JPS62179534A - Corona discharge treatment apparatus - Google Patents

Corona discharge treatment apparatus

Info

Publication number
JPS62179534A
JPS62179534A JP2046286A JP2046286A JPS62179534A JP S62179534 A JPS62179534 A JP S62179534A JP 2046286 A JP2046286 A JP 2046286A JP 2046286 A JP2046286 A JP 2046286A JP S62179534 A JPS62179534 A JP S62179534A
Authority
JP
Japan
Prior art keywords
discharge electrode
discharge
distance
treated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2046286A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ogisu
康彦 荻巣
Katsuhide Manabe
勝英 真部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2046286A priority Critical patent/JPS62179534A/en
Publication of JPS62179534A publication Critical patent/JPS62179534A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/103Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment of profiled articles, e.g. hollow or tubular articles

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To perform uniform discharge treatment, by performing the treatment while moving a discharge electrode relative to the surface of a resin molding to be treated and at the same time keeping the distance between the both constant by providing the discharge electrode with a distance-regulating member. CONSTITUTION:A transfer means C for moving a discharge electrode 50 which generates a corona discharge relative to three-dimensional resin molding 1 while the distance between the discharge electrode 50 and the surface of the resin molding 1 to be treated is being kept nearly constant is provided. A distance regulating member 53 which extends toward the surface to be treated is provided on the discharge electrode 50 or a member connected therewith. The corona discharge treatment is performed while the molding 1 is moved relative to the discharge electrode 50 with the distance therebetween being kept nearly constant. When the distance is shorter than the standard due to deformation, etc., of the molding 1, the distance regulating member 53 abuts against the surface to be treated and pushed up the discharge electrode 50 to regulate the distance and keep the power of discharge constant.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は三次元樹脂成形品のコロナ放電処理に使用され
る装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to an apparatus used for corona discharge treatment of three-dimensional resin molded articles.

(従来の技術及び発明が解決しようとする問題点)ポリ
オレフィン系樹脂に対する塗料、接着剤、印刷剤等の付
着性を高めるための改質処理には、火炎処理、酸性溶液
処理、プラズマ処理、コロナ放電処理その他、種々の方
法がある。
(Prior art and problems to be solved by the invention) Modifying treatments for increasing the adhesion of paints, adhesives, printing agents, etc. to polyolefin resins include flame treatment, acid solution treatment, plasma treatment, corona treatment, etc. There are various methods other than discharge treatment.

これらのうち、特にプラズマ処理は三次元樹脂成形品の
被処理面を同時に改質することができるという利点があ
るが、真空槽、真空ポンプ等の大掛りな設備を必要とし
、同真空槽内の減圧に時間がかかるという問題がある。
Among these, plasma treatment has the advantage of being able to simultaneously modify the treated surface of a three-dimensional resin molded product, but it requires large-scale equipment such as a vacuum chamber and vacuum pump, and There is a problem that it takes time to reduce the pressure.

その点、真空槽等が要らないコロナ放電処理は大いに有
利であるが、コロナ処理には放電電極と被処理面とを常
に接近させて行わなければならないという制限がある。
In this respect, corona discharge treatment, which does not require a vacuum chamber or the like, is very advantageous, but corona treatment has a limitation in that the discharge electrode and the surface to be treated must be kept close to each other at all times.

従って、従来、コロナ放電処理はフィルム状又は平板状
の樹脂製品(これらを二次元樹脂製品という)に対して
のみ行われており、被処理面に三次元的な凹凸のある樹
脂製品(これらを三次元樹脂成形品という)に対して行
われたという報告、文献等は見当らない。
Therefore, conventionally, corona discharge treatment has been carried out only on film-like or flat-shaped resin products (these are called two-dimensional resin products), and on resin products with three-dimensional irregularities on the surface to be treated (these are There are no reports or documents that indicate that this method has been applied to three-dimensional resin molded products.

いま、三次元樹脂成形品のコロナ放電処理を実現すれば
、設備費や処理所用時間の点で大きな利益が得られるの
であるが、それには幾つかの問題点を解決しなければな
らない。その一つに、改質状態のムラがある。すなわち
、三次元樹脂成形品の被処理面には凹凸があるため、コ
ロナ放電処理放電電極と被処理面との距離が変化しやす
い。この距離が短いと放電出力が大きくなり、距離が短
いと放電出力が低くなるため、被処理面の部位によって
改質状態にムラが生じるおそれがある。
If corona discharge treatment of three-dimensional resin molded products were to be realized now, there would be significant benefits in terms of equipment costs and treatment time, but several problems must be resolved. One of them is unevenness in the reforming state. That is, since the surface to be treated of a three-dimensional resin molded product has irregularities, the distance between the discharge electrode for corona discharge treatment and the surface to be treated tends to change. If this distance is short, the discharge output will be high, and if the distance is short, the discharge output will be low, so there is a risk that the modified state will be uneven depending on the portion of the surface to be treated.

本発明の目的は、この改質ムラという難題を解決して三
次元樹脂成形品のコロナ放電処理を実現し、被処理面全
体にわたってムラのない均一な改質を施すことができる
コロナ放電処理装置を提供することにある。
The purpose of the present invention is to solve the problem of uneven modification, realize corona discharge treatment of three-dimensional resin molded products, and provide a corona discharge treatment device that can uniformly modify the entire surface to be treated. Our goal is to provide the following.

発明の構成 (問題点を解決するための手段) 前記問題点を解決するために、本発明のコロナ放電処理
装置は、コロナ放電を生じさせる放電電極と三次元樹脂
成形品の被処理面との距離をほぼ一定に保ちながら該放
電電極と三次元樹脂成形品とを相対移動させるための移
動手段を設けるとともに、前記放電電極又はこれに連結
した部材には被処理面に向かって延びる距離規制部材を
設けるという手段を採った。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the corona discharge treatment apparatus of the present invention has a structure in which a discharge electrode that generates corona discharge and a surface to be treated of a three-dimensional resin molded product are connected. A moving means is provided to relatively move the discharge electrode and the three-dimensional resin molded product while keeping the distance substantially constant, and a distance regulating member is provided on the discharge electrode or a member connected thereto, and extends toward the surface to be treated. We took the step of setting up a .

(作用) 前記移動手段が作動すると、放電電極と三次元樹脂成形
品とが相対移動する。また、放電電極に高周波が印加さ
れるとコロナ放電が発生し、三次元樹脂成形品の被処理
面は前記相対移動に伴って順にコロナ放電処理されてい
く。
(Function) When the moving means operates, the discharge electrode and the three-dimensional resin molded product move relative to each other. Further, when a high frequency is applied to the discharge electrode, a corona discharge occurs, and the surface to be treated of the three-dimensional resin molded product is sequentially subjected to the corona discharge treatment as the relative movement occurs.

このとき、前記移動手段は前記放電電極と三次元樹脂成
形品の被処理面との距離をほぼ一定に保つため、放電出
力はほぼ一定に保たれる。
At this time, the moving means maintains a substantially constant distance between the discharge electrode and the surface to be treated of the three-dimensional resin molded product, so that the discharge output is kept substantially constant.

ところが、三次元樹脂成形品には多少なりとも寸法誤差
があるし、成形後に湾曲変形等が生じることもある。従
って、前記放電電極と三次元樹脂成形品の被処理面との
距離は前記移動手段にも拘らず細かく変化し、放電出力
も多少は変化することになる。
However, three-dimensional resin molded products have some degree of dimensional error, and curve deformation may occur after molding. Therefore, the distance between the discharge electrode and the surface to be treated of the three-dimensional resin molded product changes minutely regardless of the moving means, and the discharge output also changes to some extent.

しかし、このように当該距離が細かく変化しても、本発
明では前記放電電極又はこれに連結した部材に設けられ
た距離規制部材が放電出力を一定に保つ。
However, even if the distance changes minutely in this way, in the present invention, the distance regulating member provided on the discharge electrode or a member connected thereto keeps the discharge output constant.

すなわち、放電電極と三次元樹脂成形品の被処理面との
距離が基準より短くなりかけると、距離規制部材の先端
が被処理面に当接してしまうため、当該距離は基準より
短くならないよう規制される。
In other words, if the distance between the discharge electrode and the surface to be treated of the three-dimensional resin molded product begins to become shorter than the standard, the tip of the distance regulating member will come into contact with the surface to be treated, so the distance must be regulated so that it does not become shorter than the standard. be done.

従って、前記放電出力は増加することもなく、基準出力
に制御される。
Therefore, the discharge output does not increase and is controlled to the reference output.

従って、三次元樹脂成形品の被処理面は該コロナ放電処
理によってムラなく均一に改質され、塗料、接着剤、印
刷剤等の付着性が向上する。
Therefore, the surface to be treated of the three-dimensional resin molded product is evenly and uniformly modified by the corona discharge treatment, and the adhesion of paints, adhesives, printing agents, etc. is improved.

また、移動手段のティーチングは距離規制部材を基準に
できるので、該ティーチングを容易にかつ迅速に行うこ
とができる。
Moreover, since the distance regulating member can be used as a reference for teaching the moving means, the teaching can be performed easily and quickly.

(実施例) 以下、本発明を具体化した実施例を図面に従って説明す
る。
(Example) Hereinafter, an example embodying the present invention will be described with reference to the drawings.

本実施例によってコロナ放電処理する三次元樹脂成形品
は、第3図に示すように、PP樹脂(誘電体である)に
て成形された自動車用インストルメントパネルパッド(
以下インパネパッドと略称する)1であって、その表面
にPvC樹脂等よりなる表皮シートが接着されることに
よりインストルメントパネルが構成される。
As shown in FIG. 3, the three-dimensional resin molded product subjected to corona discharge treatment in this example is an automobile instrument panel pad (
(hereinafter abbreviated as an instrument panel pad) 1, and an instrument panel is constructed by adhering a skin sheet made of PvC resin or the like to the surface thereof.

同インパネパッド1は、その上面2、前面3及び側面4
がコロナ放電処理の被処理面であって、各部に凸状のコ
ーナ部5を有している。
The instrument panel pad 1 has a top surface 2, a front surface 3, and a side surface 4.
is the surface to be treated by corona discharge treatment, and has convex corner portions 5 at each portion.

また、第3,8図等に示すように、インパネパッド上面
2の左右両側には2つの浅い皿部6,7が設けられ、そ
れらの上縁には凸状のコーナ部8が、底縁には凹状のコ
ーナ部9が各々存在する。
Further, as shown in FIGS. 3 and 8, two shallow dish portions 6 and 7 are provided on the left and right sides of the upper surface 2 of the instrument panel pad, and a convex corner portion 8 is provided on the upper edge of the dish, and a convex corner portion 8 is provided on the bottom edge of the upper surface of the instrument panel pad. A concave corner portion 9 is present in each case.

ざらに、前記上面2の左端部にはサイドデフロスタ用エ
アの吹出口10が、同じく前面3の左右両側には2つの
換気・空調用エアの吹出口11,12が各々貫通形成さ
れており、各々四隅にコーナ部13を有する。前記コー
ナ部5,8.9.13のアールは6〜15#l#lであ
る。
Roughly speaking, a side defroster air outlet 10 is formed at the left end of the upper surface 2, and two ventilation/air conditioning air outlets 11 and 12 are formed through the left and right sides of the front surface 3, respectively. It has corner portions 13 at each of the four corners. The radius of the corner portions 5, 8, 9, and 13 is 6 to 15#l#l.

さて、次に前記インパネパッド1をコロナ放電処理する
ための装置を説明する。
Next, a device for subjecting the instrument panel pad 1 to corona discharge treatment will be described.

本コロナ放電処理装置は、金属フレームによって前後2
段に形成された基台80上に設けられており、本装置を
区分すると、 A;基台80の第1段目に設置され、インパネパッド1
を固定するとともにその裏面に対向電極を接触させるた
めの対向電極手段Aと、B;コロナ放電を生じさせる放
電電極50、及び被処理面に向かって延びる距離規制部
材53を備えた放電電極手段Bと、 C:ti!i電電極50とインパネパッド1の被処理面
との距離をほぼ一定に保ちながら該放電電極50とイン
パネパッド1とを相対移動させるための手段であって、
基台80の第2段目に設置された移動手段Cと、 D;前記放電電極50に高周波を印加するための手段で
あって、基台80の左側の棚14に設置された高周波印
加手段りと、 E;基台80の右側方に設置され、移動手段Cを制御す
るための制御ユニットE とからなっている。
This corona discharge treatment equipment has two front and rear parts with a metal frame.
It is installed on a base 80 formed in stages, and the device is divided into:
and B; a discharge electrode means B that includes a discharge electrode 50 that generates corona discharge, and a distance regulating member 53 that extends toward the surface to be treated; And C:ti! A means for relatively moving the discharge electrode 50 and the instrument panel pad 1 while keeping the distance between the i-electrode 50 and the treated surface of the instrument panel pad 1 substantially constant,
moving means C installed on the second stage of the base 80; D; means for applying high frequency to the discharge electrode 50, and high frequency applying means installed on the shelf 14 on the left side of the base 80; and a control unit E installed on the right side of the base 80 for controlling the moving means C.

以下、前記各部A−Eの詳細を順に説明する。Hereinafter, the details of each part A to E will be explained in order.

[対向電極手段A1 第1.4,5.8図に示すように、基台80の第1段目
には中空の電極台61が設置されている。
[Counter Electrode Means A1 As shown in FIGS. 1.4 and 5.8, a hollow electrode stand 61 is installed on the first stage of the base 80.

該電極台61の上部にはエポキシ樹脂にてインパネパッ
ド1の内部の三次元形状に合致する形状に形成された殻
状の電極基材62が支持され、インパネパッド1を内側
から支持するようになっている。
A shell-shaped electrode base material 62 formed of epoxy resin into a shape matching the three-dimensional shape inside the instrument panel pad 1 is supported on the upper part of the electrode stand 61, so as to support the instrument panel pad 1 from the inside. It has become.

電極基材62のうちインパネパッド1の内面に対応する
部位の表面には、薄膜状の対向電極63(カウンター電
極)が金属メッキ法によって被覆形成され、該対向電極
63の表面はインパネパッド1の内面に接触しうるよう
になっている。
A thin film-like counter electrode 63 (counter electrode) is coated on the surface of the electrode base material 62 at a portion corresponding to the inner surface of the instrument panel pad 1 by a metal plating method. It is designed to allow contact with the inner surface.

また、第4.8図に示すように、電極基材62のうちイ
ンパネパッド1の吹出口10,11.12に対応する箇
所には凹部64が形成され、前記対向電極63は該凹部
64の表面に被覆形成されている。
Further, as shown in FIG. 4.8, a recess 64 is formed in the electrode base material 62 at a location corresponding to the air outlet 10, 11.12 of the instrument panel pad 1, and the counter electrode 63 is inserted into the recess 64. A coating is formed on the surface.

また、該凹部64内にはハイパロンゴム、エポキシ樹脂
等の誘電体によって形成された緩衝部材65が嵌入され
、凹部64内の対向電極63に被せられている。従って
、対向電極63にインパネパッド1が嵌合され、後述す
る放電電極が接近したときに、凹部64内の対向電極6
3が吹出口10.11.12を通して対向電極に露出し
ないようになっている。
A buffer member 65 made of a dielectric material such as Hypalon rubber or epoxy resin is fitted into the recess 64 and covers the counter electrode 63 within the recess 64 . Therefore, when the instrument panel pad 1 is fitted to the counter electrode 63 and a discharge electrode, which will be described later, approaches, the counter electrode 6 in the recess 64
3 is not exposed to the counter electrode through the air outlet 10.11.12.

対向電極63が放電電極に対して露出すると、両電極間
でコロナ放電が乱れたり、スパーク放電が発生したりす
るからである。
This is because if the counter electrode 63 is exposed to the discharge electrode, corona discharge will be disturbed or spark discharge will occur between both electrodes.

し放電電極手段B] 第1.2,5.8図に示すように、放電電極手段Bは前
記対向電極63の上方に設けられ、後述する移動手段C
のZ軸アーム43に取着されている。
Discharge electrode means B] As shown in FIGS. 1.2 and 5.8, the discharge electrode means B is provided above the counter electrode 63, and is connected to the moving means C described later.
It is attached to the Z-axis arm 43 of.

すなわち、大気中に配設される放電電極50は、ステン
レス鋼で形成された直径約2mの棒状の延出部51と、
同じくステンレス鋼で形成され該延出部51の先端に取
着された直径約6amの球状の放電先端部52とからな
っている。
That is, the discharge electrode 50 disposed in the atmosphere includes a rod-shaped extension portion 51 made of stainless steel and having a diameter of about 2 m;
It consists of a spherical discharge tip 52, which is also made of stainless steel and has a diameter of about 6 am and is attached to the tip of the extension 51.

放電先端部52の下端には非導電性のセラミックスより
なる棒状の距離規制部材53が取着され、被処理面に向
かって延びている。この距離規制部材53の突出長さは
10#Iであって、放電電極50と被処理面との距離が
基準の10mより短くならないようになっている。
A rod-shaped distance regulating member 53 made of non-conductive ceramics is attached to the lower end of the discharge tip 52 and extends toward the surface to be treated. The protruding length of this distance regulating member 53 is 10 #I, so that the distance between the discharge electrode 50 and the surface to be treated does not become shorter than the standard 10 m.

また、延出部51の基端部には膨径部54が形成され、
該基端部は支持ケース55の中に摺動可能かつ引扱き不
能に挿入されている。支持ケース55の上部内面と前記
膨径部54の間にはコイルスプリング56が圧縮状態で
内装され、放電電極50仝休を下方に付勢している。
Further, an expanded diameter portion 54 is formed at the base end portion of the extension portion 51;
The proximal end is slidably and non-manipulably inserted into the support case 55. A coil spring 56 is installed in a compressed state between the upper inner surface of the support case 55 and the expanded diameter portion 54, and urges the discharge electrode 50 downward.

なお、この放電電極50には、後述する高周波印加手段
りから前記コイルスプリング56を介して高周波が印加
される。
Note that a high frequency wave is applied to the discharge electrode 50 via the coil spring 56 from a high frequency applying means to be described later.

[移動手段Cコ 第1.5.6図に示すように、移動手段Cはコロナ放電
電極50をX軸(左右)方向に移動させるためのX軸移
動手段20と、同じ<Yf@(前後)方向に移動させる
ためのY軸移動手段30と、同じくZ軸(上下)方向に
移動させるためのZ軸移動手段40とから構成されてい
る。
[Moving means C] As shown in Figure 1.5.6, the moving means C is the same as the X-axis moving means 20 for moving the corona discharge electrode 50 in the X-axis (left and right) direction. ) direction, and a Z-axis moving means 40, which also moves in the Z-axis (vertical) direction.

X軸移動手段20[おいて、基台80には水平方向に平
行して延びる2本の案内ロッド28が取着されている。
In the X-axis moving means 20, two guide rods 28 extending in parallel in the horizontal direction are attached to the base 80.

該案内ロッド28には次のY軸移動手段30を支えるた
めのターンテーブル26がX軸方向に滑動可能に設けら
れている。すなわち、ターンテーブル26の下面には支
持部材23が取付けられ、該支持部材23に両案内ロッ
ド28が挿通されることによってターンテーブル26が
滑動可能になっている。
A turntable 26 for supporting the next Y-axis moving means 30 is provided on the guide rod 28 so as to be slidable in the X-axis direction. That is, a support member 23 is attached to the lower surface of the turntable 26, and both guide rods 28 are inserted through the support member 23, so that the turntable 26 can slide.

さらに、ターンテーブル26の下面のうち支持部材23
の左右側には螺合部29が取着され、該螺合部29には
1本のスクリュ軸27が螺入螺退可能に螺合されている
。スクリュ軸27の右端には歯車21aが取着され、該
歯車21aは基台8Oの右端部に取着されたサーボモー
タ25の歯車21bと噛合っている。
Further, the support member 23 on the lower surface of the turntable 26
A screw portion 29 is attached to the left and right sides of the screw portion 29, and one screw shaft 27 is screwed into and retractably from the screw portion 29. A gear 21a is attached to the right end of the screw shaft 27, and the gear 21a meshes with a gear 21b of a servo motor 25 attached to the right end of the base 8O.

従って、サーボモータ25が回転すると、歯車21a、
21bを介してスクリュ軸27が回転するので、該スク
リュ軸27に螺合された螺合部29とともにターンテー
ブル26はX軸方向に移動するようになっている。
Therefore, when the servo motor 25 rotates, the gear 21a,
Since the screw shaft 27 rotates via the screw shaft 21b, the turntable 26 moves in the X-axis direction together with the threaded portion 29 threaded onto the screw shaft 27.

次に、Y軸移動手段30において、ターンテーブル26
上面の両側部には各々2個の軸受35が設けられている
。左右の軸受間35には2本のスクリュ軸31が回転可
能かつ進退不能に取着され、両軸31は水平方向に平行
して延びている。各スクリュ軸31の後端には歯車36
aが取着され、各歯車36aは基台80の後端部に取着
されたサーボモータ32の歯車36bと噛合わされてい
る。
Next, in the Y-axis moving means 30, the turntable 26
Two bearings 35 are provided on each side of the top surface. Two screw shafts 31 are rotatably but non-moveably attached between the left and right bearings 35, and both shafts 31 extend in parallel in the horizontal direction. A gear 36 is provided at the rear end of each screw shaft 31.
a is attached, and each gear 36a is meshed with a gear 36b of a servo motor 32 attached to the rear end of the base 80.

2本のスクリュ軸31には両軸31にまたがる螺合部材
34が螺合されており、該螺合部材34の中央部には前
方に延びるY軸アーム33の後端が取り付けられている
。Y軸アーム33の前端には次のZ軸移動手段40が固
定されている。
A threaded member 34 spanning both shafts 31 is threaded onto the two screw shafts 31, and a rear end of a Y-axis arm 33 extending forward is attached to the center of the threaded member 34. The next Z-axis moving means 40 is fixed to the front end of the Y-axis arm 33.

従って、Y軸移動手段30においてもサーボモータ32
の回転が歯車36、スクリュ軸31及び螺合部材34の
順に伝達されて、Z軸移動手段40がY軸方向に移動す
るようになっている。
Therefore, also in the Y-axis moving means 30, the servo motor 32
The rotation is transmitted to the gear 36, the screw shaft 31, and the threaded member 34 in this order, so that the Z-axis moving means 40 moves in the Y-axis direction.

次に、Z軸移動手段40において、Y軸アーム33の前
端には固定テーブル41が垂立するように固定されてい
る。固定テーブル41の前面には2本の案内ロッド42
が固定され、両ロッド42は上下方向に平行して延びて
いる。
Next, in the Z-axis moving means 40, a fixed table 41 is fixed to the front end of the Y-axis arm 33 so as to stand vertically. There are two guide rods 42 on the front of the fixed table 41.
are fixed, and both rods 42 extend in parallel in the vertical direction.

両案内ロッド42にはこれらにまたがる滑動部材44が
摺動可能に取付けられ、該滑動部材44の中央部には雌
ネジ(図示せず)が形成されている。該雌ネジには上方
に延びるスクリュ軸46が螺合され、該スクリュ軸46
は固定テーブル41の上部に取付けられたサーボモータ
45の回転軸47に直結されている。
A sliding member 44 that spans both guide rods 42 is slidably attached thereto, and a female thread (not shown) is formed in the center of the sliding member 44 . A screw shaft 46 extending upward is screwed into the female screw, and the screw shaft 46
is directly connected to a rotating shaft 47 of a servo motor 45 attached to the upper part of the fixed table 41.

他方、滑動部材44の中央部には下方に延びるZ軸7−
ム43がその上端部において固定され、該Z軸アーム4
3の下端部には前記放電電極50の支持ケース55がほ
ぼ鉛直状態に把持されている。
On the other hand, in the center of the sliding member 44, there is a Z axis 7- extending downward.
A Z-axis arm 43 is fixed at its upper end, and the Z-axis arm 4
A support case 55 for the discharge electrode 50 is held in a substantially vertical position at the lower end of the discharge electrode 3 .

従って、サーボモータ45を回転させれば、スクリュ軸
46が回転して滑動部044を介してZ軸アーム43及
び放電電極50が昇降するようになっている。
Therefore, when the servo motor 45 is rotated, the screw shaft 46 is rotated, and the Z-axis arm 43 and the discharge electrode 50 are moved up and down via the sliding part 044.

[高周波印加手段D] 第1,7図に示すように、前記対向電極63と放電電極
50には高周波発振器16と高圧トランス17とよりな
る高周波印加手段りが接続されている。
[High frequency application means D] As shown in FIGS. 1 and 7, a high frequency application means consisting of a high frequency oscillator 16 and a high voltage transformer 17 is connected to the opposing electrode 63 and the discharge electrode 50.

高周波発振器16には20〜39kHz、 最大出力3
50Wの高周波を発生するタンチック社の製品(商品番
号HVO5−2>が使用されている。
High frequency oscillator 16 has a frequency of 20 to 39kHz, maximum output 3
A Tantic product (product number HVO5-2>) that generates a high frequency of 50 W is used.

高圧トランス17は高周波発振器]6の高周波出力を昇
圧して電極63.50間に高電圧を印加するためのもの
である。
The high voltage transformer 17 is for boosting the high frequency output of the high frequency oscillator 6 and applying a high voltage between the electrodes 63 and 50.

[制御ユニットE] 制御ユニットEにはコンピュータ等を使用した制御回路
(図示せず)が組込まれ、該制御回路には、■枚重電極
50とインパネバッド1の被処理面との距離をほぼ一定
に保たせながら該放電電極50を移動させるように、前
記x、y、z軸移動手段20,30.40の作動を制御
する運動プログラムや、■高周波印加手段りの作動開始
と停止を制御するプログラム等が予めティーチングされ
ている。
[Control Unit E] A control circuit (not shown) using a computer or the like is incorporated in the control unit E, and the control circuit includes: 1. The distance between the heavy electrode 50 and the surface to be treated of the instrument panel pad 1 is approximately An exercise program that controls the operation of the x, y, and z axis moving means 20, 30, 40 so as to move the discharge electrode 50 while keeping it constant, and (1) controlling the start and stop of the operation of the high frequency application means. The programs etc. to be used are taught in advance.

これらのプログラム、特に前者のプログラムは、前記距
離規制部材53を基準にして容易にティーチングするこ
とができる。すなわち、ティーチングに多少の誤差があ
っても距離規制部材53が放電電極50と被処理面との
距離を一定に保ってしまうので、このティーチングはラ
フなもので足りる。従って、一般にこの種のティーチン
グは極めて長い時間をかけて行うところ、本実施例では
この時間を大幅に短縮することができる。
These programs, especially the former program, can be easily taught using the distance regulating member 53 as a reference. That is, even if there is some error in the teaching, the distance regulating member 53 keeps the distance between the discharge electrode 50 and the surface to be processed constant, so that this teaching may be rough. Therefore, although this type of teaching generally takes an extremely long time, this embodiment can significantly shorten this time.

なお、第1,5図に示すように、基台80のうち前記対
向電極手段Aより後方の位置には、コロナ放電処理の際
に発生するオゾン等のガスを排出するための排気手段F
が設置されている。
As shown in FIGS. 1 and 5, at a position behind the counter electrode means A in the base 80, there is an exhaust means F for exhausting gas such as ozone generated during the corona discharge treatment.
is installed.

さて、以上のように構成されたコロナ放電処理装置を使
用してインパネパッド1をコロナ放電処理する方法につ
いて説明する。
Now, a method for corona discharge treatment of the instrument panel pad 1 using the corona discharge treatment apparatus configured as described above will be described.

まず、成形されたインパネパッド1に離型剤や手作業に
起因する汚れ等が付着している場合には、確実にコロナ
放電処理を行うため、トリクロルエタン等の有@溶剤で
清浄することが望ましい。
First, if the molded instrument panel pad 1 is contaminated with mold release agent or dirt caused by manual work, it is recommended to clean it with a solvent such as trichloroethane to ensure corona discharge treatment. desirable.

次に、第1.4.5.8図に示すように、対向電極手段
Aの電極基材62及び対向電極63にインパネパッド1
を嵌合させる。この際、対向電極63はその表面ないし
全体が前記インパネパッド1の裏側の三次元形状と略同
−形状に形成されているため、該対向電極63表面のほ
ぼ全体がインパネパッド1の裏面全体に接触する。
Next, as shown in FIG. 1.4.5.8, the instrument panel pad 1 is attached to the electrode base material 62 and the counter electrode 63 of the counter electrode means A.
mate. At this time, since the surface or the entire surface of the counter electrode 63 is formed to have approximately the same three-dimensional shape as the back side of the instrument panel pad 1, almost the entire surface of the counter electrode 63 covers the entire back surface of the instrument panel pad 1. Contact.

従って、インパネパッド1は対向電極63に対して電気
的に有効に結合され、放電電極50からコロナ放電が発
生しやすくなる。
Therefore, the instrument panel pad 1 is electrically effectively coupled to the counter electrode 63, and corona discharge is likely to occur from the discharge electrode 50.

次に、排気手段Fを作動させておいてから、制御ユニッ
トEのスイッチを入れ、移動手段Cにおける各軸の移動
手段20,30.40をコロナ放電処理のスタート位置
にセットする。このとき、放電電極50の延出部51は
常に鉛直状態に支持されており、放電先端部52はイン
パネパッド1の前縁の左端より上方に約10mの間隔を
おいて位置される。
Next, after operating the exhaust means F, the control unit E is turned on, and the moving means 20, 30, 40 of each axis in the moving means C are set to the start position of the corona discharge treatment. At this time, the extending portion 51 of the discharge electrode 50 is always supported in a vertical state, and the discharge tip portion 52 is positioned above the left end of the front edge of the instrument panel pad 1 at an interval of approximately 10 m.

次に、高周波印加手段りを作動させると、対向電極63
と放電電極50の間に28kVの高周波が印加される。
Next, when the high frequency application means is activated, the counter electrode 63
A high frequency of 28 kV is applied between the discharge electrode 50 and the discharge electrode 50.

すると、放電先端部52のうち上面2に対向している部
分とその上面2との間の大気中にコロナ放電が発生し、
上面2のコロナ放電処理が開始される。
Then, corona discharge occurs in the atmosphere between the part of the discharge tip 52 facing the upper surface 2 and the upper surface 2,
Corona discharge treatment of the upper surface 2 is started.

X、Y、Zidl移動手段20,30.40は、制御ユ
ニットEからの制御信号に基づいて作動するリーボモー
タ25,32.45の回転によって各々の方向に移動し
、放電電極50はインパネパッド1の被処理面近傍を移
動していく。
The X, Y, Zidl moving means 20, 30.40 are moved in the respective directions by the rotation of the ribo motors 25, 32.45 operated based on control signals from the control unit E, and the discharge electrode 50 is It moves near the surface to be processed.

放電電極50の移動の仕方は1次の通りである。The discharge electrode 50 moves in the following manner.

■ よりインパネパッド1の@μ(/J ILIla 
D”3右喘へと右方向に移動する。
■ From instrument panel pad 1 @μ (/J ILIla
D”3 Move to the right to the right pant.

■ 次に、やや後方に移動してインパネパッド1の右側
面4より右方に位置し、前面3の右端の上方に上昇して
から前面3の左端の上方へと左方向に移動し、左側面4
の左方へ再度降下するという口字形の移動をする。
■ Next, it moves slightly backwards and is located to the right of the right side surface 4 of the instrument panel pad 1, rises above the right edge of the front surface 3, moves to the left above the left edge of the front surface 3, and then moves to the left side. Side 4
It moves in a kuji-like manner by descending again to the left of .

■ ざらに、やや後方に移動し、第8図に示すように、
上面2の左端の上方に上昇してから上面2の右端の上方
へと右方向に移動し、右側面4の右方へ再度降下すると
いう1字形の移動をする。
■ Roughly move slightly backwards, as shown in Figure 8.
It moves in a straight line shape, rising above the left end of the top surface 2, moving rightward above the right end of the top surface 2, and descending again to the right of the right side surface 4.

■ さらに、後方に移動しつつ0字形の移動を往復して
行う。
■Furthermore, while moving backwards, move back and forth in a zero-shape.

以上のような放電電極50の移動の際には、移動手段C
によって、放電電極50とインパネパッド1の被処理面
との距離がほぼ一定の10Mに保たれる。例えば、第8
図に示すように、放電電極50が吹出口10,11.1
2や皿部6,7の上方を通過するときには、該放電電極
50は該吹出口及び皿部の凹み分だけ下方に移動される
When moving the discharge electrode 50 as described above, the moving means C
As a result, the distance between the discharge electrode 50 and the surface to be treated of the instrument panel pad 1 is maintained at a substantially constant distance of 10M. For example, the 8th
As shown in the figure, the discharge electrode 50 is connected to the air outlet 10, 11.1.
When the discharge electrode 50 passes above the air outlet 2 and the trays 6 and 7, the discharge electrode 50 is moved downward by the recess of the outlet and the trays.

従って、放電電極50からの放電出力はインパネパッド
の被処理面の全体にわたってほぼ一定に保たれ、はぼ均
一な改質効果が得られる。
Therefore, the discharge output from the discharge electrode 50 is kept substantially constant over the entire surface to be treated of the instrument panel pad, and a substantially uniform modification effect can be obtained.

ところが、インパネパッド1には寸法誤差があるし、成
形後に湾曲変形等が生じることもある。
However, the instrument panel pad 1 has dimensional errors and may undergo curved deformation after molding.

従って、前記放電電極50とインパネパッド1の被処理
面との距離は前記移動手段Cにも拘らず細かく変化し、
放電出力も多少は変化することになる。
Therefore, the distance between the discharge electrode 50 and the surface to be treated of the instrument panel pad 1 changes finely despite the moving means C,
The discharge output will also change to some extent.

しかし、このように距離が細かく変化しても、本実施例
では前記放電電極50に設けられた距離規制部材53が
放電出力を一定に保つ。
However, even if the distance changes minutely like this, in this embodiment, the distance regulating member 53 provided on the discharge electrode 50 keeps the discharge output constant.

すなわち、放電電極50とインパネパッド1の被処理面
との距離が基準の10m++より短くなりかけると、距
離規制部材53の先端が被処理面に当接して放電電極5
0を押し上げるため、当該距離は最低107101まで
に規制される。従って、前記放電出力は増加することも
なく、基準出力にIII御される。
That is, when the distance between the discharge electrode 50 and the surface to be treated of the instrument panel pad 1 begins to become shorter than the standard 10 m++, the tip of the distance regulating member 53 comes into contact with the surface to be treated, and the discharge electrode 5
In order to push up 0, the distance is restricted to at least 107101. Therefore, the discharge output does not increase and is controlled to the reference output.

なお、本実施例では、前記のように距離規制部材53が
放電電極50を押し上げたときに、延出部51の基端部
がコイルスプリング56の弾性力に抗して支持ケース5
5内に侵入するため、支持ケース55自体は上方に移動
しない。すなわち、放電電極50の変動を支持ケース内
で吸収してしまうため、移動手段Bに無理な力を与える
ことがない。
In this embodiment, when the distance regulating member 53 pushes up the discharge electrode 50 as described above, the base end of the extension part 51 resists the elastic force of the coil spring 56 and pushes up the support case 5.
5, the support case 55 itself does not move upward. That is, since fluctuations in the discharge electrode 50 are absorbed within the support case, no unreasonable force is applied to the moving means B.

以上のような往復移動を伴うコロナ放電によって、イン
パネパッド1の被処理面はムラなく均一に改質され、塗
料、接着剤、印刷剤等の付着性が向上する。
Due to the corona discharge accompanied by the above-described reciprocating movement, the treated surface of the instrument panel pad 1 is evenly and uniformly modified, and the adhesion of paint, adhesive, printing agent, etc. is improved.

なお、放電電極50の移動速度は前記放電条件下では1
〜250m/Seaの範囲内において任意に設定するこ
とができるが、本実施例では150m/secとした。
Note that the moving speed of the discharge electrode 50 is 1 under the above discharge conditions.
Although it can be arbitrarily set within the range of ~250 m/Sea, it was set to 150 m/sec in this example.

この移動速度によれば、1つのインパネパッド1を約5
0秒で処理できる。
According to this moving speed, one instrument panel pad 1 can be
It can be processed in 0 seconds.

なお、本実施例では放電先端部52が曲面形状であるた
めに、コーナ部5,8,9,13における電位分布の変
化や、放電方向に対する被処理面の角度等の影響を受け
にくいという利点もある。
In this embodiment, since the discharge tip 52 has a curved shape, it has the advantage of being less susceptible to changes in the potential distribution at the corner parts 5, 8, 9, 13, the angle of the surface to be treated with respect to the discharge direction, etc. There is also.

なお、本発明は前記実施例の構成に限定されるものでは
なく、例えば以下のように発明の趣旨から逸脱しない範
囲で任意に変更して具体化することもできる。
It should be noted that the present invention is not limited to the configuration of the above-mentioned embodiments, and may be modified and embodied as desired without departing from the spirit of the invention, for example, as described below.

(1) 移動手段CにおけるX、Y、Z軸移動手段20
.30,40の構造を変更したり、これらに代えて多関
節型のロボット等を使用したりすることもできる。
(1) X-, Y-, and Z-axis moving means 20 in moving means C
.. It is also possible to change the structures of 30 and 40, or to use an articulated robot or the like instead.

(2) また、前記実施例では放電電極50に移動手段
C@設けて、該放電電極50の方を移動させたが、対向
電極手段Aに移動機構を設けて、インパネパッド1の方
を移動させるようにしてもよい。要するに、移動手段は
、放電電極50とインパネパッド1の被処理面との距離
をほぼ一定に保ちながら該放電電極50とインパネパッ
ド1とを相対移動させるものでめればよい。
(2) Furthermore, in the above embodiment, the discharge electrode 50 is provided with a moving means C@ to move the discharge electrode 50, but the counter electrode means A is provided with a moving mechanism to move the instrument panel pad 1. You may also do so. In short, the moving means may be one that moves the discharge electrode 50 and the instrument panel pad 1 relative to each other while keeping the distance between the discharge electrode 50 and the treated surface of the instrument panel pad 1 substantially constant.

(3) 距離規制部材53の構成を変更することもでき
る。例えば、セラミックスに代えて、ポリイミド樹脂等
の耐熱性に優れた合成樹脂やその伯の材料で形成しても
よい。
(3) The configuration of the distance regulating member 53 can also be changed. For example, instead of ceramics, it may be made of a synthetic resin with excellent heat resistance such as polyimide resin, or a material similar thereto.

また、距離規制部材53の先端にローラを回動可能に取
着すれば、被処理面に接触したときの抵抗を低減できる
Moreover, if a roller is rotatably attached to the tip of the distance regulating member 53, the resistance when it comes into contact with the surface to be processed can be reduced.

ざらに、前記実施例では距離規制部材53を放電電極5
0の先端に取着したが、必ずしも放電電極50に直接取
着する必要はなく、放電電極50に連結した他の部材に
設けてもよい。
Roughly speaking, in the above embodiment, the distance regulating member 53 is connected to the discharge electrode 5.
Although it is attached to the tip of the discharge electrode 50, it is not necessarily necessary to attach it directly to the discharge electrode 50, and it may be attached to another member connected to the discharge electrode 50.

(4) 放電電極50の放電先端部52の形状は球に限
定されず、半球、回転楕円体等、少なくとも放電先端部
が曲面形状をしているものであれば前記実施例と同様の
効果を奏する。しかし、コロナ放電の均一性、特に前記
実施例のように放電電極を被処理面に対して傾動させる
ことなく移動させる場合のコロナ放電の均一性の点から
は、球状が最適であると考えられる。
(4) The shape of the discharge tip 52 of the discharge electrode 50 is not limited to a sphere, but may be a hemisphere, a spheroid, or the like, as long as at least the discharge tip has a curved shape. play. However, from the viewpoint of uniformity of corona discharge, especially when the discharge electrode is moved without tilting with respect to the surface to be treated as in the above example, a spherical shape is considered to be optimal. .

(5) さらk、放電電極には、樹脂成形品の被処理面
に対してほぼ平行に接近する棒状又は面状の電極を使用
することもできる。被処理面が単純形状の場合や凹凸が
浅い場合には、これらの棒状又は面状の電極を使用する
ことによって、コロナ放電処理に要する時間をざらに短
縮することができる。
(5) Furthermore, as the discharge electrode, a rod-shaped or planar electrode that approaches the surface to be treated of the resin molded product in a substantially parallel manner can also be used. When the surface to be treated has a simple shape or shallow irregularities, the time required for corona discharge treatment can be significantly shortened by using these rod-shaped or planar electrodes.

また、前記実施例の放電電極50による処理と、棒状又
は面状の放電電極による処理とを適宜組合せて行うこと
もできる。
Furthermore, the treatment using the discharge electrode 50 of the embodiment described above and the treatment using a rod-shaped or planar discharge electrode can be combined as appropriate.

(6) 本発明は前記インパネパッド1以外にも、自動
車用バンパー、自動車用モール、オートパイの泥よけフ
ェンダ−1各種産業機器、家庭用品等の、成形後に塗装
、接着、印刷等が必要な全ての三次元樹脂成形品をコロ
ナ放電処理の対象物とすることができる。
(6) In addition to the above-mentioned instrument panel pad 1, the present invention is applicable to automobile bumpers, automobile moldings, mudguard fenders for automobiles, various industrial equipment, household goods, etc., which require painting, adhesion, printing, etc. after molding. All three-dimensional resin molded products can be subjected to corona discharge treatment.

発明の効果 以上詳述したように、本発明のコロナ放電処理装置によ
れば、三次元樹脂成形品の被処理面をムラなく均一に改
質することができ、塗料、接着剤、印刷剤等の付着性を
均一に向上させることができるばかりでなく、移動手段
のティーチングを容易かつ迅速に行うことができるとい
う優れた効果を奏する。
Effects of the Invention As detailed above, according to the corona discharge treatment apparatus of the present invention, the treated surface of a three-dimensional resin molded article can be evenly and uniformly modified, and paints, adhesives, printing agents, etc. Not only can the adhesion of the material be uniformly improved, but also the teaching of the moving means can be performed easily and quickly, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

各図は本発明を具体した一実施例を示し、第1図はコロ
ナ放電処理装置の正面図、第2図は放電電極手段等の断
面図、第3図はインパネパッドの斜視図、第4図はイン
パネパッド及び対向電極手段を前後に切断して示す断面
図、第5図はコロナ放電処理装置の右側面図、第6図は
Y軸移動手段の平面図、第7図は高周波印加手段及び電
極のブロック図、第8図はインパネパッド及び対向電極
手段を左右に切断して示すとともに放電電極の移動方法
を示す断面図である。 1・・・インパネパッド、50・・・tli電電極電極
3・・・距離規制部材、C・・・移動手段。
Each figure shows an embodiment embodying the present invention. FIG. 1 is a front view of a corona discharge treatment device, FIG. 2 is a sectional view of the discharge electrode means, etc., FIG. 3 is a perspective view of the instrument panel pad, and FIG. The figure is a sectional view showing the instrument panel pad and counter electrode means cut back and forth, Figure 5 is a right side view of the corona discharge treatment device, Figure 6 is a plan view of the Y-axis moving means, and Figure 7 is the high frequency application means. and a block diagram of the electrodes. FIG. 8 is a sectional view showing the instrument panel pad and the counter electrode means cut left and right, and also showing a method of moving the discharge electrode. DESCRIPTION OF SYMBOLS 1...Instrument panel pad, 50...tli electric electrode 3...Distance regulation member, C...Transportation means.

Claims (1)

【特許請求の範囲】 1、コロナ放電を生じさせる放電電極(50)と三次元
樹脂成形品(1)の被処理面との距離をほぼ一定に保ち
ながら該放電電極(50)と三次元樹脂成形品(1)と
を相対移動させるための移動手段(C)を設けるととも
に、前記放電電極(50)又はこれに連結した部材には
被処理面に向かって延びる距離規制部材(53)を設け
たことを特徴とするコロナ放電処理装置。 2、前記移動手段(C)は放電電極(50)に設けられ
ていることを特徴とする特許請求の範囲第1項に記載の
コロナ放電処理装置。 3、前記距離規制部材(53)は放電電極(50)の先
端に取着された非導電性の棒状体であることを特徴とす
る特許請求の範囲第1項に記載のコロナ放電処理装置。
[Claims] 1. While keeping the distance between the discharge electrode (50) that produces corona discharge and the surface to be treated of the three-dimensional resin molded product (1) almost constant, the discharge electrode (50) and the three-dimensional resin A moving means (C) for relatively moving the molded product (1) is provided, and a distance regulating member (53) extending toward the surface to be treated is provided on the discharge electrode (50) or a member connected thereto. A corona discharge treatment device characterized by: 2. The corona discharge treatment apparatus according to claim 1, wherein the moving means (C) is provided on a discharge electrode (50). 3. The corona discharge treatment apparatus according to claim 1, wherein the distance regulating member (53) is a non-conductive rod-shaped body attached to the tip of the discharge electrode (50).
JP2046286A 1986-01-31 1986-01-31 Corona discharge treatment apparatus Pending JPS62179534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046286A JPS62179534A (en) 1986-01-31 1986-01-31 Corona discharge treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046286A JPS62179534A (en) 1986-01-31 1986-01-31 Corona discharge treatment apparatus

Publications (1)

Publication Number Publication Date
JPS62179534A true JPS62179534A (en) 1987-08-06

Family

ID=12027750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046286A Pending JPS62179534A (en) 1986-01-31 1986-01-31 Corona discharge treatment apparatus

Country Status (1)

Country Link
JP (1) JPS62179534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142713A (en) * 2006-12-12 2008-06-26 Ford Global Technologies Llc Method of decorating plastic component with coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142713A (en) * 2006-12-12 2008-06-26 Ford Global Technologies Llc Method of decorating plastic component with coating

Similar Documents

Publication Publication Date Title
US4836901A (en) Corona discharge treating method and apparatus for resin moldings
CN110449299B (en) Spraying equipment with adjusting function for hardware processing
JPS59183868A (en) Painting of car body
US10827601B1 (en) Handheld plasma device
JPS62179534A (en) Corona discharge treatment apparatus
JPH0312572B2 (en)
JPS62112631A (en) Counter electrode for corona discharge treatment and corona discharge treatment using same
JPS62112630A (en) Counter electrode for corona discharge treatment and corona discharge treatment using same
KR900003047B1 (en) Corona discharge discharge treatment of molded resin
JPS62168543A (en) Opposed electrode for corona discharge treatment
CN211684160U (en) Multi-curved surface helmet pattern multi-axis jet printing machine
KR101678684B1 (en) The glass circuit board patterning equipment
JPS62112633A (en) Electrode for corona discharge and corona discharge treatment using same
CN208555291U (en) Supersonic cleaner
JPS62115039A (en) Method for treating surface of polylefin molding
JPH0559132B2 (en)
JPS62112632A (en) Electrode for corona discharge and corona discharge treatment using same
JPS62106934A (en) Electrode for corona discharge and corona discharge treatment using the same
CN218345537U (en) Movable plating plate fixing device for ion plating
CN218610065U (en) Paint spraying device for automobile accessory machining
JPH0845884A (en) Substrate washing and drying device
JPS62178322A (en) Counter electrode for corona discharge treatment
CN208086598U (en) A kind of drawing mechanism and flower stand discharging assembly
CN113699029B (en) Automatic plate coating instrument and automatic plate coating method
JPS62174234A (en) Counter electrode for corona discharge treatment