JPH0448142Y2 - - Google Patents

Info

Publication number
JPH0448142Y2
JPH0448142Y2 JP2880984U JP2880984U JPH0448142Y2 JP H0448142 Y2 JPH0448142 Y2 JP H0448142Y2 JP 2880984 U JP2880984 U JP 2880984U JP 2880984 U JP2880984 U JP 2880984U JP H0448142 Y2 JPH0448142 Y2 JP H0448142Y2
Authority
JP
Japan
Prior art keywords
phase
rotor
rotating shaft
winding
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2880984U
Other languages
Japanese (ja)
Other versions
JPS60141673U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2880984U priority Critical patent/JPS60141673U/en
Publication of JPS60141673U publication Critical patent/JPS60141673U/en
Application granted granted Critical
Publication of JPH0448142Y2 publication Critical patent/JPH0448142Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は、固定子に励磁巻線とともに検出巻線
も巻回し、回転子は突極性体からなる誘導子形レ
ゾルバの回転子の構造に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the structure of a rotor of an inductor resolver in which an excitation winding and a detection winding are wound around a stator, and the rotor is made of a salient pole body.

〔考案の背景技術〕[Background technology of the invention]

この種装置の従来例(ノンバーニヤ形)を断面
で表わした正面図を第1図に示す。
A front view in cross section of a conventional example (non-vernier type) of this type of device is shown in FIG.

第2図はその励磁(α相、β相)巻線、検出
(θ相)巻線の巻回方向の説明図である。
FIG. 2 is an explanatory diagram of the winding directions of the excitation (α phase, β phase) winding and the detection (θ phase) winding.

このレゾルバは、積層磁性板からなりその内周
に16個の突極(8極)を形成する固定子1、この
固定子1の突極の内周に空隙を介して対向しその
外周に等間隔に突極をそなえ積層した磁性板から
なる回転子2、この回転子2を嵌合固着し図示し
ない他の回転駆動源により回転される回転軸3、
固定子1を励磁するα相励磁巻線4とそのα相と
電気角でπ/2位相がずれた励磁電流が流通する
β相励磁巻線5、回転子2の回転位相を検出する
θ相検出巻線6を具備する。
This resolver consists of a stator 1 that is made of laminated magnetic plates and has 16 salient poles (8 poles) formed on its inner periphery; a rotor 2 made of laminated magnetic plates with salient poles at intervals; a rotating shaft 3 to which the rotor 2 is fitted and fixed and rotated by another rotation drive source (not shown);
An α-phase excitation winding 4 that excites the stator 1, a β-phase excitation winding 5 through which an excitation current whose phase is shifted by π/2 in electrical angle from the α-phase flows, and a θ-phase that detects the rotational phase of the rotor 2. A detection winding 6 is provided.

第2図において、α相励磁巻線4の巻線方向の
正をSとそれと逆の、β相励磁巻線5の巻線方
向の正をCとそれと逆ので表わし、θ相検出巻
線6の固定子各突極での流通方向を矢印で示して
いる。
In FIG. 2, the positive winding direction of the α-phase excitation winding 4 is represented by S and the opposite direction, the positive winding direction of the β-phase excitation winding 5 is represented by C and the opposite direction, and the θ-phase detection winding 6 The direction of flow at each salient pole of the stator is indicated by an arrow.

このレゾルバを2極として考え、それに励磁電
流を流通させ回転軸を回転させるときの等価回路
は第3図のように表わされる。
Considering this resolver as two poles, the equivalent circuit when an excitation current is passed through it to rotate the rotary shaft is shown in FIG.

ここで、 7は励磁電流による回転磁界方向、8は回転子回
転方向、 AT1〜AT4は固定子における第1ないし第4の
分布起磁力(アンペアターン)、 Φ1〜Φ4はAT1〜AT4によつて発生する磁束、 λ1〜λ2はΦ1〜Φ4の回転子への導磁度(パーミア
ンス)、 Nは中性点の磁位、 であり、 かつ、 ATは励磁電流(振幅)アンペア回数、 ωは2πfでfは励磁周波数、 λ0はパーミアンスの平均値レベル、 λnはパーミアンス振幅の正または負の最大振幅
値、 (パーミアンスが正弦波状に変化したとき、λ0
λnの関係は第5図に表わされる。) θは回転軸回転機械角、 V〓はθ相検出巻線の誘起電圧、 nはθ相検出巻線の巻線数、 としている。
Here, 7 is the direction of the rotating magnetic field due to the exciting current, 8 is the rotor rotation direction, AT 1 to AT 4 are the first to fourth distributed magnetomotive forces (ampere turns) in the stator, and Φ 1 to Φ 4 are AT 1 ~The magnetic flux generated by AT 4 , λ 1 ~ λ 2 is the magnetic permeability (permeance) to the rotor of Φ 1 ~ Φ 4 , N is the magnetic potential at the neutral point, and AT is the excitation The current (amplitude) is the number of amperes, ω is 2πf, f is the excitation frequency, λ 0 is the average level of permeance, λ n is the maximum positive or negative amplitude of permeance amplitude, (when permeance changes sinusoidally, λ The relationship between 0 and λ n is shown in Figure 5.) θ is the rotational mechanical angle of the rotating shaft, V〓 is the induced voltage of the θ phase detection winding, and n is the number of turns of the θ phase detection winding.

なお、α相励磁電流i〓とβ相励磁電流i〓の関係
は第4図に示す。
The relationship between the α-phase excitation current i and the β-phase excitation current i is shown in FIG.

そこで、回路方程式は、 AT1−Φ1/λ1=N AT2−Φ2/λ2=N AT3−Φ3/λ3=N AT4−Φ4/λ4=N ……(1) Φ1+Φ2+Φ3+Φ4=0 ……(2) ここで AT1=AT・sinωt AT2=−AT・cosωt AT3=−AT・sinωt AT4=AT・cosωt ……(3) で表わされ、パーミアンスλはその変動分が正弦
波状に変化すると仮定すれば λ1=λ0+λn・cosθ λ2=λ0−λn・sinθ λ3=λ0−λn・cosθ λ4=λ0+λn・sinθ ……(4) となる。したがつて、 N=λ1・AT1+λ2・AT2+λ3・AT3+λ4・AT4/λ1
+λ2+λ3+λ4 =λn・AT/2λ0(sinωt・cosθ+cosωt・sinθ
)=λn/2λ0・AT・sin(ωt+θ)……(5) 各磁束は、 Φ1=λ1(AT1−N) Φ2=λ2(AT2−N) Φ3=λ3(AT3−N) Φ4=λ4(AT4−N) ……(6) 検出コイル6の誘起電圧V〓は、 V〓=−n(dΦ1/dt−dΦ2/dt+dΦ3/dt−dΦ4/d
t)=−nd/dt(Φ1−Φ2+Φ3−Φ4) =−nd/dt{λ1・AT1−λ1・N−λ2・AT2+λ2
・N+λ3・AT3−λ3・N−λ4・AT4・λ4・N}
……(7) ここでd/dtは時間微分、で(7)式の右辺の{ } 内は、 { }=(λ1−λ3)・AT1−(λ2−λ4)・AT2−(
λ1−λ2+λ3−λ4)N =2λn・cosθ・sinωt−2λnsinθ・cosωt =2λn・sin(ωt-θ) ……(8) したがつて、 V〓=−nd/dt{2λn・sin(ωt−θ)}=−2n・
λn・ω・cos(ωt−θ)……(9) となる。
Therefore, the circuit equation is AT 1 −Φ 11 =N AT 2 −Φ 22 =N AT 3 −Φ 33 =N AT 4 −Φ 44 =N...(1 ) Φ 1234 = 0 ...(2) where AT 1 = AT・sinωt AT 2 = −AT・cosωt AT 3 = −AT・sinωt AT 4 = AT・cosωt ...(3) Assuming that the permeance λ changes in a sinusoidal manner, λ 1 = λ 0 + λ n・cosθ λ 2 = λ 0 −λ n・sinθ λ 3 = λ 0 −λ n・cosθ λ 40n・sinθ ...(4). Therefore, N=λ 1・AT 12・AT 23・AT 34・AT 41
234n・AT/2λ 0 (sinωt・cosθ+cosωt・sinθ
)=λ n /2λ 0・AT・sin(ωt+θ)……(5) Each magnetic flux is: Φ 1 = λ 1 (AT 1 −N) Φ 2 = λ 2 (AT 2 −N) Φ 3 = λ 3 (AT 3 -N) Φ 4 = λ 4 (AT 4 -N) ...(6) The induced voltage V of the detection coil 6 is V = -n (dΦ 1 /dt-dΦ 2 /dt+dΦ 3 /dt −dΦ 4 /d
t) = -nd/dt (Φ 1234 ) = -nd/dt {λ 1・AT 1 −λ 1・N−λ 2・AT 22
・N+λ 3・AT 3 −λ 3・N−λ 4・AT 4・λ 4・N}
...(7) Here, d/dt is the time differential, and the inside of { } on the right side of equation (7) is { }=(λ 1 − λ 3 )・AT 1 − (λ 2 − λ 4 )・AT 2 −(
λ 1 −λ 23 −λ 4 )N =2λ n・cosθ・sinωt−2λ n sinθ・cosωt =2λ n・sin(ωt−θ) ……(8) Therefore, V〓=−nd/ dt{2λ n・sin(ωt−θ)}=−2n・
λ n・ω・cos(ωt−θ)……(9).

この関係を第6図、第7図に示す。 This relationship is shown in FIGS. 6 and 7.

したがつて、誘導電圧V〓は機械角θ′に比例して
位相が変化する所謂レゾルバとなる。
Therefore, the induced voltage V〓 becomes a so-called resolver whose phase changes in proportion to the mechanical angle θ'.

いま、2極を考えているので θ=θ′ ……(10) となる。 I'm thinking of two poles now. θ=θ′……(10) becomes.

〔背景技術の問題点〕[Problems with background technology]

ところで、従来例の回転子は、その形状が第7
図(斜視図)に表わされ、その回転に伴うパーミ
アンスλの変化は矩形状に第8図aのようにな
り、これはbの基本波にcの3次高調波、dの5
次高調波……等が重畳したものである。
By the way, the rotor of the conventional example has the shape of the seventh
(perspective view), the permeance λ changes with its rotation in a rectangular shape as shown in Figure 8a, which consists of the fundamental wave of b, the 3rd harmonic of c, and the 5th harmonic of d.
It is a superposition of harmonics, etc.

すなわち、k1,k3,k5,……を常数としたと
き、(4)式はつぎのように表わされる。
That is, when k 1 , k 3 , k 5 , . . . are constants, equation (4) can be expressed as follows.

λ1=λ0+λn(k1cosθ+k3cos3θ+k5cos5θ) λ2=λ0+λn{k1cos(θ+π/2)+k3cos3(θ+
π/2)+k5cos5(θ+π/2)} λ3=λ0+λn{k1cos(θ+π)+k3cos3(θ+π)
+k5cos5(θ+π)} λ4=λ0+λn{k3cos(θ+3/2π)+k3cos3(θ
+3/2π)+k5cos5(θ+3/2π)}……(11) ここで(8)式において、 λ1−λ3=λn〔k1{cosθ−cos(θ+π)}+k3{c
os3θ−cos3(θ+π)}+k5{cos5θ−cos5(θ+π
)}〕 =λn〔2k1cosθ+2k3cos3θ+2k5cos5θ〕 ……(12) λ2−λ4=λn〔k1{cos(θ+π/2)−cos(θ+
3/2π)} +K3{cos3(θ+π/2)−cos3(θ+3/2π)
}+k5{cos5(θ+π/2)−cos5(θ+3/2π)}
〕 =λn〔−2k1sinθ+2k3sin3θ−2k5sin5θ〕……(
13) また、 λ1−λ2+λ3−λ4=0 ……(14) となる。したがつて、(7),(8),(12),(13)式から、
検出コイル6の誘起電圧V〓は、 V〓=−nd/dt{(λ1−λ3)・AT1−(λ2−λ4
・AT2}=−nd/dt 〔2λn{k1cosθ+k3cos3θ+k5cos5θ}AT・sinω
t+2λn{−k1sinθ+k3sinθ −k5sin5θ}cosωt〕=−2ωnλn・AT〔{k1cosθ
+k3cos3θ+k5cos5θ}cosωt +{−k1sinθ+k3sin3θ−k5sin5θ}(−sinωt
)〕=−2ωnλn・ AT〔k1cos(ωt−θ)+k3cos(ωt+3θ)+k5cos
(ωt−5θ)〕……(15) となる。
λ 1 = λ 0 + λ n (k 1 cos θ + k 3 cos 3 θ + k 5 cos 5 θ) λ 2 = λ 0 + λ n {k 1 cos (θ + π/2) + k 3 cos 3 (θ +
π/2) + k 5 cos5 (θ + π/2)} λ 3 = λ 0 + λ n {k 1 cos (θ + π) + k 3 cos3 (θ + π)
+k 5 cos5(θ+π)} λ 40n {k 3 cos(θ+3/2π)+k 3 cos3(θ
+3/2π)+k 5 cos5(θ+3/2π)}……(11) Here, in equation (8), λ 1 −λ 3n [k 1 {cosθ−cos(θ+π)}+k 3 {c
os3θ−cos3(θ+π)}+k 5 {cos5θ−cos5(θ+π
)}] =λ n [2k 1 cosθ+2k 3 cos3θ+2k 5 cos5θ] …(12) λ 2 −λ 4n [k 1 {cos(θ+π/2)−cos(θ+
3/2π)} +K 3 {cos3(θ+π/2)−cos3(θ+3/2π)
}+k 5 {cos5(θ+π/2)−cos5(θ+3/2π)}
] =λ n [−2k 1 sinθ+2k 3 sin3θ−2k 5 sin5θ]……(
13) Also, λ 1 −λ 23 −λ 4 =0 (14). Therefore, from equations (7), (8), (12), and (13),
The induced voltage V〓 of the detection coil 6 is V〓=-nd/dt {(λ 1 − λ 3 )・AT 1 −(λ 2 − λ 4 )
・AT 2 }=-nd/dt [2λ n {k 1 cosθ+k 3 cos3θ+k 5 cos5θ}AT・sinω
t+2λ n {−k 1 sinθ+k 3 sinθ −k 5 sin5θ}cosωt〕=−2ωnλ n・AT〔{k 1 cosθ
+k 3 cos3θ+k 5 cos5θ}cosωt +{−k 1 sinθ+k 3 sin3θ−k 5 sin5θ}(−sinωt
)〕=−2ωnλ n・AT〔k 1 cos(ωt−θ)+k 3 cos(ωt+3θ)+k 5 cos
(ωt−5θ)]...(15)

理想的レゾルバの誘起電圧V〓は(9)式から、 V〓=−2ωnλn・AT・k1cos(ωt−θ)
……(9′) であり、(15)、(9′)式より、従来例ではパーミア
ンス波形に基本波〔第9図b〕以外に高調波〔第
9図c,d〕が含まれ、θ相検出巻線6への誘起
電圧V〓に位相誤差が生じ不具合である。
From equation (9), the induced voltage V〓 of an ideal resolver is: V〓=−2ωnλ n・AT・k 1 cos (ωt−θ)
...(9'), and from equations (15) and (9'), in the conventional example, the permeance waveform includes harmonics [Fig. 9 c, d] in addition to the fundamental wave [Fig. 9 b], A phase error occurs in the induced voltage V to the θ phase detection winding 6, which is a problem.

〔考案の目的〕[Purpose of invention]

ここにおいて本考案は、従来装置の難点を克服
し、位相誤差が発生しない形態の回転子構造をし
た誘導子形レゾルバを提供することを、その目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of conventional devices and to provide an inductor type resolver having a rotor structure in which no phase error occurs.

〔考案の概要〕[Summary of the idea]

本考案は、位相誤差の少ない特性のレゾルバを
得るにはパーミアンスの変化を正弦波状にしなけ
ればならないことと、 パーミアンス∝回転子突極面の面積/固定子と回転子
の空隙長さ であることから、回転子の突極に軸方向に正弦波
近似スキユーを形成させた誘導子形レゾルバであ
る。
In this invention, in order to obtain a resolver with characteristics with little phase error, the change in permeance must be sinusoidal, and the permeance ∝ area of rotor salient pole surface/gap length between stator and rotor. This is an inductor type resolver in which a sinusoidal approximation skew is formed in the axial direction on the salient poles of the rotor.

〔考案の実施例〕[Example of idea]

本考案の一実施例における斜視図を第10図に
表わす。
FIG. 10 shows a perspective view of an embodiment of the present invention.

この回転子2は第1図の8極の誘導子形レゾル
バに対応しており、回転子2の全ての突起部の軸
方向の形状が正弦波に近似したスキユー7を形成
する。
This rotor 2 corresponds to the eight-pole inductor resolver shown in FIG. 1, and the axial shape of all the protrusions of the rotor 2 forms a skew 7 that approximates a sine wave.

このような形状に成形することは、マシニング
センター等で容易に加工できる。
Molding into such a shape can be easily performed using a machining center or the like.

本考案は、 パーミアンス∝回転子突極面の面積/固定子と回転子
の空隙長 であることから、また位相誤差の少ない特性のレ
ゾルバを得るにはパーミアンスの変化を正弦波状
にしなければならないことによつている。つま
り、パーミアンスの変化を正弦波にすることは、
突極面の面積の変化を正弦波にするのに大体対応
することに基づく。
In this invention, permeance ∝ area of rotor salient pole surface/gap length between stator and rotor, and in order to obtain a resolver with characteristics with little phase error, permeance changes must be sinusoidal. It is based on In other words, making the change in permeance a sine wave is
It is based on the fact that the change in area of the salient pole surface roughly corresponds to a sine wave.

この実施例において、第11図は回転子の側面
図、第12図は回転子の正面図、第13図は回転
子表面の展開図である。
In this embodiment, FIG. 11 is a side view of the rotor, FIG. 12 is a front view of the rotor, and FIG. 13 is a developed view of the rotor surface.

本考案は回転子突起部が4個の例について説明
したが、その個数が1,2,3,4,5,6,
7,8,9,……のように任意数で適用可能であ
る。
The present invention has been described with reference to an example in which there are four rotor protrusions, but the number may be 1, 2, 3, 4, 5, 6,
Any number such as 7, 8, 9, . . . can be applied.

第14図にこの実施例における機械角θの回転
によるパーミアンスλの変化は正弦波状を呈する
ことを示す。
FIG. 14 shows that the change in permeance λ due to the rotation of the mechanical angle θ in this embodiment exhibits a sinusoidal shape.

〔考案の効果〕[Effect of idea]

かくして本考案によれば、誘導子形レゾルバに
おける検出誤差が著るしく少ない高精度レベルの
ものが求められ、信頼性が甚しく向上し、かつ量
産性に富むものが得られ、この分野で工業的に益
するところ大きい。
Thus, according to the present invention, there is a need for an inductor type resolver with a high level of accuracy with significantly less detection error, and a device with significantly improved reliability and ease of mass production has been obtained, and has become an industry leader in this field. There are great benefits to this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成を示す説明図、第2図は
各巻線の分布図、第3図は磁気的等価回路図、第
4図は励磁電流(α相、β相)の関係図、第5図
は機械角の回転による導磁度の変化図、第6図は
励磁電流と検出電圧の回転に伴う変化図、第7図
は回転機械角と検出位相の関係図、第8図は従来
例の回転子の斜視図、第9図a〜dはその回転に
伴うパーミアンスの変化解析図、第10図は本考
案の一実施例における回転子の斜視図、第11図
はその側面図、第12図はその正面図、第13図
はその展開図、第14図はその回転によるパーミ
アンスの変化説明図である。 1……固定子、2……回転子、3……回転軸、
4……α相励磁巻線、5……β相励磁巻線、6…
…θ相検出巻線、7……正弦波状スキユー。
Fig. 1 is an explanatory diagram showing the configuration of a conventional example, Fig. 2 is a distribution diagram of each winding, Fig. 3 is a magnetic equivalent circuit diagram, Fig. 4 is a relation diagram of excitation current (α phase, β phase), Figure 5 is a diagram of changes in magnetic permeability due to rotation of mechanical angle, Figure 6 is a diagram of changes in exciting current and detection voltage due to rotation, Figure 7 is a diagram of the relationship between rotational mechanical angle and detection phase, and Figure 8 is a diagram of changes in magnetic permeability due to rotation of mechanical angle. A perspective view of a conventional rotor, FIGS. 9a to 9d are analysis diagrams of changes in permeance due to rotation, FIG. 10 is a perspective view of a rotor in an embodiment of the present invention, and FIG. 11 is a side view thereof. , FIG. 12 is a front view thereof, FIG. 13 is a developed view thereof, and FIG. 14 is an explanatory diagram of changes in permeance due to rotation. 1... Stator, 2... Rotor, 3... Rotating shaft,
4...α-phase excitation winding, 5...β-phase excitation winding, 6...
...θ phase detection winding, 7...Sine wave skew.

Claims (1)

【実用新案登録請求の範囲】 1 回転子の外周側面に設けた回転方向突起に、
回転軸方向に正弦波状スキユーを形成したこと
を特徴とする誘導子形レゾルバ。 2 内周に等間隔に複数個の突出部を設けた磁性
体からなる固定子と、 前記突出部の一つおきに巻回しα相の交流励
磁電流を流通させるα相励磁巻線と、 前記突出部の他の一つおきに巻回し前記α相
と電気角でπ/2ずれたβ相の交流励磁電流を
流通させるβ相励磁巻線と、 前記突出部のすべてに巻回しθ相検出電圧が
誘起されるθ相検出巻線と、 前記固定子と空隙を介して対向し回転軸に嵌
合固着されその外周に等間隔に前記突起をそな
えた磁性体からなる回転子と、 回転自在に支承された回転軸と、 とからなる実用新案登録請求の範囲第1項記載
の誘導子形レゾルバ。
[Claims for Utility Model Registration] 1. On the rotation direction protrusion provided on the outer peripheral side of the rotor,
An inductor type resolver characterized by forming a sinusoidal skew in the direction of the rotation axis. 2. A stator made of a magnetic material having a plurality of protrusions arranged at equal intervals on its inner periphery; an α-phase excitation winding wound around every other protrusion to allow an α-phase AC excitation current to flow therethrough; A β-phase excitation winding is wound around every other protruding portion to flow a β-phase AC excitation current electrically shifted by π/2 from the α phase, and a β-phase excitation winding is wound around every other protruding portion to conduct θ-phase detection. a θ-phase detection winding in which a voltage is induced; a rotor made of a magnetic material that faces the stator through a gap, is fitted and fixed to a rotating shaft, and has the protrusions arranged at equal intervals on its outer periphery, and is rotatable; An inductor type resolver according to claim 1, comprising: a rotating shaft supported by a rotating shaft; and a rotating shaft supported by a rotating shaft.
JP2880984U 1984-02-29 1984-02-29 Inductor type resolver Granted JPS60141673U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2880984U JPS60141673U (en) 1984-02-29 1984-02-29 Inductor type resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2880984U JPS60141673U (en) 1984-02-29 1984-02-29 Inductor type resolver

Publications (2)

Publication Number Publication Date
JPS60141673U JPS60141673U (en) 1985-09-19
JPH0448142Y2 true JPH0448142Y2 (en) 1992-11-12

Family

ID=30527034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2880984U Granted JPS60141673U (en) 1984-02-29 1984-02-29 Inductor type resolver

Country Status (1)

Country Link
JP (1) JPS60141673U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344125B2 (en) * 2008-09-05 2013-11-20 ミネベア株式会社 Winding method of detector winding and brushless type rotation detector
JP2012522480A (en) * 2009-03-27 2012-09-20 オーチス エレベータ カンパニー Electric machine with multidirectional ramp

Also Published As

Publication number Publication date
JPS60141673U (en) 1985-09-19

Similar Documents

Publication Publication Date Title
JP3182493B2 (en) Variable reluctance angle detector
EP0009102B1 (en) A multipolar resolver
JP4002308B2 (en) Inductive rotational position detector
JP2597617B2 (en) Rotation converter
WO1990003685A1 (en) Ac servo motor of the type of variable reluctance
JP2624747B2 (en) Resolver
JPH0448142Y2 (en)
KR920000685B1 (en) Synchronous motor
KR900005759B1 (en) Electrical motor with improved tachometer generator
JPH10288537A (en) Variable reluctance type resolver
JP3429464B2 (en) Variable reluctance angle detector
WO2022124413A1 (en) Resolver
JPH0526942Y2 (en)
JPS61231866A (en) Single-phase stepping motor
JPH065161B2 (en) Inductive type position detector with separated stator core
JP2556383B2 (en) Magnetic resolver
JPH0125289Y2 (en)
JPH0421067Y2 (en)
JPH076709U (en) Variable reluctance resolver
JPH0640467Y2 (en) Brushless speed generator
JPH0416613Y2 (en)
JP2001165703A (en) Winding type rotation detector
JP3314452B2 (en) Axial gap resolver
JPH0616810U (en) Rotation angle detector
JPS62153701A (en) Apparatus for detecting angle of rotation