 3 at equal distances from the rotation center of the rotary core 3, and their positions are different from each other (on the one hand, the large diameter portion 3
The small diameter portion is placed at a position where the small diameter portion faces the other when the portion a is opposed to the other portion. A pair of secondary windings 7a, 7b are individually wound around each outer periphery. 8.9
are disk-shaped and cylindrical yokes, respectively, which are provided to guide the flux (d) generated in the primary winding 5 together with the rotating shaft 1 as the yoke to the rotating core 3 and (magnetic pole members 6a, 6b). It is made of materials with good magnetic properties such as permalloy and silicon steel.10 indicates a detection circuit, which consists of a rectifying element 113.Ilb, smoothing capacitors 12a, 12b, and resistors 13a, 13b. It becomes.14 a, 14
b and 14c indicate output terminals, respectively.

上記構成の回転型差動トランスは回転軸lを図示外の周
知の被検出部材(ロボットの腕の軸、ACサーボモータ
のロータ等)に連結した状態で使用される。その状態に
おいて、図示外の発振回路から1次巻線5に励磁用の正
弦波電圧が印加される。尚その周波数は例えばI KH
z〜10KHz程度である。上記のような電圧が印加さ
れることにより1次巻線5は磁束を発生する。その磁束
は第1図に破線15で示す如く回転軸1を通って回転コ
ア3の中央部に入り、回転コア3から磁極部材6a或い
は6bへ至り、更にヨーク9.8を通って回転軸1に至
る。このような状態において回転コア3における大径部
3が近接した側の磁極部材例えば6aには多くの磁束が
通り、−力率径部3aが近接している側の磁極部材例え
ば6bには少ない磁束しか通らない。その結果、一方の
2次巻線7aには大きい電圧が励起され、他方の2次8
線7bには小さな電圧しか励起されない。この状態から
回転コア3が回転し、磁礪部材6aと回転コア3との距
離及び磁極部材6bと回転コア3との距離が等しくなる
と、それらの磁極部材6a、6bを通る磁束の数は等し
くなり、従って各2次:?!:線7a、7bに11起さ
れる電圧は等しくなる。更に回転コア3が回転し、大径
部3aが磁極部材6bに近接し、小径部3bが磁極部材
6aに近接したときには2次巻線?a、7bに励起され
る電圧の大きさは11η記の場合と反対となる。上記の
ように各2次巻線7a、7bに励起された電圧は夫々検
波回路10における整流素子11a、llbで整流され
、史にコンデンサや抵抗等により平滑されて出力端子1
4a、14bに現れる。これら各出力端子間の電圧を第
3図に示される如く出力1、出力2、出力3としてみる
と、それらの出力は第4図に示される如く回転軸lの回
転角に応じたアナログ出力となる。尚出力3で示される
ように二つ一組の2次巻VA7a、7bからの出力を差
動的に取り出すのは、温度ドリフト等をIi Mしたり
、或いはゼロクロス点を設けたりして出力を安定化する
為である。
The rotary differential transformer having the above configuration is used with the rotating shaft l connected to a well-known member to be detected (not shown) (robot arm shaft, AC servo motor rotor, etc.). In this state, a sinusoidal voltage for excitation is applied to the primary winding 5 from an oscillation circuit not shown. The frequency is, for example, I KH
It is about z~10KHz. By applying the above voltage, the primary winding 5 generates magnetic flux. The magnetic flux enters the center of the rotating core 3 through the rotating shaft 1 as shown by the broken line 15 in FIG. leading to. In such a state, a large amount of magnetic flux passes through the magnetic pole member, for example 6a, on the side of the rotating core 3 to which the large diameter portion 3 is close, and less magnetic flux passes through the magnetic pole member, for example 6b, on the side where the power factor diameter portion 3a is close. Only magnetic flux passes through it. As a result, a large voltage is excited in one secondary winding 7a, and the other secondary winding 7a is excited.
Only a small voltage is excited on line 7b. When the rotating core 3 rotates from this state and the distance between the magnetic pole member 6a and the rotating core 3 and the distance between the magnetic pole member 6b and the rotating core 3 become equal, the number of magnetic fluxes passing through the magnetic pole members 6a and 6b becomes equal. Therefore, each quadratic:? ! :The voltages generated on the lines 7a and 7b become equal. When the rotating core 3 further rotates and the large diameter part 3a approaches the magnetic pole member 6b and the small diameter part 3b approaches the magnetic pole member 6a, the secondary winding? The magnitude of the voltage excited at a and 7b is opposite to that in the case of 11η. As mentioned above, the voltage excited in each of the secondary windings 7a and 7b is rectified by the rectifying elements 11a and 11b in the detection circuit 10, and is smoothed by a capacitor, a resistor, etc., and then sent to the output terminal 1.
Appears in 4a and 14b. If we look at the voltages between these output terminals as output 1, output 2, and output 3 as shown in Figure 3, these outputs are analog outputs according to the rotation angle of the rotating shaft l as shown in Figure 4. Become. In addition, as shown in output 3, differentially extracting the output from the pair of secondary windings VA7a, 7b is done by reducing the temperature drift, etc., or by setting a zero cross point to increase the output. This is for stabilization.

次に本願の異なる実施例を示す図面第5図及び第6図に
ついて説明する。この例は二つ一組の2次巻)37ae
、7beを回転コア3eの回転中心に対し90度の位置
関係で配設した例を示すものである。上記2次巻線をこ
のような位置関係にすることにより、出力端子には第6
図に示されるような波形の出力を得ることができる。
Next, FIGS. 5 and 6 showing different embodiments of the present application will be described. This example is a set of two secondary volumes) 37ae
, 7be are arranged at 90 degrees with respect to the rotation center of the rotating core 3e. By arranging the above-mentioned secondary winding in such a positional relationship, the sixth
It is possible to obtain a waveform output as shown in the figure.

なお、機能上前図のものと同−又は均等構成と考えられ
る部分には、前回と同一の符号にアルファヘットのeを
付して重複する説明を省略した。
It should be noted that parts that are functionally the same or equivalent to those in the previous figure are given the same reference numerals as in the previous figure with an alpha character e, and redundant explanations are omitted.

(また次回以降のものにおいても同様の考えでアルファ
ベットのfを付して重複する説明を省略する。) 次に第7図及び第8図は木1?jの更に異なる実施例を
示すもので、回転コアの周囲に12 PJAの磁極部材
を配設すると共に、それらの磁極に二つ一組の2次巻線
を三組(7afと7bf、7a’f と7b’f、7a
”fと7b”「)装着した例を示すものである。
(Also, the same idea will be used in the next and subsequent works, and the redundant explanation will be omitted by adding the letter f.) Next, Figures 7 and 8 are tree 1? In this example, 12 PJA magnetic pole members are arranged around the rotating core, and three pairs of secondary windings (7af, 7bf, 7a') are attached to these magnetic poles. f and 7b'f, 7a
"f and 7b") is shown as an example.

尚それらの各組相互は60度ずつずれた位置関係になる
ようにしてあり、又各組における二つ一組の2次:?!
5.線相互は90度ずれた位置関係となるようにじであ
る。このように構成することにより各検波回路10fの
出力端子には出力1がら出力9で示される出力を第8図
に示されるような位相で得ることができる。
The positions of each set are shifted by 60 degrees, and each set has two sets of secondary: ? !
5. The lines are arranged so that they are 90 degrees apart from each other. With this configuration, outputs indicated by outputs 1 to 9 can be obtained at the output terminals of each detection circuit 10f with the phases shown in FIG. 8.

(発明の効果) 以上のように本発明にあっては、二つ
一組の2次巻線に回転コアの回転角に応じた出力信号を
得ることのできる特長がある。
(Effects of the Invention) As described above, the present invention has the advantage that output signals corresponding to the rotation angle of the rotating core can be obtained from each pair of secondary windings.

しかもその構成は簡易で安価に提供できる効果もある。Moreover, the structure is simple and can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図は縦断面図、
第2図は水平断面図、第3図は2次巻線と検波回路との
結線関係を示す図、第4図は出力波形図、第5図は異な
る実施例を示す第3図と類型の図、第6図は第5図の回
路における出力波形を示す図、第7図は更に異なる実施
例を示す第3図と類型の図、第8図は第7図の回路にお
ける出力波形を示す図。 3・・・回転コア、5・・・1次巻線、?a。 7b・・・2次巻線。
The drawings show an embodiment of the present application, and FIG. 1 is a longitudinal cross-sectional view;
Figure 2 is a horizontal sectional view, Figure 3 is a diagram showing the connection relationship between the secondary winding and the detection circuit, Figure 4 is an output waveform diagram, and Figure 5 is similar to Figure 3, showing a different embodiment. 6 is a diagram showing the output waveform in the circuit of FIG. 5, FIG. 7 is a diagram similar to FIG. 3 showing a further different embodiment, and FIG. 8 is a diagram showing the output waveform in the circuit of FIG. 7. figure. 3... Rotating core, 5... Primary winding, ? a. 7b...Secondary winding.

Claims (1)

【特許請求の範囲】[Claims]  回転自在の回転コアと上記コアに磁束を及ぼすように
した1次巻線と、上記回転コアの外周側に相互に位置を
違えて配設された二つ一組の2次巻線とからなる回転型
作動トランス。
Consists of a freely rotatable rotating core, a primary winding that applies magnetic flux to the core, and a set of secondary windings arranged at different positions on the outer periphery of the rotating core. Rotary actuating transformer.
JP61022596A 1986-02-04 1986-02-04 Rotary differential transformer Pending JPS62180213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022596A JPS62180213A (en) 1986-02-04 1986-02-04 Rotary differential transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022596A JPS62180213A (en) 1986-02-04 1986-02-04 Rotary differential transformer

Publications (1)

Publication Number Publication Date
JPS62180213A true JPS62180213A (en) 1987-08-07

Family

ID=12087218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022596A Pending JPS62180213A (en) 1986-02-04 1986-02-04 Rotary differential transformer

Country Status (1)

Country Link
JP (1) JPS62180213A (en)

Similar Documents

Publication Publication Date Title
JP4357841B2 (en) Magnetoelastic torque sensor
JP2698013B2 (en) Position detection device
JPS6275328A (en) Torque sensor
US4445103A (en) Rotary differential transformer with constant amplitude and variable phase output
JPS6255602B2 (en)
JPS6228413B2 (en)
US3587330A (en) Vertical reference system
JPS62180213A (en) Rotary differential transformer
US3121851A (en) Electromagnetic transducer
US4771200A (en) Synchro generator asymmetric magnetically conductive rotor
JPS6044839A (en) Torque detecting device
JPH0361134B2 (en)
JP2001272204A (en) Torsion quantity measuring apparatus
JP2556383B2 (en) Magnetic resolver
JPH034937Y2 (en)
US3222660A (en) Magnetic position encoder
JPH045337B2 (en)
JPH0718766B2 (en) Magnetostrictive detection type torque sensor
JPH0448142Y2 (en)
JP2535503B2 (en) Geomagnetic direction sensor
JP2599191Y2 (en) Rotary transformer type resolver
JPH0129521Y2 (en)
JPH0526942Y2 (en)
JP2001165703A (en) Winding type rotation detector
JPS61169715A (en) Resolver