JPS62179855A - Solidified structure controlling method for casting slab - Google Patents

Solidified structure controlling method for casting slab

Info

Publication number
JPS62179855A
JPS62179855A JP2208286A JP2208286A JPS62179855A JP S62179855 A JPS62179855 A JP S62179855A JP 2208286 A JP2208286 A JP 2208286A JP 2208286 A JP2208286 A JP 2208286A JP S62179855 A JPS62179855 A JP S62179855A
Authority
JP
Japan
Prior art keywords
magnetic field
slab
casting slab
casting
static magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2208286A
Other languages
Japanese (ja)
Inventor
Masayuki Nakada
正之 中田
Hideto Takasugi
英登 高杉
Akiya Ozeki
尾関 昭矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2208286A priority Critical patent/JPS62179855A/en
Publication of JPS62179855A publication Critical patent/JPS62179855A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To break dendrite arm, to obtain equi-axed crystal for solidified structure and to prevent segregation by discharging electric capacitor for a short time and shifting non-solidifying liquid phase in casting slab by Lorentz force generated under interaction between a static magnetic field pre-supplied. CONSTITUTION:Under supplying the static magnetic field in the casting slab 4, in which the inner part is non-solidifying state, by a magnetic field generator 2, an electric charge of the capacitor 6 is discharged by using electrode rolls 5a, 5b for a short time, as pulsation in the casting slab. Lorentz force is obtd. by relative action between the discharge and the magnetic field, and molten metal, which is non-solidifying part in the casting slab 4, is shifted under large flow speed only by a little length. In this way, this force breaks the dendrite structure under growing and the broken dendrite structure causes generation of equi-axed crystal as the nucleus in the solidified part. Therefore, interruption of the casting operation and generation of inverse segregation is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属凝固時において等軸晶組織を得るための
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for obtaining an equiaxed crystal structure during metal solidification.

〔従来の技術〕[Conventional technology]

鋼の連続鋳造においては、凝固組織を等軸晶とし最終凝
固部の中心偏析を防止する必要がある。従来、凝固組織
を等軸晶に改質する方法として、低温鋳造法及び電磁攪
拌法が行われている。
In continuous casting of steel, it is necessary to make the solidified structure equiaxed to prevent center segregation in the final solidified part. Conventionally, low-temperature casting and electromagnetic stirring have been used as methods for modifying solidified structures into equiaxed crystals.

このうち前者の方法は、液体金属鋳造時に溶湯の過熱度
をできるだけ小さくすることにより不均質核生成を容易
にし、これiこよって粒状等軸晶を得るというもので、
従来量も簡単な凝固組織改質法として知られている。ま
た後者の方法は、リニアモータ型、旋回型、静磁場通電
型等の電磁攪拌により、溶湯流動を強制的に凝固界面近
傍に発生させることでデンドライトアームを分断し1等
軸晶を得ようとするもので、リニアモータ型、旋回型に
ついては移動磁界を溶湯に付加し、溶湯中に発生する渦
電流と付加された磁界との相互作用により溶湯の強制流
動を発生させ、また静磁場通電型は静磁場を溶湯中に付
加しておき、この状態で直流電流を定常的に供給するこ
とでローレンツ力を得ようとするものである。
The former method facilitates heterogeneous nucleation by minimizing the degree of superheating of the molten metal during liquid metal casting, thereby obtaining granular equiaxed crystals.
The conventional amount is also known as a simple coagulation structure modification method. The latter method uses electromagnetic stirring, such as a linear motor type, rotation type, or static magnetic field energization type, to forcibly generate molten metal flow near the solidification interface, thereby dividing the dendrite arms and obtaining uniaxial crystals. For the linear motor type and rotating type, a moving magnetic field is applied to the molten metal, and the eddy current generated in the molten metal interacts with the added magnetic field to generate forced flow of the molten metal. In this method, a static magnetic field is applied to the molten metal, and a direct current is constantly supplied in this state to obtain the Lorentz force.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のこれらの方法では、連続鋳造鋳片の最終
凝固部に発生する中心偏析を完全には防止できないとい
う問題がある。また。
However, these conventional methods have a problem in that center segregation that occurs in the final solidification part of continuously cast slabs cannot be completely prevented. Also.

低温鋳造法では、溶湯供給のためのノズル内に地金が付
着し易く、このため鋳造作業がしばしば中断されるとい
う問題がある。一方。
The low-temperature casting method has a problem in that base metal tends to adhere to the inside of the nozzle for supplying the molten metal, and therefore the casting operation is often interrupted. on the other hand.

電磁攪拌法では溶鋼を一定時間、一方向に強攪拌するた
め、それに伴って固液共存相内の液相が一方向に強く攪
拌され、このためいわゆる負偏析帯が発生する傾向にあ
る。またリニアモータ型や旋回型の方式では、電磁攪拌
を凝固終了直前に適用した場合、すでに凝固シェル厚が
厚く発達しているため、中心部まで電磁力を供給するた
めには極めて大容量の発振機が必要であり、また静磁場
通電方式の場合、大きな直流電流を定常的に供給する必
要がある一 本発明はこのような従来の問題に鑑み、鋳造作業の中断
や負偏析の発生を生じることなく等軸筋を適切に得るこ
とができる方法を提供せんとするものである。
In the electromagnetic stirring method, molten steel is strongly stirred in one direction for a certain period of time, so that the liquid phase within the solid-liquid coexistence phase is strongly stirred in one direction, which tends to cause so-called negative segregation zones. In addition, with linear motor type or rotation type methods, if electromagnetic stirring is applied just before the end of solidification, the solidified shell has already developed thickly, so in order to supply electromagnetic force to the center, extremely large-capacity oscillation is required. In addition, in the case of the static magnetic field energization method, it is necessary to constantly supply a large direct current. The purpose of the present invention is to provide a method that can appropriately obtain equiaxed muscles without causing any damage.

〔問題を解決するための手段〕[Means to solve the problem]

このため本発明は、鋳片内に静磁場を供給しつつ、該鋳
片にコンデンサに蓄えられた電荷を短時間内に放電し、
この静磁場供給及び放電によるローレンツ力により鋳片
の未凝固液相を移動させ、これにより成長しつつあるデ
ンドライトアームを分断し微細結晶を得るようにしたこ
とをその基本的特徴とする。
For this reason, the present invention provides a method for discharging the electric charge stored in a capacitor in the slab within a short time while supplying a static magnetic field within the slab.
The basic feature is that the unsolidified liquid phase of the slab is moved by the Lorentz force caused by the static magnetic field supply and electric discharge, thereby dividing the growing dendrite arms and obtaining fine crystals.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図及び第2図は本発明を鋼の連続鋳造鋳片に適用し
た場合の構成例を示すもので、(1)はガイドロール、
(2)は磁界発生装a、<3ノは放電装置、(4月ま連
続鋳造鋳片(以下単に鋳片゛と称す)であり、該鋳片(
4)は外側が完全凝固相(41) 、内部が未凝固相(
42)となっている。
Figures 1 and 2 show an example of the structure when the present invention is applied to a continuous cast slab of steel, where (1) shows a guide roll;
(2) is a magnetic field generator a, <3 is a discharge device, (April is a continuously cast slab (hereinafter simply referred to as slab), and the slab (
4) has a completely solidified phase on the outside (41) and an unsolidified phase on the inside (41).
42).

前記磁界発生装置(2)はN極及びS極が鋳片(4)の
両側に対向して設けられているーまた放電装置(31は
、鋳片(4〕の両側において、磁界発生装置ff (2
)のN極及びS極の上下鋳片部に接触する電極ロール(
5a) (5b)を備え、鋳片各片側の上下電極ロール
(5a) (5b)間で通電を行わしめるようにしてい
る。なお、(6)は放電装置を構成するコンデンサ、(
7)はスイッチである。
The magnetic field generator (2) has an N pole and an S pole facing each other on both sides of the slab (4). Also, the discharge device (31) has a magnetic field generator ff ( 2
The electrode roll (
5a) (5b), and electricity is applied between the upper and lower electrode rolls (5a) and (5b) on each side of the slab. In addition, (6) is a capacitor that constitutes a discharge device, (
7) is a switch.

本発明は以上のような装置を用い、内部が未凝固状態に
ある鋳片(4)に対し、磁界発生装置(2)により静磁
場(鋳片両側のN極及びS極による静磁場)゛を供給し
ておき、この状態でコンデンサ(6)に蓄えられた電荷
を電極ロール(5a) (5b)を用いて短時間内にパ
ルス状に鋳片(4)内に放電する。このような放電と磁
場供給との相互作用により、ローレンツ力が得られ鋳片
(4)の未凝固溶湯が微少長さだけ大きな流速で移動し
、これにより成長しつつあるデンドライトが破壊され、
これを核として等軸筋が生成する。
The present invention uses the above-described device to generate a static magnetic field (a static magnetic field due to the N and S poles on both sides of the slab) by the magnetic field generator (2) to the slab (4) whose inside is in an unsolidified state. is supplied, and in this state, the electric charge stored in the capacitor (6) is discharged into the slab (4) in a pulsed manner within a short time using the electrode rolls (5a) (5b). Due to the interaction between the electric discharge and the magnetic field supply, a Lorentz force is obtained, and the unsolidified molten metal of the slab (4) moves by a small length at a large flow velocity, thereby destroying the growing dendrites.
Equiaxed muscles are generated using this as a nucleus.

コンデンサ(6)の放電に要する時間は回路のインダク
タンスに依存するが、インダクタンスを充分に小さくす
ることにより極めて短時間に放電が終了する。言い換え
れば、インダクタンスを小さくすることで短時間ではあ
るが、大きな電流を鋳片に供給することが可能となる。
The time required for discharging the capacitor (6) depends on the inductance of the circuit, but by making the inductance sufficiently small, the discharging can be completed in an extremely short time. In other words, by reducing the inductance, it is possible to supply a large current to the slab, albeit for a short time.

たとえば、500μFのコンデンサに25KJ  の充
電を行って%@路のインダクタンスが10  mHの場
合には、放電時間は50μseeオーダになる。この際
、外から供給されている静磁場と放電電流によって生ず
るローレンツ力も放電時間と同じ時間だけ鋳片内に働き
、それにより凝固前面の液相が移動する。本発明法では
、仮りにローレンツ力F=JXB (F=ローレンツカ
、J=電流密度、B=磁束密度)が従来の電磁攪拌に比
べて小さくても、その放電時間が極めて短いため、液相
の加速度が極めて大きくなり、従って、デンドライトア
ームに及ぼされるシェアーストレスの時間変化量が大き
くなる。このため短時間ではあるが、デンドライトアー
ム内の歪速度が極めて大きくなり、アーム内に粒界が発
生し易くなる。従来より、結晶粒界の融点は結晶粒内よ
りかなり低いとされており(界面張力による)、固液共
存状態でアーム内に結晶粒界が存在すると、その粒界が
再溶解し、アームは分断されることとなる。かくして。
For example, if a 500 μF capacitor is charged with 25 KJ and the inductance of the %@ path is 10 mH, the discharge time will be on the order of 50 μsee. At this time, the Lorentz force generated by the static magnetic field and discharge current supplied from the outside also acts within the slab for a time equal to the discharge time, thereby moving the liquid phase at the solidification front. In the method of the present invention, even if the Lorentz force F=JXB (F=Lorentz force, J=current density, B=magnetic flux density) is small compared to conventional electromagnetic stirring, the discharge time is extremely short, so The acceleration of the dendrite arm becomes extremely large, and therefore the amount of change over time in the shear stress exerted on the dendrite arm becomes large. For this reason, the strain rate within the dendrite arm becomes extremely high, albeit for a short time, and grain boundaries are likely to occur within the arm. Conventionally, it has been believed that the melting point of grain boundaries is much lower than that inside grains (due to interfacial tension), and if a grain boundary exists within an arm in a solid-liquid coexistence state, the grain boundary will remelt and the arm will It will be divided. Thus.

等軸筋生成のための核が、液相中に放出され。Nuclei for equiaxed myogenesis are released into the liquid phase.

これが堆積して微細粒状等軸筋となる。以上のように本
発明では、ローレンツ力の時間変化量が極めて大きいた
め、ローレンツ力そのものが小さくてもデンドライトア
ーム内に発生する歪速度が通常の電磁攪拌に比べて極め
て大きくなり、アームが分断され易くなるという原理に
基づくものである。
This accumulates and becomes fine granular equiaxed streaks. As described above, in the present invention, since the amount of time change in the Lorentz force is extremely large, even if the Lorentz force itself is small, the rate of strain generated in the dendrite arm is extremely large compared to normal electromagnetic stirring, and the arm is divided. This is based on the principle that it becomes easier.

また、本発明法では、液相を定常的に移動させずに瞬間
的に加速するだけであるため。
Furthermore, in the method of the present invention, the liquid phase is not constantly moved but only instantaneously accelerated.

電磁攪拌で発生するいわゆるホワイトバンドは全く生成
しない利点がある。
It has the advantage that the so-called white band generated by electromagnetic stirring is not generated at all.

〔実施例〕〔Example〕

第3図は本発明法を連鋳鋳片に適用した場合の凝固組織
を、低温鋳造による連鋳鋳片のそれと比較して示すもの
で、鋳片としては従来より等軸筋が得難いとされていた
C中0.45チを含有する鋼種を用いた・本発明法では
Figure 3 shows the solidification structure when the method of the present invention is applied to continuously cast slabs, in comparison with that of continuously cast slabs produced by low-temperature casting. In the method of the present invention, a steel type containing 0.45 H in C was used.

第1図及び第2図に示す装置と同様の装置を用い、この
ような装置において、500μFのコンデンサを用いて
25KJの充電を行ない。
A device similar to that shown in FIGS. 1 and 2 was used, in which a 25 KJ charge was carried out using a 500 μF capacitor.

10  mHの回路インダクタンスの下で1回15秒の
頻度で放電を行った。また、その他の条件として、eと
eの電極ロール間隔は4005m、磁束密度は鋳片の1
/2を相当位置の空心で1000 Gaus@であり、
鋳片サイズは1000vum”X250mで、鋳込速度
は1 m/minであった。
Discharge was performed at a frequency of 15 seconds each under a circuit inductance of 10 mH. In addition, as other conditions, the distance between the electrode rolls of e and e is 4005 m, and the magnetic flux density is 1
/2 is 1000 Gaus@ with the air center at the corresponding position,
The slab size was 1000 vum" x 250 m, and the casting speed was 1 m/min.

また電磁パルス放電を行った場所は凝固率で約30%で
ある。
Furthermore, the coagulation rate at the location where the electromagnetic pulse discharge was performed was approximately 30%.

同図から明らかなように、本発明法により得られた凝固
組織は中心部が安定して等軸筋化しており、低温鋳造で
も等軸筋化が困難であったC=0.45%の炭素濃度で
も凝固組織が効果的に改善されていることが判る。
As is clear from the figure, the solidified structure obtained by the method of the present invention has stable equiaxed striations in the center, and C = 0.45%, which was difficult to form equiaxed striations even at low temperature casting. It can be seen that the coagulation structure is effectively improved even with carbon concentration.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、コンデンサを短時間で放電
し、予め供給されている静磁場との相互作用でローレン
ツ力を得ることにより、極めて大きな液相移動速度の時
間変化量で未凝固液相を短時間移動させることができ、
これによってデンドライトアームを効果的1こ破断し、
凝固組織を適切に等軸筋とすることができる。そして、
このような本発明を連続鋳造鋳片の製造工程に適用する
ことにより、鋳片の最終凝固部に中心偏析を生ずること
を確実に防止することができる。また本発明法によれば
、従来の低温鋳造法のような鋳造作業の中断というよう
な問題を生ずることなく連続鋳造を実施することができ
、また電磁攪拌にみられるような負偏析帯の発生も効果
的に抑えられる利点がある。さらに、設備的にも大容量
の発振機を必要とせず、加えて大電流を定常的に流す必
要もないため、従来法に較べ低コストで実施することが
できる。
According to the present invention described above, by discharging a capacitor in a short time and obtaining a Lorentz force by interaction with a static magnetic field supplied in advance, an extremely large amount of time change in the liquid phase transfer rate can be achieved by discharging an unsolidified liquid. The phase can be moved for a short time,
This effectively breaks one dendrite arm,
The coagulated tissue can be appropriately made into equiaxed muscle. and,
By applying the present invention to the manufacturing process of continuously cast slabs, it is possible to reliably prevent center segregation from occurring in the final solidified part of the slab. Furthermore, according to the method of the present invention, continuous casting can be carried out without causing problems such as interruption of casting operations as in conventional low-temperature casting methods. It also has the advantage of being able to effectively suppress it. Furthermore, in terms of equipment, there is no need for a large-capacity oscillator, and there is no need to constantly flow a large current, so it can be implemented at a lower cost than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明法を鋼の連続鋳造に適用した
場合の一実施状況を示すもので、第1図は正面図、第2
図は第1図中■−進線に沿う断面図である。第3図は本
発明の一実施例における鋳片凝固組織を低温鋳造による
鋳片のそれき比較して示したものである。 特許出願人  日本鋼管株式会社 発 明 者   中   1)  正   2同   
      高   杉   英   畳量     
     尾   関   昭   矢代理人弁理士 
 吉   原  省   玉量  同     高  
 橋        消量  弁護士   吉   原
   弘   子第  1  図 第  2  図 第  3  図
Figures 1 and 2 show an implementation situation when the method of the present invention is applied to continuous casting of steel. Figure 1 is a front view,
The figure is a sectional view taken along the - line in Figure 1. FIG. 3 shows a comparison of the solidified structure of a slab in an embodiment of the present invention with that of a slab cast by low temperature casting. Patent applicant Nippon Kokan Co., Ltd. Inventor Middle 1) Positive 2 Same
Hide Takasugi Tatami volume
Akira Ozeki, Patent Attorney
Yoshihara Ministry Ball amount same high school
Bridge consumption lawyer Hiroko Yoshihara Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 鋳片内に静磁場を供給しつつ、該鋳片に コンデンサに蓄えられた電荷を短時間内に 放電し、この静磁場供給及び放電によるロ ーレンツ力により鋳片の未凝固液相を移動 させ、これにより成長しつつあるデンドラ イトアームを分断し微細結晶を得るように したことを特徴とする鋳片の凝固組織制御 方法。[Claims] While supplying a static magnetic field into the slab, Removes the charge stored in the capacitor within a short time discharge, and this static magnetic field supply and discharge - Moves the unsolidified liquid phase of the slab by Lenz force This allows Dendra to grow. To divide the light arm and obtain fine crystals. Solidification structure control of cast slabs characterized by Method.
JP2208286A 1986-02-05 1986-02-05 Solidified structure controlling method for casting slab Pending JPS62179855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208286A JPS62179855A (en) 1986-02-05 1986-02-05 Solidified structure controlling method for casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208286A JPS62179855A (en) 1986-02-05 1986-02-05 Solidified structure controlling method for casting slab

Publications (1)

Publication Number Publication Date
JPS62179855A true JPS62179855A (en) 1987-08-07

Family

ID=12072954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208286A Pending JPS62179855A (en) 1986-02-05 1986-02-05 Solidified structure controlling method for casting slab

Country Status (1)

Country Link
JP (1) JPS62179855A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043064A1 (en) * 1996-05-13 1997-11-20 Ebis Corporation Method and apparatus for continuous casting
JP2002018559A (en) * 2000-07-06 2002-01-22 Nippon Steel Corp Method for casting cast slab or cast block having fine solidified structure and its casting apparatus
JP2002331341A (en) * 2001-05-09 2002-11-19 Nippon Steel Corp Method of and device for casting cast piece or ingot having fine solidification structure
CN104827007A (en) * 2015-04-16 2015-08-12 上海大学 Large-scale uniform-structure alloy ingot continuous casting preparation method and magnetic control electroslag continuous casting device
RU2745520C1 (en) * 2020-03-23 2021-03-25 Общество с ограниченной ответственностью "Научно-производственный центр магнитной гидродинамики" Method for continuous casting of an ingot and a melting and casting installation for its implementation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043064A1 (en) * 1996-05-13 1997-11-20 Ebis Corporation Method and apparatus for continuous casting
US6241004B1 (en) 1996-05-13 2001-06-05 Ebis Corporation Method and apparatus for continuous casting
US6508299B2 (en) 1996-05-13 2003-01-21 Ebis Corporation Method and apparatus for continuous casting
US6530418B2 (en) 1996-05-13 2003-03-11 Ebis Corporation Method and apparatus for continuous casting
JP2002018559A (en) * 2000-07-06 2002-01-22 Nippon Steel Corp Method for casting cast slab or cast block having fine solidified structure and its casting apparatus
JP2002331341A (en) * 2001-05-09 2002-11-19 Nippon Steel Corp Method of and device for casting cast piece or ingot having fine solidification structure
CN104827007A (en) * 2015-04-16 2015-08-12 上海大学 Large-scale uniform-structure alloy ingot continuous casting preparation method and magnetic control electroslag continuous casting device
RU2745520C1 (en) * 2020-03-23 2021-03-25 Общество с ограниченной ответственностью "Научно-производственный центр магнитной гидродинамики" Method for continuous casting of an ingot and a melting and casting installation for its implementation

Similar Documents

Publication Publication Date Title
JP3372958B2 (en) Method and apparatus for casting molten metal and cast slab
JP2008173668A (en) Solidifying method
EP0729798B1 (en) Method of continuously casting molten metal and apparatus therefor
EP0543290A3 (en) A process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
JPS62179855A (en) Solidified structure controlling method for casting slab
CN108526423A (en) A kind of method, control method and device of slab quality improving casting process solidification middle and later periods solid-liquid two-phase region mobility
RU2170157C2 (en) Ingot continuous casting mold with apparatus for electromagnetically agitating melt
JP3488093B2 (en) Continuous casting method of molten steel
CN208116707U (en) Slab quality and improve the control device of middle and later periods solid-liquid two-phase region mobility during a kind of continuous casting and solidifying
JPH0347668A (en) Method for controlling solidified structure in cast slab
JPH0347670A (en) Method for controlling solidified structure with electromagnetic pulse discharge
JP4065099B2 (en) Method for continuous casting of molten steel and continuous cast slab
JPH0347669A (en) Method for controlling solidified structure in cast slab
JP4163817B2 (en) Method for continuous casting of molten steel, electromagnetic vibration applying device and continuous cast slab
JP4683695B2 (en) Casting method or casting apparatus for slab or ingot having finely solidified structure
JP3422946B2 (en) Continuous casting method and continuous casting slab of molten steel
JP2955863B2 (en) Metal casting method
SU120896A1 (en) Method of continuous or semi-continuous blank casting of light alloys
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
JPS59137157A (en) Inoculating method in casting
JP3704329B2 (en) Method for casting molten metal
JPH11320050A (en) Continuous casting method
JPH09122833A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
JP2541953B2 (en) Center segregation prevention method for continuously cast slabs
SU1470446A1 (en) Method of producing steel billets