JPS62180057A - Production of thin carbon film - Google Patents

Production of thin carbon film

Info

Publication number
JPS62180057A
JPS62180057A JP61019570A JP1957086A JPS62180057A JP S62180057 A JPS62180057 A JP S62180057A JP 61019570 A JP61019570 A JP 61019570A JP 1957086 A JP1957086 A JP 1957086A JP S62180057 A JPS62180057 A JP S62180057A
Authority
JP
Japan
Prior art keywords
thin film
substrate
carbon thin
gas
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61019570A
Other languages
Japanese (ja)
Inventor
Misuzu Watanabe
渡辺 三鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61019570A priority Critical patent/JPS62180057A/en
Priority to US07/007,747 priority patent/US5073241A/en
Priority to CA000528655A priority patent/CA1309057C/en
Priority to EP87101271A priority patent/EP0231894B1/en
Priority to DE8787101271T priority patent/DE3775076D1/en
Priority to KR1019870000779A priority patent/KR940002750B1/en
Priority to DK053087A priority patent/DK168337B1/en
Publication of JPS62180057A publication Critical patent/JPS62180057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a thin film of diamondlike or amorphous carbon having satisfactory characteristics by a low temp. process by carrying out sputtering on a substrate with graphite as a target in a gaseous flon-H2 mixture having a specified mixing ratio under a specified pressure. CONSTITUTION:A gaseous flon-H2 mixture contg. 1-100ppm flon is introduced into a vacuum vessel so as to regulate the pressure to 0.7-665Pa. A substrate and a target electrode of graphite are placed in the vessel and a thin carbon film is formed on the substrate by reactive sputtering.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、ダイヤモンド状炭素薄膜又はアモルファス炭
素薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for producing a diamond-like carbon thin film or an amorphous carbon thin film.

B0発明の概要 本発明は、基板上に炭素薄膜を形成するにおいて、 グラファイトをターゲットとしフロン系ガスと水素との
混合ガスの所定圧力下で反応性スパッタ法で基板上に堆
積製膜することにより、低温プロセスにして膜質、膜性
能に優れ、装置構成及び製膜制御も容易にできるように
したものである。
B0 Summary of the Invention The present invention involves forming a carbon thin film on a substrate by depositing it on the substrate using a reactive sputtering method using a mixed gas of fluorocarbon gas and hydrogen under a predetermined pressure using graphite as a target. This method is a low-temperature process with excellent film quality and performance, and allows for easy equipment configuration and film formation control.

C従来の技術 ダイヤモンド状炭素薄膜又はアモルファス炭素薄膜の製
造方法として、イオンビーム法やプラズマCVD法など
が良く知られている。
C. Prior Art Ion beam methods, plasma CVD methods, and the like are well known as methods for producing diamond-like carbon thin films or amorphous carbon thin films.

イオンビーム法は、元素(炭素源)を真空中でイオン化
して静電的に加速及び目的とするイオンを分離してター
ゲット(基板)に打込み、炭素薄膜を形成する。
In the ion beam method, an element (carbon source) is ionized in a vacuum, electrostatically accelerated, and target ions are separated and implanted into a target (substrate) to form a carbon thin film.

プラズマCVD法は、普通のCVD法による膜形成に放
電を伴わせて基板に炭素薄膜を形成する。
In the plasma CVD method, a carbon thin film is formed on a substrate by adding discharge to film formation by a normal CVD method.

D1発明が解決しようとする問題点 従来のイオンビーム法による炭素薄膜の形成では、炭素
イオンの加速に大損りなイオン加速装置を必要とするし
、基板にイオンビームを照射するため界面に構造欠陥が
生じ易い問題があった。また、有機材料や半導体上に炭
素薄膜を形成しようとすると、これら基板がイオンビー
ムに侵されることになり、膜形成の材質が制約される。
D1 Problems to be Solved by the Invention Forming carbon thin films using the conventional ion beam method requires a costly ion accelerator to accelerate carbon ions, and irradiating the substrate with the ion beam causes structural defects at the interface. There were some problems that could easily occur. Furthermore, when attempting to form a carbon thin film on an organic material or a semiconductor, these substrates are attacked by the ion beam, which limits the materials for film formation.

従来のプラズマCVD法では、炭化水素ガスを分解して
炭素源とずろため、再重合などにより多種類の成長核踵
か生じ易く、任意の膜特性を有する薄膜を形成するのが
難しくなる。また、良質の膜形成には基板温度を200
℃以上に保持する必要があり、この温度に保持できない
材質の基板には薄膜を形成できない。
In the conventional plasma CVD method, since hydrocarbon gas is decomposed and used as a carbon source, many types of growth nuclei are likely to occur due to repolymerization, etc., making it difficult to form a thin film with arbitrary film characteristics. In addition, for high quality film formation, the substrate temperature should be adjusted to 200°C.
It is necessary to maintain the temperature above ℃, and a thin film cannot be formed on a substrate made of a material that cannot be maintained at this temperature.

本発明の目的は、基板を低温にしなから膜質のコントロ
ールも容易にして良質のダイヤモンド状又はアモルファ
ス炭素薄膜を形成できる製造方法を提供するにある。
An object of the present invention is to provide a manufacturing method that can form a diamond-like or amorphous carbon thin film of good quality by keeping the substrate at a low temperature and easily controlling the film quality.

E1問題点を解決するための手段と作用本発明は上記問
題点に鑑みてなされたもので、真空容器内でグラファイ
トをターゲット電極とし、該真空容器内に混合比1乃至
1100ppのフロン系ガスと水素の混合ガスを圧力0
.7Pa乃至665Paにし、該真空容器内に配置した
基板上に反応性スパッタ法で炭素薄膜を形成する製造方
法とし、絶縁抵抗を悪くするSP3結合を少なくして高
抵抗率を得、また光学的バンドギャップ、スピン密度の
性能も向上し、さらに淡黄色から無色の透明薄膜を得る
Means and operation for solving the E1 problem The present invention has been made in view of the above problems, and uses graphite as a target electrode in a vacuum container, and a fluorocarbon-based gas with a mixing ratio of 1 to 1100 ppm in the vacuum container. Hydrogen mixed gas at 0 pressure
.. 7 Pa to 665 Pa, and a carbon thin film is formed by reactive sputtering on the substrate placed in the vacuum chamber. This method reduces SP3 bonds that worsen insulation resistance, obtains high resistivity, and improves the optical band. The gap and spin density performance is also improved, and transparent thin films ranging from pale yellow to colorless can be obtained.

F、実施例 第1図は本発明方法に使用するスパッタリング装置の要
部断面図である。真空容器lはフランジ付金属製円筒2
とこの両端部が0リング3等をシール手段として金属製
の上蓋4と下M5で気密封止されて構成される。この真
空容器1には円筒2の上側部に雰囲気ガス導入管6が設
けられ、また下M5の中央部に真空ポンプに直結される
排気管7が設けられる。上M4には真空容器l内で接地
電位の電子引抜き対向電極8が設けられ、これに対向し
てターゲット電極9が設けられる。
F. Example FIG. 1 is a cross-sectional view of the main parts of a sputtering apparatus used in the method of the present invention. Vacuum container l is a metal cylinder with flange 2
Both ends are hermetically sealed with a metal upper cover 4 and a lower M5 using an O-ring 3 or the like as a sealing means. This vacuum vessel 1 is provided with an atmosphere gas introduction pipe 6 at the upper side of the cylinder 2, and an exhaust pipe 7 directly connected to a vacuum pump at the center of the lower M5. On the upper M4, an electron extraction counter electrode 8 at a ground potential is provided within the vacuum vessel 1, and a target electrode 9 is provided opposite to this.

ターゲット電極9の背面には電極箱10内でマグネトロ
ン11が設けられ、外部から高周波電流がマグネトロン
11に供給されることで該ターゲット電極9が加熱され
る。マグネトロン11には供給側金属製冷却水管12と
排水側金属製冷却水管13によって冷却水人口14から
冷却水出口15まで冷却水が通されて冷却される。これ
ら水管12.13はシールド16で覆われて・円筒2の
側部から気密シールドで真空容器l外に引出される。
A magnetron 11 is provided in an electrode box 10 on the back side of the target electrode 9, and the target electrode 9 is heated by supplying a high frequency current to the magnetron 11 from the outside. Cooling water is passed through the magnetron 11 from a cooling water port 14 to a cooling water outlet 15 by a metal cooling water pipe 12 on the supply side and a metal cooling water pipe 13 on the drain side to cool the magnetron 11 . These water tubes 12, 13 are covered with a shield 16 and are led out of the vacuum vessel l from the side of the cylinder 2 with an airtight shield.

こうしたスパッタリング装置において、本発明方法では
薄膜が形成される堆積基板17.18は、上M4の内面
及び円筒2の内周面に夫々絶縁支持された基板ホルダー
19.20上に取付けられるか、また、堆積基板21と
して対向電極8に取付けられる。
In such a sputtering apparatus, the deposition substrate 17.18 on which a thin film is formed in the method of the present invention is mounted on a substrate holder 19.20 that is insulated and supported on the inner surface of the upper M4 and the inner peripheral surface of the cylinder 2, respectively. , is attached to the counter electrode 8 as a deposition substrate 21.

22は基板支え部材である。また、熱電対23は堆積基
板17の温度を測定できるよう上M4から気密シールド
で引出される。
22 is a board supporting member. Further, the thermocouple 23 is drawn out from the upper M4 with an airtight shield so that the temperature of the deposition substrate 17 can be measured.

なお、堆積基板17.18はプラズマによる励起ソース
のスパッタ粒子がトランスポートする領域の外側にされ
る。すなわち、真空容器l内で破線で示すA部が電極8
.9間及びその周辺に発生しているプラズマ状態の領域
で、B部がプラズマ領域Aに存在するスパッタ粒子がト
ランスポートする領域とすると、領域Bの外側になる領
域Cに堆積基板17.18が取付けられる。この領域C
では領域Aからトランスポートされたスパッタ粒子が堆
積基板17.18上にソフトにデポジツションする。な
お、この領域Cに堆積基板17.18を配置するにおい
て、領域Cにはトランスポートされた粒子中の大部分か
らなる荷電粒子が電界等の影響を受は易いので、実施に
あたっては均一な電位、例えば接地電位近傍とするなど
の配慮がなさ2する。
Note that the deposition substrates 17 and 18 are placed outside the region where sputtered particles of the plasma excitation source are transported. That is, part A shown by the broken line in the vacuum container l is the electrode 8.
.. If part B is the region where the sputtered particles existing in plasma region A are transported in the plasma state region generated in and around 9, then the deposited substrate 17 and 18 are in region C outside region B. Installed. This area C
Then, the sputtered particles transported from region A are deposited softly on the deposition substrate 17, 18. Note that when placing the deposition substrates 17 and 18 in this region C, since the charged particles, which are the majority of the particles transported to region C, are easily affected by electric fields, etc., it is necessary to maintain a uniform potential. For example, no consideration was given to setting the voltage near the ground potential2.

また、雰囲気ガス導入管6からは水素ガスとフロン系ガ
スの、混合ガスが導入され、ターゲット電極9にはグラ
ファイトが使用される。
Further, a mixed gas of hydrogen gas and fluorocarbon gas is introduced from the atmospheric gas introduction pipe 6, and graphite is used for the target electrode 9.

このように、スパッタリング装置を使い、炭素源として
固体のグラファイトをターゲット電極とし、水素ガスと
フロン系ガスの混合ガスを導入し、真空容器内圧力を調
整し、反応性スパッタ法により堆積基板17.18ある
いは21上にダイヤモンド状又はアモルファス炭素薄膜
を形成する。
In this way, using a sputtering device, using solid graphite as a carbon source as a target electrode, introducing a mixed gas of hydrogen gas and fluorocarbon gas, and adjusting the pressure inside the vacuum chamber, the deposition substrate 17. A diamond-like or amorphous carbon thin film is formed on 18 or 21.

以下、本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.

第1図中、ターゲット電極9に固体のグラファイトを使
い、堆積基板17.18.21を夫々セットした後、真
空容器1内を1.33X to−5Pa(10−’To
rr)まで減圧し、導入管6からはテトロフルオロメタ
ン(CF4)と水素(H7)の混合比CF4/ H2=
 5 ppmの混合ガスを67Pa(0,5Torr)
まで導入する。真空容器1内ガス圧力が安定した後、マ
グネトロン11には高周波(13,56MHz)電流を
流し、この電流はターゲット電極9に対し6.8W/c
m”の電力になるよう制御し、9時間のスパッタリング
を行った。
In FIG. 1, solid graphite is used as the target electrode 9, and after setting the deposition substrates 17, 18, and 21, the inside of the vacuum chamber 1 is heated to 1.33X to 5Pa (10-'To
rr), and the mixture ratio of tetrofluoromethane (CF4) and hydrogen (H7) CF4/H2=
5 ppm mixed gas at 67 Pa (0.5 Torr)
to be introduced. After the gas pressure inside the vacuum chamber 1 has stabilized, a high frequency (13.56 MHz) current is applied to the magnetron 11, and this current is 6.8 W/c to the target electrode 9.
The sputtering was performed for 9 hours while controlling the power to be 50 m''.

この結果、ガラスにした基板17.18及び21上に形
成された炭素薄膜の特性を下記表に示す。
The properties of the carbon thin films formed on the glass substrates 17, 18 and 21 are shown in the table below.

第1表 な お   棗 由   帛 六BA  I−ヨ÷ す
 tl  の i+    7 口 ・ノ ゼ 7を混
合しない場合の抵抗率を示し、フロンガスを混合するこ
とにより抵抗率を高めうろことが明らかである。また、
形成された薄膜の密着度は、粘着テープを薄膜に張り付
けた剥離テストによるもので、基板17にあっても全く
剥がれが認められなかった。さらに、スパッタ中の基板
温度はトランスポート外であれば低温下でスパッタリン
グが可能となることを意味している。また、薄膜は淡黄
色から無色の透明薄膜になった。
Table 1 shows the resistivity when 7 is not mixed, and it is clear that the resistivity can be increased by mixing fluorocarbon gas. . Also,
The degree of adhesion of the formed thin film was determined by a peel test in which an adhesive tape was attached to the thin film, and no peeling was observed even on the substrate 17. Furthermore, the substrate temperature during sputtering means that sputtering can be performed at a low temperature outside the transport. In addition, the thin film changed from pale yellow to a colorless transparent thin film.

また、形成条件を種々変えて堆積基板17.18゜21
に形成した各薄膜について、赤外線吸収スペクトル、抵
抗率、スピン密度等の測定結果を第2図乃至第5図を参
照して説明する。
In addition, by changing the formation conditions variously, the deposition substrate 17.18°21
The measurement results of infrared absorption spectra, resistivity, spin density, etc. for each thin film formed will be explained with reference to FIGS. 2 to 5.

第2図は基板17に形成した薄膜の赤外吸収スペクトル
を混合ガス圧を40Pa〜267Paに変えた場合で示
し、水素ガスのみでスパッタリングした場合と殆んど同
じスペクトルを呈するしのであった。
FIG. 2 shows the infrared absorption spectra of the thin film formed on the substrate 17 when the mixed gas pressure was changed from 40 Pa to 267 Pa, and the spectrum was almost the same as when sputtering was performed using only hydrogen gas.

また、これら薄膜は、(、−H伸縮振動による吸収はほ
とんどSP3結合によるしので、電気抵抗を下げる要因
となるSP2結合(3025cm−’ lこ出る吸収)
は少なく、lXl0”Ω・cm以上の高抵抗率であるこ
とと対応している。また、光学的バンドギャップ(Eg
(opt))は2.95eV、スピン密度は3 X 1
0”/ cm’で水素ガスのみによるものでは6 X 
10I8/ cm3であった。
In addition, in these thin films, most of the absorption due to -H stretching vibration is due to SP3 bonds, so SP2 bonds (absorption of 3025 cm-'l) are a factor in lowering electrical resistance.
is small, which corresponds to a high resistivity of lXl0"Ω・cm or more. Also, the optical band gap (Eg
(opt)) is 2.95 eV, spin density is 3 x 1
0"/cm' and 6 X when using only hydrogen gas
It was 10I8/cm3.

次に、第3図は混合ガス圧を1.33Pa(0,01T
orr)。
Next, Figure 3 shows the mixed gas pressure at 1.33 Pa (0.01 T).
orr).

6.67Pa(0,05Torr)、 13.3Pa(
0,ITorr)、 40.0Pa(0,3Torr)
、 100T’a(0,75Torr)、 133Pa
(1,0Torr)、 200Pa(1,5Torr)
及び267Pa(2,0Torr)と変えて形成した炭
素薄膜の抵抗率(ρ)への依存性の測定結果を示ず。
6.67 Pa (0.05 Torr), 13.3 Pa (
0,ITorr), 40.0Pa(0,3Torr)
, 100T'a (0.75Torr), 133Pa
(1,0 Torr), 200 Pa (1,5 Torr)
The measurement results of the dependence on the resistivity (ρ) of the carbon thin film formed at 267 Pa (2.0 Torr) are not shown.

同様に、第4図は混合ガス圧を変えたものについて光学
的バンドギャップとスピン密度を示す。
Similarly, FIG. 4 shows the optical bandgap and spin density for different gas mixture pressures.

以上までのことより、本実施による製造方法で形成され
た炭素薄膜は、絶縁抵抗を悪くするSP2結合が少ない
高抵抗で、光学的バンドギャップが2.05〜3.15
’eVである良質の炭素薄膜が得られることが明らかで
ある。さらに、スピン密度が2 X 10”〜3 X 
10”/ cm3と少なく、半導体素材として不純物を
ドーピングして用いることら可能である。
From the above, the carbon thin film formed by the manufacturing method according to this embodiment has high resistance with few SP2 bonds that worsen insulation resistance, and has an optical band gap of 2.05 to 3.15.
It is clear that a good quality carbon thin film with a voltage of 'eV can be obtained. Furthermore, the spin density is 2 X 10"~3 X
It is possible to use it as a semiconductor material by doping it with impurities.

第5図は混合ガス比を1〜1100ppまで変え、その
ガス圧が66.7Paで形成した炭素薄膜の抵抗率(ρ
)を示す。この結果からも明らかなように、混合ガスの
フロンが1 ppm未満では抵抗率が悪くなり、また1
100ppを越えると飽和する傾向を示すと共に容器壁
などに対するフロンの腐蝕性が大きくなる。
Figure 5 shows the resistivity (ρ
) is shown. As is clear from this result, if the CFC content in the mixed gas is less than 1 ppm, the resistivity becomes poor;
If it exceeds 100 pp, it tends to become saturated and the corrosiveness of the fluorocarbons to the container walls increases.

これらの事実から、混合ガス比が1〜1100ppの範
囲が望ましいことが明らかになった。
From these facts, it has become clear that the mixed gas ratio is preferably in the range of 1 to 1100 pp.

また、第2図乃至第5図の特性から、混合ガス圧は0.
7Pa 〜665Pa(5Torr)が望ましい。すな
わち、ガス圧が0.7Paよりも低いと抵抗率が低くな
り、スピン密度も上って思わしくない特性になるし、ガ
ス圧が665Paを越えると第2図示の赤外吸収スペク
トルの波長2960cm−’での吸収係数がさらに大き
くなって膜質の変化が予測されるしスピン密度も大きく
なる傾向にある。
Also, from the characteristics shown in FIGS. 2 to 5, the mixed gas pressure is 0.
7 Pa to 665 Pa (5 Torr) is desirable. That is, if the gas pressure is lower than 0.7 Pa, the resistivity will be low and the spin density will also increase, resulting in undesirable characteristics.If the gas pressure is higher than 665 Pa, the wavelength of the infrared absorption spectrum shown in Figure 2 is 2960 cm- It is predicted that the absorption coefficient at ' will become even larger and the film quality will change, and the spin density will also tend to increase.

なお、実施例において、高温プロセスで製膜するには第
1図の基板17. tg部に温度コントロールされるヒ
ータを付加すれば良いし、逆に低温で製膜するには該基
板部に冷却パイプを付加して温度コントロールされた水
や液体窒素などの冷媒を流せば良い。また、フロン系ガ
スとしては、テトロフルオロメタン(CF4)に限らず
、C−F−、C5Fa、 C−C,Fs、 C5F1t
、 ClIF5のようなフロン系ガスに置換して同様の
効果が得られた。
In the embodiment, in order to form a film using a high temperature process, the substrate 17. shown in FIG. 1 is used. A temperature-controlled heater may be added to the tg section, or conversely, to form a film at a low temperature, a cooling pipe may be added to the substrate section to flow a temperature-controlled coolant such as water or liquid nitrogen. In addition, fluorocarbon gases include not only tetrofluoromethane (CF4) but also C-F-, C5Fa, C-C, Fs, and C5F1t.
A similar effect was obtained by replacing the gas with a fluorocarbon gas such as ClIF5.

G1発明の効果 以上のとおり、本発明によれば、一般的スパッタ法に準
拠する方法を採りながら、グラファイトをターゲットと
してフロン系ガスと水素の混合比及び容器内圧力を適切
にすることでダイヤモンド状あるいはアモルファス炭素
薄膜を堆積形成するようにしたため、次のような効果が
ある。
G1 Effects of the Invention As described above, according to the present invention, diamond-like formation is achieved by using a method that complies with the general sputtering method, and by using graphite as a target and adjusting the mixing ratio of fluorocarbon gas and hydrogen and the pressure inside the container. Alternatively, by depositing an amorphous carbon thin film, the following effects can be obtained.

(1)炭素薄膜が低温プロセスで形成できるため、原理
的にあらゆる種類の基板上に製膜できる。
(1) Since carbon thin films can be formed by low-temperature processes, they can be formed on all kinds of substrates in principle.

(2)装置構成を比較的簡単にしながらしかもコントロ
ールを複雑にすることなく、良好な特性の薄膜を得るこ
とができる。
(2) A thin film with good properties can be obtained with a relatively simple device configuration and without complicating control.

(3)基板配置はプラズマのトランスポート範囲外にし
ても良く、製造効率を高めるし、基板の種類に応じた温
度条件等を選択できる。
(3) The substrate arrangement may be outside the plasma transport range, which increases manufacturing efficiency and allows selection of temperature conditions etc. according to the type of substrate.

(4)従来法に較べてスピン密度が低く、すなわちダン
グリングボンドの数が少なく、しかも光学的バンドギャ
ップを広くして抵抗率の高い薄膜を得ることができる。
(4) Compared to conventional methods, the spin density is lower, that is, the number of dangling bonds is smaller, and the optical bandgap is widened, making it possible to obtain a thin film with high resistivity.

(5)薄膜が淡黄色から無色になり、可視光から赤外ま
で非常に高い光透過性を得ることができる。
(5) The thin film changes from pale yellow to colorless, and has extremely high light transmittance from visible light to infrared light.

(6)スパッタリングによる製膜のため薄膜と基板の密
着性に優れる。
(6) Because the film is formed by sputtering, the adhesion between the thin film and the substrate is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に使用するスパッタリング装置の要
部構成図、第2図は実施例による薄膜の赤外吸収スペク
トル、第3図は実施例における薄膜形成の混合ガス圧と
抵抗率の関係を示す図、第4図は実施例における薄膜形
成の混合ガス圧と光学的バンドギャップ及びスピン密度
の関係を示す図、第5図は実施例における薄膜形成のガ
ス混合比と抵抗率の関係を示す図である。 l・・・真空容器、6・・・ガス導入管、7・・・排気
管、8・・・対向電極、9・・・ターゲット電極、11
・・・マグネトロン、17.18.21・・・堆積基板
。 第3図 MSK# /)Ilhffス圧(P+2+CF4HR4
aZ64スL PH2+ CF4(Torr)遵台づ1
スL PH2十CF4(Torr)第5図 CF4漢ガjr:2 ろ有≦カニ!!Pづε化31&’
< CF4 /H2(Ppm )昭和62年1 月27
 日
Figure 1 is a block diagram of the main parts of the sputtering apparatus used in the method of the present invention, Figure 2 is the infrared absorption spectrum of the thin film according to the example, and Figure 3 is the relationship between mixed gas pressure and resistivity for thin film formation in the example. FIG. 4 is a diagram showing the relationship between the mixed gas pressure, optical band gap, and spin density for thin film formation in the example, and FIG. 5 is a diagram showing the relationship between the gas mixture ratio and resistivity for thin film formation in the example. FIG. l...Vacuum container, 6...Gas introduction pipe, 7...Exhaust pipe, 8...Counter electrode, 9...Target electrode, 11
...Magnetron, 17.18.21...Deposition substrate. Figure 3 MSK#/) Ilhff pressure (P+2+CF4HR4
aZ64L PH2+ CF4 (Torr) 1
S L PH20 CF4 (Torr) Figure 5 CF4 Kanga jr: 2 Roari ≦ Crab! ! Pzuε conversion 31&'
< CF4 /H2 (Ppm) January 27, 1988
Day

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器内でグラファイトをターゲット電極とし
、該真空容器内に混合比1乃至100ppmのフロン系
ガスと水素の混合ガスを圧力0.7Pa乃至665Pa
にし、該真空容器内に配置した基板上に反応性スパッタ
法で炭素薄膜を形成することを特徴とする炭素薄膜の製
造方法。
(1) Graphite is used as a target electrode in a vacuum container, and a mixed gas of fluorocarbon gas and hydrogen at a mixing ratio of 1 to 100 ppm is placed in the vacuum container at a pressure of 0.7 Pa to 665 Pa.
A method for producing a carbon thin film, comprising: forming a carbon thin film on a substrate placed in the vacuum container by a reactive sputtering method.
(2)特許請求の範囲第1項において、前記基板に加熱
用ヒータ又は冷却手段を設けたことを特徴とする炭素薄
膜の製造方法。
(2) The method for manufacturing a carbon thin film according to claim 1, characterized in that the substrate is provided with a heater or a cooling means.
JP61019570A 1986-01-31 1986-01-31 Production of thin carbon film Pending JPS62180057A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61019570A JPS62180057A (en) 1986-01-31 1986-01-31 Production of thin carbon film
US07/007,747 US5073241A (en) 1986-01-31 1987-01-28 Method for carbon film production
CA000528655A CA1309057C (en) 1986-01-31 1987-01-30 Method for carbon film production
EP87101271A EP0231894B1 (en) 1986-01-31 1987-01-30 Method for carbon film production
DE8787101271T DE3775076D1 (en) 1986-01-31 1987-01-30 METHOD FOR PRODUCING A CARBON FILM.
KR1019870000779A KR940002750B1 (en) 1986-01-31 1987-01-31 Method for carbon film production
DK053087A DK168337B1 (en) 1986-01-31 1987-02-02 Process for the production of carbon barriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019570A JPS62180057A (en) 1986-01-31 1986-01-31 Production of thin carbon film

Publications (1)

Publication Number Publication Date
JPS62180057A true JPS62180057A (en) 1987-08-07

Family

ID=12002945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019570A Pending JPS62180057A (en) 1986-01-31 1986-01-31 Production of thin carbon film

Country Status (1)

Country Link
JP (1) JPS62180057A (en)

Similar Documents

Publication Publication Date Title
US5073241A (en) Method for carbon film production
US4572841A (en) Low temperature method of deposition silicon dioxide
US4576829A (en) Low temperature growth of silicon dioxide on silicon
US5607560A (en) Diamond crystal forming method
EP0617142A1 (en) Preparation of silica thin films
JPS62177168A (en) Production of thin carbon film
US4533450A (en) Control of the hydrogen bonding in reactively sputtered amorphous silicon
JPS62180057A (en) Production of thin carbon film
JPS62180054A (en) Production of thin carbon film
JPH0421638B2 (en)
JPS62180056A (en) Production of thin carbon film
JPS62180055A (en) Production of thin carbon film
US4761302A (en) Fluorination of amorphous thin-film materials with xenon fluoride
JPS63210268A (en) Formation of thin carbon film
JP2646582B2 (en) Plasma CVD equipment
JP2521953B2 (en) Method for producing semiconducting carbon thin film
JP2521952B2 (en) Method for producing semiconducting carbon thin film
CA1268241A (en) Electric insulation thin layer containing carbon
JPS6367718A (en) Manufacture of semiconductor carbon film
JPS6299463A (en) Deposited film formation
JPH09295892A (en) Formation of single crystal diamond film
CN115896741A (en) Growth method of large-size diamond wafer
JPS62179716A (en) Manufacture of semiconductive carbon thin film
JPS6353255A (en) Formation of thin carbon film
JPH02174223A (en) Plasma vapor growth device, usage thereof and formation of film