JPS62177473A - Radiation sensor - Google Patents

Radiation sensor

Info

Publication number
JPS62177473A
JPS62177473A JP61020551A JP2055186A JPS62177473A JP S62177473 A JPS62177473 A JP S62177473A JP 61020551 A JP61020551 A JP 61020551A JP 2055186 A JP2055186 A JP 2055186A JP S62177473 A JPS62177473 A JP S62177473A
Authority
JP
Japan
Prior art keywords
energy
ray
phosphor
radiation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61020551A
Other languages
Japanese (ja)
Inventor
Yutaro Kimura
木村 雄太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61020551A priority Critical patent/JPS62177473A/en
Publication of JPS62177473A publication Critical patent/JPS62177473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To eliminate a time difference among images as to energy subtraction and to improve an SN ratio by extracting signals by the kinds of energy from radiation which contains various energy and is made incident once. CONSTITUTION:A mixed phosphor 1 is formed in a pentagonal shape by mixing CaWO4 and ZnS:Cu:Al which have different energy absorption characteristics to obtain one pixel, which is arrayed with light shield plates 2 interposed. At the time of this phosphor 1 is excited with an X ray, an image by fluorescence differing in spectrum is led out of photomultiplier tubes 5 and 6. Namely, plural kinds of images having different X-ray spectra are led out at the same time by performing X-ray exposure once. Therefore, the X-ray exposure needs to be performed only once for energy subtraction, so an image having no time difference is obtained and the SN ratio is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、X線やγ線等の放射線を検出するための放
射線センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a radiation sensor for detecting radiation such as X-rays and γ-rays.

従来の技術 従来の放射線センサは広いエネルギ範囲の放射線に感応
するものが主に用いられている。そのため、いわゆるエ
ネルギサブトラクションを行なう場合、たとえば、被検
者に対し、X線管の管電圧を変化して数回曝射し、数枚
の画像信号を得て、これらを適当に演算して骨や軟部組
織等のX線吸収係数が比較的似かよった部分のみを取り
出すようにしている。
2. Description of the Related Art Conventional radiation sensors that are sensitive to radiation in a wide energy range are mainly used. Therefore, when performing so-called energy subtraction, for example, the subject is exposed to X-ray tubes several times while varying the tube voltage, obtaining several image signals, and these are appropriately calculated to determine the bone structure. Only areas with relatively similar X-ray absorption coefficients, such as soft tissues and other tissues, are extracted.

発明が解決しようとする問題点 しかし、エネルギサブトラクションにおいて管電圧の異
なるX線を数回曝射して数枚の画像を得るのでは、各画
像の間に時間的なずれが生じてしまう。また、高い管電
圧で撮影する場合、そのスペクトル中に含まれる低いエ
ネルギのX線による情報が後の演算処理により除去され
、またX線をセンサに入射する段階でフィルタをかける
ことによりリジェクトされてしまうため、X線の利用効
率が悪く、ひいてはS/N比を劣化させる原因となって
いた。
Problems to be Solved by the Invention However, when several images are obtained by irradiating X-rays with different tube voltages several times during energy subtraction, a time lag occurs between each image. Furthermore, when imaging with a high tube voltage, information from low-energy X-rays contained in the spectrum is removed by subsequent calculation processing, and is also rejected by filtering the X-rays when they enter the sensor. As a result, the utilization efficiency of X-rays is poor and the S/N ratio is deteriorated.

この発明は、各種エネルギを含む放射線の1回の入射か
らエネルギ別に信号を取り出すことのできる放射線セン
サを提供し、もってエネルギサブ)・ラクションにおい
て各画像の時間的なずれをなくし、xVjの利用効率を
高めS/N比を向上させることを]]的とする。
The present invention provides a radiation sensor that can extract signals for each energy from a single incidence of radiation containing various energies, thereby eliminating the time lag of each image in the energy subtraction, and improving the utilization efficiency of xVj. The goal is to increase the signal-to-noise ratio and improve the S/N ratio.

問題点を解決するための手段 この発明による放射線センサは、エネルギ吸収端が互い
に異なり且つ発光色が互いに異なる数種の蛍光体を混合
した混合蛍光体と、該混合蛍光体を放射線励起したとき
の発光を色分離する手段と、該分離された各色の光を電
気信号に変換する手段とを有して構成される。
Means for Solving the Problems The radiation sensor according to the present invention uses a mixed phosphor that is a mixture of several types of phosphors that have different energy absorption edges and different emission colors, and a radiation sensor that emits light when the mixed phosphor is excited by radiation. The device includes means for color-separating the emitted light and means for converting the separated light of each color into electrical signals.

作    用 蛍光体のエネルギ吸収特性は、含有される元素、特に高
原子番号の元素のに一吸収端に強く依存する。たとえば
、蛍光体としてCa W O4とZnS:Cu:Alと
を比較した場合CaWO4は第1図Aに示すようにWの
に一吸収端の69゜52KeVに鋭いピークを持ち、そ
れより高エネルギ側での吸収が高い。他方ZnS:Cu
:Alの場合、第1図Bに示すように69.52KeV
に相当するようなに一吸収端はZnの9 、66KeV
にあるのみで、それより高いエネルギに対しては一様に
減少する。
The energy absorption properties of a working phosphor depend strongly on the absorption edge of the contained elements, especially those of high atomic number. For example, when comparing CaWO4 and ZnS:Cu:Al as phosphors, CaWO4 has a sharp peak at 69°52KeV, which is the absorption edge of W, as shown in Figure 1A, and it has a sharp peak at 69°52KeV on the higher energy side. absorption is high. On the other hand, ZnS:Cu
: In case of Al, 69.52KeV as shown in Figure 1B
The absorption edge of Zn is 9,66KeV, which corresponds to
, and decreases uniformly for higher energies.

そこで、このようなエネルギ吸収特性の異なるCaWO
4とZnS:Cu:Alとを混合した混合蛍光体を作り
、この混合蛍光体をX線励起すると、前者からは後者に
比べて高いエネルギに関する情報をより含んだ信号を得
、逆に、後者からは前者に比べて低いエネルギに関する
情報をより含んだ信号を得ることができる。
Therefore, CaWO with different energy absorption characteristics
When a mixed phosphor is made by mixing ZnS:Cu:Al and ZnS:Cu:Al, and when this mixed phosphor is excited by X-rays, a signal containing more information about high energy is obtained from the former than the latter, and conversely, a signal containing more information about high energy is obtained from the latter. From the former, it is possible to obtain a signal containing more information regarding low energy than from the former.

そして、これらの各蛍光体は発光色が異なるものとされ
ているので、色フィルタなどにより信号分離できる。上
の例でもCaWO4の発光は波長420nmにピークを
持ち、ZnS:Cu:Alの発光は波長530nmにピ
ークを有するので、色フィルタで分離できる。
Since each of these phosphors emit light of a different color, the signals can be separated using a color filter or the like. In the above example as well, the emission of CaWO4 has a peak at a wavelength of 420 nm, and the emission of ZnS:Cu:Al has a peak at a wavelength of 530 nm, so they can be separated using a color filter.

このようにエネルギの違いを蛍光体の発光スペクトルの
違いに変換しているので、1回の放射線照射で、高エネ
ルギの信号と低エネルギの信号とを同時に取り出すこと
ができる。
Since the difference in energy is converted into a difference in the emission spectrum of the phosphor in this way, a high-energy signal and a low-energy signal can be simultaneously extracted with one radiation irradiation.

実施例 第2図に示す放射線センサは、X線のラインセンサとし
て構成した一実施例で、たとえばCaWO4とZnS:
Cu:Alとを混合した混合蛍光体1を五角形に形成し
てlピクセル分とし、光遮蔽板2を介して1列に並べて
いる。そして、それぞれ波長420nmと波長530n
mとの光を通すたとえばブルーとグリーンの色フィルタ
3.4を介して五角形混合蛍光体重の各面に光電子増倍
管5.6を光結合している。
Embodiment The radiation sensor shown in FIG. 2 is an embodiment configured as an X-ray line sensor, and includes, for example, CaWO4 and ZnS:
A mixed phosphor 1 of Cu:Al is formed into a pentagonal shape for one pixel, and is arranged in a line with a light shielding plate 2 in between. And wavelength 420nm and wavelength 530n respectively.
A photomultiplier tube 5.6 is optically coupled to each side of the pentagonal mixed phosphor mass through a color filter 3.4, for example blue and green, which passes light of m.

第3図および第4図に示す放射線センサは、X線の面セ
ンサとして構成したもので、大きな面積を持つよう板状
に形成ぎれた混合蛍光体7はたとえばCa WO4とZ
nS:Cu:Alとを混合してなる。そして、これらの
蛍光体からのスペクトルの異なる発光による画像が、カ
ラー撮像管8によって撮像され、各色の映像信号を得る
ことにより、エネルギの異なるX線による画像が取り出
される。第4図では、色分離は色フィルタ3.4で行な
うこととして、カラー撮像管の代りに、像輝度増倍管9
.10と撮像管11.12とを用いたものである。この
場合像輝度増倍管9.10を用いているので、感度を向
上させることができる。
The radiation sensor shown in FIGS. 3 and 4 is configured as an X-ray surface sensor, and the mixed phosphor 7 formed into a plate shape with a large area is composed of, for example, Ca WO4 and Z.
It is formed by mixing nS:Cu:Al. Images of light emitted from these phosphors with different spectra are captured by the color image pickup tube 8, and by obtaining video signals of each color, images of X-rays with different energies are taken out. In FIG. 4, color separation is performed by a color filter 3.4, and an image brightness intensifier tube 9 is used instead of a color image pickup tube.
.. 10 and image pickup tubes 11 and 12. In this case, since the image brightness intensifier tube 9.10 is used, the sensitivity can be improved.

これらの放射線センサによれば、各エネルギの放射線に
関する情報を含む各信号が得られる。つまり、X線のス
ペクトルが異なる数種類のX線の曝射によって撮影した
数枚の画像に相当するような数枚の画像を1回のX線曝
射によって得ることもできる。そのため、これらの放射
線センサの出力信号を処理することにより各画像で時間
ずれのないエネルギサブトラクションを行なったり、等
測的に、任意の人力X線スペクトルでの画像を作り出す
ことができる。エネルギサブトラクションの場合、1回
のX線曝射で済むので、時間的にも線量の利用率に関し
ても有利となり、S/N比も高くなり、X線管球等の負
担が少なくなる。
According to these radiation sensors, each signal containing information regarding radiation of each energy can be obtained. In other words, several images corresponding to several images taken by irradiating several types of X-rays with different X-ray spectra can be obtained by one X-ray irradiation. Therefore, by processing the output signals of these radiation sensors, it is possible to perform energy subtraction without time lag in each image, or to create an image in an arbitrary human X-ray spectrum in an isometric manner. In the case of energy subtraction, only one X-ray exposure is required, which is advantageous in terms of time and dose utilization, increases the S/N ratio, and reduces the burden on the X-ray tube and the like.

混合される各蛍光体としては、各々必要とするエネルギ
帯の下限近傍のエネルギにに一吸収端を持ち、且つ発光
スペクトルが互いに異なり、そのスペクトルで互いに励
起されない蛍光体が望ましい。
The phosphors to be mixed are desirably phosphors that each have an absorption edge near the lower limit of the required energy band, have different emission spectra, and are not mutually excited by the spectra.

なお、上記では2種類の蛍光体を混合した例を示してい
るが、3種類以上でもよいことは勿論である。
Note that although an example in which two types of phosphors are mixed is shown above, it goes without saying that three or more types may be used.

発明の効果 この発明の放射線センサによれば、各種エネルギを含む
放射線の1回の入射により、エネルギ別に信号を取り出
すことができる。
Effects of the Invention According to the radiation sensor of the present invention, signals can be extracted for each energy by one incidence of radiation containing various energies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を説明するための各蛍光体の吸収特性
を表わすグラフ、第2図はこの発明の一実施例の模式的
な斜視図、第3図および第4図はそれぞれ他の実施例の
模式的な斜視図である。 1.7・・・混合蛍光体 2・・・光遮蔽板3.4・・
・フィルタ  5.6・・・光電子増倍管8・・・カラ
ー撮像管  9、lO・・・像輝度増倍管11.12・
・・撮像管
FIG. 1 is a graph showing the absorption characteristics of each phosphor for explaining this invention, FIG. 2 is a schematic perspective view of one embodiment of this invention, and FIGS. 3 and 4 are graphs showing other embodiments. FIG. 3 is a schematic perspective view of an example. 1.7... Mixed phosphor 2... Light shielding plate 3.4...
・Filter 5.6...Photomultiplier tube 8...Color image pickup tube 9, lO...Image brightness multiplier tube 11.12.
・・Image tube

Claims (1)

【特許請求の範囲】[Claims] (1)エネルギ吸収端が互いに異なり且つ発光色が互い
に異なる数種の蛍光体を混合した混合蛍光体と、該混合
蛍光体を放射線励起したときの発光を色分離する手段と
、該分離された各色の光を電気信号に変換する手段とを
有する放射線センサ。
(1) A mixed phosphor in which several types of phosphors having different energy absorption edges and different emission colors are mixed together, a means for color-separating the emitted light when the mixed phosphor is excited with radiation, and the separated phosphor. A radiation sensor having means for converting light of each color into electrical signals.
JP61020551A 1986-01-31 1986-01-31 Radiation sensor Pending JPS62177473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020551A JPS62177473A (en) 1986-01-31 1986-01-31 Radiation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020551A JPS62177473A (en) 1986-01-31 1986-01-31 Radiation sensor

Publications (1)

Publication Number Publication Date
JPS62177473A true JPS62177473A (en) 1987-08-04

Family

ID=12030286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020551A Pending JPS62177473A (en) 1986-01-31 1986-01-31 Radiation sensor

Country Status (1)

Country Link
JP (1) JPS62177473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433865U (en) * 1990-06-29 1992-03-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433865U (en) * 1990-06-29 1992-03-19

Similar Documents

Publication Publication Date Title
US7426260B2 (en) Polychronic digital radiography detector with patterned mask for single-exposure energy-sensitive X-ray imaging
US5465284A (en) System for quantitative radiographic imaging
US20090032718A1 (en) Color scintillator and image sensor
US2555423A (en) Image intensifying tube
WO2017041221A1 (en) Methods for making an x-ray detector
US2525832A (en) Tube with composite photocathode for conversion and intensification of x-ray images
EP1489640B1 (en) X-ray image tube, x-ray image tube device and x-ray device
KR101124549B1 (en) Radiography measuring device and radiography measuring method
US7211817B2 (en) X-ray sensor
Gurvich Luminescent screens for mammography
US5451793A (en) Binary screen, system and method for single pulse dual energy radiology
JPS62177473A (en) Radiation sensor
US4485481A (en) Computed tomographic method
JPH0341933A (en) Radiograph processing method and photographing device
US5631459A (en) Device for generating images by luminescence effect
US20040262536A1 (en) Rare earth activated rare earth oxysulfide phosphor for direct X-ray detection
Catchpole X-ray image intensification using multi-stage image intensifiers
JPH1184013A (en) Radiation detector
RU2593617C1 (en) Method for improvement of energy resolution of scintillation gamma spectrometer
Miller et al. Lu 2 O 3: Eu scintillator screen for x-ray imaging
Germer High Resolution X-Ray-Tv-Sensors
Roehrig et al. Measurement Of The X-Ray-Induced Light Photons Emitted From Radiographic CaW04 Intensifying Screens
Witt Detective quantum efficiency of storage phosphors for soft X-rays
Nakajima et al. High-sensitivity image-sensor-incorporated image intensifier tube with charge-coupled device for X-ray diffraction
Driard et al. A 35-cm Input-field Image Intensifier for Scintillation Cameras