JPS6217950B2 - - Google Patents

Info

Publication number
JPS6217950B2
JPS6217950B2 JP55040697A JP4069780A JPS6217950B2 JP S6217950 B2 JPS6217950 B2 JP S6217950B2 JP 55040697 A JP55040697 A JP 55040697A JP 4069780 A JP4069780 A JP 4069780A JP S6217950 B2 JPS6217950 B2 JP S6217950B2
Authority
JP
Japan
Prior art keywords
cycloconverter
reactive power
current
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55040697A
Other languages
Japanese (ja)
Other versions
JPS56139082A (en
Inventor
Shigeru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4069780A priority Critical patent/JPS56139082A/en
Publication of JPS56139082A publication Critical patent/JPS56139082A/en
Publication of JPS6217950B2 publication Critical patent/JPS6217950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 本発明は電源側から見た基本波力率が常に1に
なるように制御する無効電力補償形サイクロコン
バータの制御方法に関するものである。 サイクロコンバータは一定周波数の交流電力を
他の異なる周波数の交流電力に直接変換する装置
であるが、その構成素子たるサイリスタを電源電
圧によつて転流させるための電源から多くの無効
電力をとる欠点がある。また、その無効電力は負
荷側の周波数に同期して常に変動している。この
ため電源系統設備の容量を増大させるだけでな
く、無効電力変動により同一系統に接続された電
気機器に種々の悪影響を及ぼしている。 このようなサイクロコンバータの無効電力の変
動を補償する装置として、従来当該サイクロコン
バータの受電端に無効電力補償装置を接続してい
た。この無効電力補償装置は無効電力の変動を補
償するものであるから、制御の応答速度が高くな
ければならずサイリスタ等の半導体素子で構成さ
れており高価なものである。 第1図は従来の無効電力補償形サイクロコンバ
ータ装置の構成図である。図中、CCは循環電流
式サイクロコンバータ、SS―P及びSS―Nはそ
の正群及び負群コンバータ、L01及びL02は中間タ
ツプ付直流リアクトル、LOADは負荷である。ま
たBUSは3相電線路、Cは△又は〓接続された
進相コンデンサ、TRは電源トランスである。制
御回路としては受電端の3相交流電流を検出する
交流器CTS、3相電源電圧を検出する変成器
T、無効電力演算器VAR、制御補償回路H(S)
正群コンバータの入力電流を検出する変流器
CTP、負荷コンバータの入力電流を検出する変流
器CTN、3相全波整流回路DP,ON、加算器A1
A5、演算増幅器K0〜K3、比較器C1〜C3、絶対値
回路ABS及び位相制御回路PH―P,PH―Nが用
いられる。 変流器CTPは正群コンバータSS―の交流入
力電流を検出するもので、3相全波整流回路DP
を介して得られる信号は正群コンバータの出力電
流I P の検出値となる。同様に変流器CTN及び3
相全波整流回路DNにより負群コンバータSS―N
の出力電流INが検出される。 加算器A3によつてIP−IN=ILを求める。こ
れが負荷電流の検出値である。また加算器A1
A2と絶対値回路ABS及び増幅器K0(1/2倍)によ
つて次の演算を行なう。 I0=1/2・(IP+IN−|IL|) これが循環電流の検出値である。 まず負荷電流制御の動作を説明する。 負荷電流指令I〓と実際に流れる負荷電流の検
出値ILを比較し、その偏差εに比例した電圧
をサイクロコンバータから発生するように位相制
御回路PH―P,PH―Nを制御する。PH―Pの
出力位相αPに対してPH―Nの出力位相αNはαN
=180゜−αPの関係を保つように増幅器K2から
反転増幅器K3を介してPH―Nに入力される。す
なわち、SS―Pの出力電圧VP=KV・VS・cos
αPとSS―Nの出力電圧VN=KV・VS・cos
αN=KV・VS・cos(180゜−αP)は負荷端子で
つり合つた状態で通常の運転が行なわれる。電流
指令I〓を正弦波状に変化させるとそれに応じて
偏差εも変化し、負荷に正弦波電流ILが流れ
るように前記αP及びαNが制御される。この通常
の運転ではSS―Pの電圧とSS―Nの電圧は等し
くつり合つているため循環電流I0はほとんど流れ
ない。 次に循環電流制御の動作を説明する。 電源端子には電流検出器CTS及び電圧検出器
PTが設置され、VARによつてその無効電力Qが
演算される。無効電力の指令値Q〓は通常零に設
定され比較器C1によつて偏差εが発生させら
れる。制御補償回路H(S)は定常偏差εを零に
するため通常積分要素が使われ、その出力I0〓が
循環電流I0の指令値となる。比較器C2によつて偏
差ε=I0〓−I0をとり増幅器K1を介して加算器
A4及びA5に入力する。 従つてPH―P及びPH―Nへの入力ε及びε
は各々次のようになる。ただしK3=−1とす
る。 ε=K2・ε+K1・ε ε=−K2・ε+K1・ε 故にαN=180゜−αPの関係はくずれK1・ε
に比例した分だけSS―Pの出力電圧VPとSS―N
の出力電圧VNとが不平衡になる。その差電圧が
直流リアクトルL01及びL02に印加され、循環電流
I0が流れる。I0が指令値I0〓より流れすぎればε
が減少して上記差電圧を小さくする。結果的に
はI0はI0〓になるように制御される。 第2図は第1図の装置に使われている無効電力
演算回路VARの代表的な実施例を示す構成図で
ある。R,S,Tは電源の3相電線路BUSのR
相,S相,T相を示す。PTは電源の各相電圧υS
,υSS,υSTを検出する変成器で、第3高調波
を吸収する3次巻線△を含んでいる。CTSR
CTSS,CTSTは各相の線電流iSR,iSS,iST
検出する変流器である。移相器PHSは各相電圧υ
SR,υSS,υSTに対して90゜遅れた単位電圧υ′S
,υ′SS,υ′STを作るもので、次の関係式から
得られる。 乗算器MR,MS,MTは上記単位電圧υ′SR,υ′S
,υ′STと各相の検出電流iSR,iSS及びiST
それぞれ掛け合わせるもので、qR=υ′SR・iSR
等は瞬時の無効電力となる。サイクロコンバータ
を構成するサイリスタはオン・オフ動作を行なう
ため多くの高調波成分を含んでいる。故に上記瞬
時の無効電力qR,qS,qTはそのまま使用する
ことができない。通常電源周波数の半サイクル毎
に積分を行ない、その平均値を取り出して平均の
無効電力Qを求める。 積分器INTR,INTS,INTTは各々上記瞬時無
効電力qR,qS,qTを積分するもので、電源周
波数の半サイクル毎にリセツトされる。またサン
プルホールド回路SHR,SHS,SHTは上記積分器
INTR,INTS,INTTの出力をリセツト直前でサ
ンプルしホールドするもので、その結果として次
の値が得られる。 QR=1/T∫ Rdt QS=1/T∫ Sdt QT=1/T∫ Tdt ここでTは電源周波数の半サイクル周期を示
す。この3相の無効電力QR,QS,QTの和をと
り3で除したものが電源の平均無効電力Qとな
る。 なお、ゼロクロス検出器ZCR,ZCS,ZCTとパ
ルス発生器EXR,EXS,EXT及びモノマルチ回路
MMR,MMS,MMTは前記積分器INTR,INTS
INTTのリセツト信号とサンプルホールド回路
SHR,SHS,SHTのサンプルタイミング信号を発
生するものである。第3図はR相について当該各
回路の入出力信号を表わしたものである。すなわ
ち、aは変成器PTによつて検出されたR相の電
圧υSRの波形、bはゼロクロス検出器ZCRの出力
信号波形、Cはパルス発生器EXRの出力信号波
形、dはモノマルチMMRの出力信号波形を示し
ている。Cの信号はサンプルホールド回路SHR
サンプルタイミング信号となるもので、それより
時間tだけ遅れてdの信号が発生し積分器INTR
をリセツトする。他のS相,T相についても同様
である。 このようにして検出された無効電力Qは、サイ
クロコンバータの遅れ無効電力と進相コンデンサ
の進み無効電力の差分を示すもので前述のように
その指令値Q〓=0とすることによりQ=0にな
るように制御される。すなわち、Qが零より小さ
いとき(進みのとき)ε>0となり制御補償回
路H(S)を介してI0〓を増大させる。従つて循環
電流I0が増加しサイクロコンバータの遅れ無効電
力を増大させる。故に結果的にQ=0となる。Q
が零より大きいとき(遅れのとき)は逆にε
0となり、I0〓を減少させて同様にQ=0になる
ように制御される。 以上に説明した従来の無効電力補償形サイクロ
コンバータ装置は次のような難点がある。 (1) 電源の無効電力を検出するために変成器PT
及び変流器CTR,CTS,CTTを使わなければな
らない。これらは装置が大容量になつた場合、
高電圧に耐える絶縁能力が要求され、高価なも
のとなる。 (2) サイクロコンバータの高調波成分の影響を除
くため、電源周波数の半サイクル毎に積分を行
ないサンプルホールドする必要がある。そのた
め回路構成が複雑となる。また、サンプルホー
ルドの時間(半サイクル周期の時間)の約1/2
の時間が検出のためのむだ時間となるため、制
御系の応答を遅くせざるを得ない。 特に、サイクロコンバータの出力周波数が高
くなるに従い、電源側の無効電力の変動もそれ
に同期して速くなる。故にその速い変動に制御
系が追従し、電源側の力率を1にするために
は、上記検出に伴なうむだ時間をなくする必要
がある。 本発明は前述の点に鑑みてなされたもので、高
価な変成器PTや変流器CTSR,CTSS,CTST等を
使用せず、また検出に伴なうむだ時間のない、無
効電力補償形サイクロコンバータの制御方法を提
供することを目的とする。 第4図は本発明の無効電力補償形サイクロコン
バータ装置の実施例を示す構成図である。無効電
力の検出手段を除いて、他の回路構成は第1図と
同じである。以下その無効電力QCCの検出手段を
説明する。 図中、K〓,KQは演算増幅器、A6,A7は加算
器、SQは2乗演算回路、SQRは平方根演算回路
である。 いま、循環電流制御回路の増幅器K1の出力信
号は負荷電流制御回路の増幅器K2の出力信号に
比較して十分小さいとして考える。従つて正群コ
ンバータSS―Pの点弧制御角αPと負群コンバー
タSS―Nの点弧制御角αNとはαN≒180゜−αP
の関係がある。 故に、SS―の出力電圧VP=KV・VS・cos
αPとSS―Nの出力電圧VN=KV・VS・cosαN
は負荷端子でほぼつり合つた状態で運転される。
このVP及びVNの大きさは増幅器K2の出力電圧
に比例することは前にも述べた。言い換えると
cosαP≒−cosαNはK2の出力電圧に比例して変
化する。 従つて、K2の出力信号を増幅器K〓によつて
定数倍することにより点弧制御角αの余弦値cos
αが求められる。ここで、−1≦cosα≦1の条件
を満足させるために増幅器K〓にはリミツタ機能
も含ませる。次の2乗演算回路SQでcos2αを求
め、加算器A6により1―cos2αの演算を行な
う。これをさらに平方根演算回路SQRを介して
sinα=√1−2が得られる。 一方、加算器A1の出力は正群コンバータの出
力電流IPと負群コンバータの出力電流INの和と
なることは第1図の説明で述べたが、このIP
Nの値と上記SQRの出力sinαを乗算器MLTに
よつて掛け合わせる。その値IREACTU=(IP
N)・sinαはここで示されるU相のサイクロコ
ンバータCC―Uの遅れ無効電流となる。三相負
荷に交流電流を供給する場合、サイクロコンバー
タCC―V,CC―Wが電線路BUSに同様に接続さ
れるが、各々の遅れ無効電流IREACTV,IREAC
は、U相と同じように求められる。 加算器A7はこのようにして求められた遅れ無
効電流IREACTU,IREACTV,IREACTWの和
をとるものである。これを増幅器KQにより定数
倍すれば、サイクロコンバータ全体の遅れ無効電
力QCCが求められる。 比較器C1は無効電力の指令値Q〓と上記遅れ
無効電力QCCの検出値を比較し偏差εを出す。
ここでQ〓は進相コンデンサCに供給される進み
無効電力QCに等しく設定する。上記偏差ε
制御補償回路H(S)を介して各相のサイクロコン
バータの循環電流の指令値I0〓となり、第1図の
説明で述べたようにQCC=Q〓となるように制御
される。従つてQ〓=QCと設定すれば、サイク
ロコンバータの遅れ無効電力QCCと進相コンデン
サの進み無効電力は等しくなり、結果的に電源側
の無効電力は零すなわち電源力率は1となる。 第5図は本発明装置の別の実施例を示す構成図
である。図中SIN P 及びSINNは第4図のK〓・
SQ,A6及びSQRをまとめたもので、演算√1−
cos2αを行なうものMLTP,MITNは乗算器、A8
は加算である。 すなわち、正群コンバータSS―Pの点弧制御
角αPの正弦値sinαPと負群コンバータSS―Nの
点弧制御角αNの正弦値sinαNを別々に求め、そ
れぞれの出力電流IP及びINを乗じてサイクロコ
ンバータCC―Uの遅れ無効電流IREACTUを求
めている。その関係式は次のようになる。 IREACTU=IPsinαP+INsinαN 循環電流I0の制御系の増幅器K1の出力電圧や負荷
電流ILの制御系の増幅器K2の出力電圧より十分
小さいときには、αN≒180゜−αPとなり IPsinαP+INsinαN≒(IP+IN)・sinα が成り立つ。従つて通常、負荷LOADのインピー
ダンスは、直流リアクトルL01,L02のインピーダ
ンスより大きく上記条件を満足するため、第4図
の検出回路でも十分精度の良い検出が可能であ
る。 以上のように、本発明装置では、サイクロコン
バータの無効電力QCCを検出するに際し、正群コ
ンバータの出力電流IP、負群コンバータの出力
電流IN及び点弧制御角αの正弦値を用いている
が、いずれも電源周波数とは無関係であり、直流
レベルで演算しているため、サイリスタのスイツ
チング動作に伴なう高調波の影響がなく検出でき
る。従つて従来のサンプルホールド回路等を使用
しなくともよく前記むだ時間は完全に除去でき
る。むしろ本発明装置では、サイクロコンバータ
を制御する点弧角を先に検出し、次に流れるであ
ろう無効電流IREACTUを求めているのでさらに
追従性の良い制御が可能となる。 また、従来の装置で使われた変成器PTや変流
器CTSR,CTSS,CTST等を使用せずに済み、構
成が簡単で安価な装置を提供することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a reactive power compensating cycloconverter such that the fundamental wave power factor as viewed from the power supply side is always 1. A cycloconverter is a device that directly converts alternating current power at a constant frequency into alternating current power at a different frequency, but the drawback is that it requires a lot of reactive power from the power source to commutate the thyristor, which is a component of the cycloconverter, using the power supply voltage. There is. Moreover, the reactive power constantly fluctuates in synchronization with the frequency on the load side. This not only increases the capacity of power supply system equipment, but also causes various adverse effects on electrical equipment connected to the same system due to reactive power fluctuations. Conventionally, as a device for compensating for fluctuations in reactive power of such a cycloconverter, a reactive power compensator has been connected to a power receiving end of the cycloconverter. Since this reactive power compensator compensates for fluctuations in reactive power, it must have a high control response speed, and is made of semiconductor elements such as thyristors and is expensive. FIG. 1 is a block diagram of a conventional reactive power compensation type cycloconverter device. In the figure, CC is a circulating current type cycloconverter, SS-P and SS-N are its positive group and negative group converters, L01 and L02 are DC reactors with intermediate taps, and LOAD is a load. Also, BUS is a three-phase electric line, C is a phase advance capacitor connected to △ or 〓, and TR is a power transformer. The control circuit includes an alternator CT S that detects the three-phase alternating current at the receiving end, and a transformer P that detects the three-phase power supply voltage.
T, reactive power calculator VAR, control compensation circuit H (S) ,
Current transformer that detects input current of positive group converter
CT P , current transformer CT N that detects the input current of the load converter, three-phase full-wave rectifier circuit DP, ON, adder A 1 ~
A 5 , operational amplifiers K 0 to K 3 , comparators C 1 to C 3 , absolute value circuit ABS, and phase control circuits PH-P and PH-N are used. The current transformer CT P detects the AC input current of the positive group converter SS- P , and is a three-phase full-wave rectifier circuit DP.
The signal obtained through the converter becomes the detected value of the output current I P of the positive group converter. Similarly current transformers CT N and 3
Negative group converter SS-N by phase full-wave rectifier circuit DN
The output current I N of is detected. I P -I N =I L is determined by adder A3 . This is the detected value of the load current. Also, adder A 1 ,
The following calculation is performed using A 2 , absolute value circuit ABS, and amplifier K 0 (1/2 times). I 0 =1/2·(I P +I N −|I L |) This is the detected value of the circulating current. First, the operation of load current control will be explained. Compare the load current command I L with the detected value I L of the load current that actually flows, and control the phase control circuits PH-P and PH-N so that the cycloconverter generates a voltage proportional to the deviation ε 3 . . The output phase α N of PH-N is α N with respect to the output phase α P of PH-P
The signal is input from amplifier K2 to PH-N via inverting amplifier K3 so as to maintain the relationship: =180° -αP . In other words, SS-P output voltage V P =K V・V S・cos
α P and SS-N output voltage V N =K V・V S・cos
Normal operation is performed with α N =K V · V S · cos (180° - α P ) being balanced at the load terminals. When the current command I L changes sinusoidally, the deviation ε 3 also changes accordingly, and α P and α N are controlled so that a sinusoidal current I L flows through the load. In this normal operation, the SS-P voltage and the SS-N voltage are equally balanced, so almost no circulating current I 0 flows. Next, the operation of circulating current control will be explained. The power supply terminal has a current detector CT S and a voltage detector.
A PT is installed, and its reactive power Q is calculated by VAR. The reactive power command value Q〓 is normally set to zero, and a deviation ε 1 is generated by the comparator C 1 . The control compensation circuit H (S) normally uses an integral element in order to make the steady-state deviation ε 1 zero, and its output I 0 becomes the command value of the circulating current I 0 . The deviation ε 2 =I 0 〓−I 0 is taken by the comparator C 2 and sent to the adder via the amplifier K 1 .
Fill in A 4 and A 5 . Therefore, the inputs to PH-P and PH-N are ε 4 and ε
5 are as follows. However, K 3 =-1. ε 4 =K 2・ε 3 +K 1・ε 2 ε 5 =−K 2・ε 3 +K 1・ε 2 Therefore, the relationship α N = 180° − α P breaks down K 1・ε 2
SS-P output voltage V P and SS-N are proportional to
The output voltage V N becomes unbalanced. The differential voltage is applied to DC reactors L 01 and L 02 , and the circulating current
I 0 flows. If I 0 flows too much than the command value I 0 〓, ε
2 decreases to make the differential voltage smaller. As a result, I 0 is controlled to become I 0 〓. FIG. 2 is a configuration diagram showing a typical embodiment of the reactive power calculation circuit VAR used in the device shown in FIG. R, S, T are the R of the power supply 3-phase electric line BUS
Phase, S phase, and T phase are shown. PT is the voltage of each phase of the power supply υ S
A transformer that detects R , υ SS , and υ ST , and includes a tertiary winding △ that absorbs the third harmonic. CTSR ,
CT SS and CT ST are current transformers that detect line currents i SR , i SS , and i ST of each phase. The phase shifter PHS has each phase voltage υ
Unit voltage υ′ S delayed by 90° with respect to SR , υ SS , υ ST
R , υ′ SS , υ′ ST are obtained from the following relational expression. The multipliers M R , M S , M T use the above unit voltages υ′ SR , υ′ S
S , υ′ ST is multiplied by the detected currents i SR , i SS and i ST of each phase, respectively, and q R = υ′ SR・i SR
etc. are instantaneous reactive power. The thyristor that makes up the cycloconverter contains many harmonic components because it performs on/off operations. Therefore, the instantaneous reactive powers q R , q S , q T cannot be used as they are. Normally, integration is performed every half cycle of the power supply frequency, and the average value is taken out to obtain the average reactive power Q. The integrators INTR , INTS , and INTT integrate the instantaneous reactive powers qR , qS , and qT, respectively, and are reset every half cycle of the power supply frequency. In addition, the sample and hold circuits S R , S S , and S T are the integrators mentioned above.
The outputs of INT R , INT S , and INT T are sampled and held just before reset, and the following values are obtained as a result. Q R = 1/T∫ T O q R dt Q S = 1/T∫ T O q S dt Q T = 1/T∫ T O q T dt Here, T indicates the half cycle period of the power supply frequency. The sum of these three-phase reactive powers Q R , Q S , and Q T and divided by 3 becomes the average reactive power Q of the power supply. In addition, zero cross detectors ZC R , ZC S , ZC T , pulse generators EX R , EX S , EX T and monomulti circuit
MM R , MM S , MM T are the integrators INT R , INT S ,
INT T reset signal and sample hold circuit
It generates sample timing signals for SHR , SHS , and SHT . FIG. 3 shows the input and output signals of each circuit for the R phase. That is, a is the waveform of the R-phase voltage υ SR detected by the transformer PT, b is the output signal waveform of the zero cross detector ZC R , C is the output signal waveform of the pulse generator EX R , and d is the monomultiple The output signal waveform of MMR is shown. The signal C becomes the sample timing signal for the sample and hold circuit SHR , and the signal d is generated after a delay of time t and is passed through the integrator INT R.
Reset. The same applies to the other S phase and T phase. The reactive power Q detected in this way indicates the difference between the delayed reactive power of the cycloconverter and the leading reactive power of the phase advance capacitor, and as described above, by setting the command value Q=0, Q=0. controlled so that That is, when Q is smaller than zero (advanced), ε 1 >0, and I 0 〓 is increased via the control compensation circuit H (S) . Therefore, the circulating current I 0 increases, increasing the delayed reactive power of the cycloconverter. Therefore, Q=0 as a result. Q
When is larger than zero (delay), conversely, ε 1 <
0, and by decreasing I 0 〓, it is controlled so that Q=0 as well. The conventional reactive power compensation type cycloconverter device described above has the following drawbacks. (1) Transformer PT to detect reactive power of power supply
and current transformers CT R , CT S , CT T shall be used. When the capacity of the device increases, these
It requires insulation ability to withstand high voltage and is expensive. (2) To remove the influence of harmonic components of the cycloconverter, it is necessary to perform integration and sample and hold every half cycle of the power supply frequency. Therefore, the circuit configuration becomes complicated. Also, approximately 1/2 of the sample hold time (half cycle period time)
Since the time becomes a dead time for detection, the response of the control system has to be delayed. In particular, as the output frequency of the cycloconverter becomes higher, fluctuations in the reactive power on the power supply side also become faster in synchronization with it. Therefore, in order for the control system to follow the rapid fluctuations and bring the power factor on the power supply side to 1, it is necessary to eliminate the dead time associated with the above detection. The present invention has been made in view of the above -mentioned points. The present invention aims to provide a method for controlling a compensated cycloconverter. FIG. 4 is a configuration diagram showing an embodiment of the reactive power compensation type cycloconverter device of the present invention. The other circuit configurations are the same as in FIG. 1 except for the reactive power detection means. The means for detecting the reactive power Q CC will be explained below. In the figure, K〓 and K Q are operational amplifiers, A 6 and A 7 are adders, SQ is a square calculation circuit, and SQR is a square root calculation circuit. Now, assume that the output signal of the amplifier K 1 of the circulating current control circuit is sufficiently smaller than the output signal of the amplifier K 2 of the load current control circuit. Therefore, the firing control angle α P of the positive group converter SS- P and the firing control angle α N of the negative group converter SS-N are α N ≒180°−α P
There is a relationship between Therefore, the output voltage of SS- P V P =K V・V S・cos
α P and SS-N output voltage V N =K V・V S・cos α N
is operated in a nearly balanced state at the load terminals.
It was previously stated that the magnitudes of V P and V N are proportional to the output voltage of amplifier K 2 . In other words
cosα P ≒−cosα N changes in proportion to the output voltage of K 2 . Therefore, by multiplying the output signal of K2 by a constant using the amplifier K, the cosine value cos of the ignition control angle α can be obtained.
α is calculated. Here, in order to satisfy the condition -1≦cosα≦1, the amplifier K is also provided with a limiter function. The next square calculation circuit SQ calculates cos 2 α, and the adder A 6 calculates 1−cos 2 α. This is further processed through the square root calculation circuit SQR.
sinα= √1−2 is obtained. On the other hand, as mentioned in the explanation of Fig. 1 that the output of the adder A1 is the sum of the output current I P of the positive group converter and the output current I N of the negative group converter, this I P +
The value of I N and the output sin α of the above SQR are multiplied by the multiplier MLT. Its value I REACTU = (I P +
I N )·sin α is the delayed reactive current of the U-phase cycloconverter CC-U shown here. When supplying alternating current to a three-phase load, cycloconverters CC-V and CC-W are similarly connected to the electric line BUS, but the respective delayed reactive currents I REACT - V , I REAC
T - W is obtained in the same way as the U phase. The adder A7 sums the delayed reactive currents I REACT - U , I REACT - V and I REACT - W obtained in this way. By multiplying this by a constant using the amplifier K Q , the delayed reactive power Q CC of the entire cycloconverter can be obtained. The comparator C1 compares the reactive power command value Q〓C with the detected value of the delayed reactive power QCC , and outputs a deviation ε1 .
Here, Q〓 C is set equal to the leading reactive power Q C supplied to the phase leading capacitor C. The above deviation ε 1 becomes the command value I 0 〓 of the circulating current of the cycloconverter of each phase via the control compensation circuit H (S) , and as described in the explanation of Fig. 1, it is set so that Q CC =Q 〓 C. controlled by. Therefore, if we set Q〓 C = Q C , the lagging reactive power Q CC of the cycloconverter and the leading reactive power of the phase advance capacitor will be equal, and as a result, the reactive power on the power supply side will be zero, and the power factor of the power supply will be 1. Become. FIG. 5 is a block diagram showing another embodiment of the device of the present invention. In the figure, SIN P and SIN N are K in Figure 4.
It is a combination of SQ, A 6 and SQR, and the operation √1−
MLT P which performs cos 2 α, MIT N is a multiplier, A 8
is addition. That is, the sine value sinα P of the firing control angle α P of the positive group converter SS- P and the sine value sinα N of the firing control angle α N of the negative group converter SS- N are obtained separately, and the respective output currents I P The delayed reactive current I REACT - U of the cycloconverter CC-U is obtained by multiplying by I and I N . The relational expression is as follows. I REACT - U = I P sinα P + I N sinα N When the output voltage of the amplifier K 1 of the control system for the circulating current I 0 is sufficiently smaller than the output voltage of the amplifier K 2 of the control system for the load current I L , α N ≒ 180°−α P , and I P sinα P + I N sin α N ≒ (I P + I N )・sin α holds true. Therefore, since the impedance of the load LOAD is usually larger than the impedance of the DC reactors L 01 and L 02 and satisfies the above conditions, the detection circuit shown in FIG. 4 can also perform sufficiently accurate detection. As described above, in the device of the present invention, when detecting the reactive power Q CC of the cycloconverter, the output current I P of the positive group converter, the output current I N of the negative group converter, and the sine value of the firing control angle α are used. However, since both are unrelated to the power supply frequency and are calculated at the DC level, detection is possible without the influence of harmonics associated with the switching operation of the thyristor. Therefore, there is no need to use a conventional sample and hold circuit, and the dead time can be completely eliminated. Rather, in the device of the present invention, the firing angle for controlling the cycloconverter is detected first, and then the reactive current I REACT - U that will flow is determined, so that control with even better followability is possible. Furthermore, it is not necessary to use the transformer PT, current transformers CT SR , CT SS , CT ST, etc. used in conventional devices, and it is possible to provide a device with a simple configuration and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の無効電力補償形サイクロコン
バータ装置の構成図、第2図は第1図に使われて
いる無効電力演算回路の代表的な例を示す構成
図、第3図は、第2図の動作を説明するための波
形図、第4図は本発明の一実施例を示す無効電力
補償形サイクロコンバータ装置の構成図、第5図
は本発明の実施例を示す無効電力補償形サイクロ
コンバータ装置の構成図である。 BUS…3相電線路、C…進相コンデンサ、TR
…電源トランス、CC―U…U相のサイクロコン
バータ、SS―P…正群コンバータ、SS―N…負
群コンバータ、L01,L02…直流リアクトル、
LOAD―U…負荷、PH―P,PH―N…位相制御
回路、ABS…絶対値回路、K0,K1,K2,K3,K
〓,KQ…演算増幅器、C1,C2,C3…比較器、A1
〜A8…加算器、H(S)…制御補償回路、CT P
CTN…変流器、DP,DN…3相全波整流回路、
SQ…2乗演算回路、SQR…平方根演算回路、
MLT,MLT P ,MLTN…乗算器。
Fig. 1 is a block diagram of a conventional reactive power compensation type cycloconverter device, Fig. 2 is a block diagram showing a typical example of the reactive power calculation circuit used in Fig. 1, and Fig. 3 is a block diagram of a conventional reactive power compensating cycloconverter device. 2 is a waveform diagram for explaining the operation, FIG. 4 is a configuration diagram of a reactive power compensation type cycloconverter device showing an embodiment of the present invention, and FIG. 5 is a diagram of a reactive power compensation type cycloconverter device showing an embodiment of the present invention. FIG. 2 is a configuration diagram of a cycloconverter device. BUS…3-phase power line, C…phase advance capacitor, TR
...power transformer, CC-U...U-phase cycloconverter, SS-P...positive group converter, SS-N...negative group converter, L 01 , L 02 ...DC reactor,
LOAD-U...Load, PH-P, PH-N...Phase control circuit, ABS...Absolute value circuit, K 0 , K 1 , K 2 , K 3 , K
〓, K Q ...Operation amplifier, C1 , C2 , C3 ...Comparator, A1
~ A8 ...Adder, H (S) ...Control compensation circuit, CT P ,
CT N ...Current transformer, DP, DN...3-phase full-wave rectifier circuit,
SQ...square calculation circuit, SQR...square root calculation circuit,
MLT, MLT P , MLT N ...multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 可変周波数の交流電流を出力する正群コンバ
ータおよび負群コンバータからなる循環電流式の
サイクロコンバータにおいてその電源端子に進相
コンデンサを接続し、当該サイクロコンバータの
遅れ無効電力と前記進相コンデンサの進み無効電
力とが互いに打消し合うように前記サイクロコン
バータの循環電流を制御する無効電力補償形サイ
クロコンバータ装置において、負荷電流指令と実
際に流れる負荷電流との比較差に基づきサイクロ
コンバータの位相制御信号を求め、該サイクロコ
ンバータの位相制御信号と前記正群コンバータ出
力電流および前記負群コンバータ出力電流から前
記サイクロコンバータの遅れ無効電力を検出し
て、制御することを特徴とする無効電力補償形サ
イクロコンバータの制御方法。
1. In a circulating current type cycloconverter consisting of a positive group converter and a negative group converter that output variable frequency alternating current, a phase advance capacitor is connected to its power supply terminal, and the delayed reactive power of the cycloconverter and the advance of the phase advance capacitor are In the reactive power compensation type cycloconverter device that controls the circulating current of the cycloconverter so that the reactive power cancels each other, the phase control signal of the cycloconverter is controlled based on the comparative difference between the load current command and the actually flowing load current. The reactive power compensation type cycloconverter is characterized in that the delayed reactive power of the cycloconverter is detected and controlled from the phase control signal of the cycloconverter, the output current of the positive group converter, and the output current of the negative group converter. Control method.
JP4069780A 1980-03-29 1980-03-29 Method of controlling reactive power compensation type cyclo-converter Granted JPS56139082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069780A JPS56139082A (en) 1980-03-29 1980-03-29 Method of controlling reactive power compensation type cyclo-converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069780A JPS56139082A (en) 1980-03-29 1980-03-29 Method of controlling reactive power compensation type cyclo-converter

Publications (2)

Publication Number Publication Date
JPS56139082A JPS56139082A (en) 1981-10-30
JPS6217950B2 true JPS6217950B2 (en) 1987-04-20

Family

ID=12587745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069780A Granted JPS56139082A (en) 1980-03-29 1980-03-29 Method of controlling reactive power compensation type cyclo-converter

Country Status (1)

Country Link
JP (1) JPS56139082A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748949B2 (en) * 1983-08-12 1995-05-24 株式会社東芝 Circulating current type triangular connection cycloconverter control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133983A (en) * 1980-03-24 1981-10-20 Toshiba Corp Controlling method of reactive power compensating type cycloconverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133983A (en) * 1980-03-24 1981-10-20 Toshiba Corp Controlling method of reactive power compensating type cycloconverter

Also Published As

Publication number Publication date
JPS56139082A (en) 1981-10-30

Similar Documents

Publication Publication Date Title
US4729082A (en) Control device for power converter
US5091839A (en) Method and apparatus for supplying voltage to a three-phase voltage system having a load-carrying neutral conductor with a pulse width modulated three phase invertor
US10348127B2 (en) Three-phase uninterruptible power supply control method and apparatus, and three-phase uninterruptible power supply responsive to zero wire loss
JPS63274324A (en) Apparatus and method for controlling inverter circuit
US5239252A (en) Method and apparatus for controlling single or multiphase a.c. power controllers
Matsui et al. A detecting method for active-reactive-negative-sequence powers and its application
EP0186513B1 (en) Control method for cycloconverter and control apparatus therefor
JPS6217950B2 (en)
JP3343711B2 (en) Static var compensator
US5717583A (en) Power converter control apparatus for controlling commutation of switching devices under transient conditions
Joos et al. Four switch three phase active filter with reduced current sensors
SU1374364A1 (en) A.c. to d.c. voltage converter with compensation for higher harmonics of current consumed from the mains
JPH02134574A (en) Ac voltage detector
KR19980054431A (en) Converter current / voltage controller
JPH0315271A (en) Power converter controller and system therefor
JPH07236230A (en) Controller for voltage fluctuation suppresser
JPS6362984B2 (en)
JPS6155347B2 (en)
JPH0477550B2 (en)
JPS6155343B2 (en)
GB1603504A (en) Method and apparatus for the control of real power to fluctuating loads
JPS6155345B2 (en)
JPH0753034B2 (en) Reactive power control type cyclo-converter device
JPS6148724B2 (en)
JPH0152993B2 (en)