JPS62177155A - Fe-base alloy excellent in stress corrosion cracking resistance and its production - Google Patents

Fe-base alloy excellent in stress corrosion cracking resistance and its production

Info

Publication number
JPS62177155A
JPS62177155A JP1785386A JP1785386A JPS62177155A JP S62177155 A JPS62177155 A JP S62177155A JP 1785386 A JP1785386 A JP 1785386A JP 1785386 A JP1785386 A JP 1785386A JP S62177155 A JPS62177155 A JP S62177155A
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
cracking resistance
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1785386A
Other languages
Japanese (ja)
Inventor
Toshio Yonezawa
利夫 米澤
Shinya Sasakuri
笹栗 信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1785386A priority Critical patent/JPS62177155A/en
Publication of JPS62177155A publication Critical patent/JPS62177155A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture an Fe-base alloy combining high yield strength with high strength and excellent in stress corrosion cracking resistance, by subjecting an alloy having a specific composition consisting of C, Si, Mn, Ni, Cr, Mo, P, S, and Fe to hot working and heat treatment under proper conditions. CONSTITUTION:The Fe-base alloy consisting of, by weight, <=0.04% C, <=1% Si, <=2% Mn, 25-45% Ni, 25-35% Cr, <=6% Mo, <=0.01% P, <=0.01% S, and the balance Fe is subjected to hot working at 850-1,250 deg.C at >=20% draft. Then the above hot-worked alloy is held at 900-1,150 deg.C for 2min-5hr and cooled at a rapid cooling velocity higher than air cooling. In this way, the solid solution-strengthening-type Fe-base alloy having a 0.2% yield strength under room temp. of >=21kg/mm<2> and a strength of >=52kg/mm<2> tensile strength and excellent in stress corrosion cracking resistance in high-temp. and high- pressure water can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐応力腐食割れ性に優れたFe基合金及びその
製造方法に関し、特に軽水炉あるいは高速増殖炉の蒸気
発生器伝熱管材や熱交換器用支持構造部材等及び配管材
等に適用されるFe基合金及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an Fe-based alloy with excellent stress corrosion cracking resistance and a method for producing the same, particularly for use in steam generator heat transfer tube materials and heat exchange materials for light water reactors or fast breeder reactors. The present invention relates to an Fe-based alloy that is applied to dexterous support structural members, piping materials, etc., and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、耐応力腐食割れ性に優れたFe基合金としては、
インコロイ(Incoloy) 800 (商品名)と
称するNi: 5 Q、O〜35.0%、Cr: 19
.0〜2五〇チ、Fe:残部を有するIPe基合金が用
いられて来たが、インコロイ800は加工条件によって
は応力腐食割れ感受性が高く、上記伝熱管や構造部材等
で応力腐食割れを生じることがある。
Conventionally, Fe-based alloys with excellent stress corrosion cracking resistance include:
Incoloy 800 (trade name) Ni: 5 Q, O ~ 35.0%, Cr: 19
.. IPe-based alloys with 0 to 250% Fe: balance have been used, but Incoloy 800 is highly susceptible to stress corrosion cracking depending on processing conditions, causing stress corrosion cracking in the heat exchanger tubes and structural members, etc. Sometimes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

インコロイ800は、酸素を含まない高温高圧水中では
比較的耐応力腐食割れ性に優れていると言われているが
、冷間加工を受けた場合には、応力腐食割れが発生する
ことがあった。
Incoloy 800 is said to have relatively excellent stress corrosion cracking resistance in high temperature, high pressure water that does not contain oxygen, but stress corrosion cracking may occur when subjected to cold working. .

本発明は上述のような応力腐食割れの発生がないFθ基
合金及びその製造方法を提供しようとするものである。
The present invention aims to provide an Fθ-based alloy that does not cause stress corrosion cracking as described above, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

従来用いてきたインコロイ800を用いた部材で応力腐
食割れを生じたのは、インコロイ800の化学成分加工
条件等によシ材料の金属組織が変化し、材料の応力腐食
割れ感受性が高くなるとの知見に基き、本発明者らは材
料の応力腐食割れ感受性を低減するような化学成分、加
工条件につき鋭意研究の結果、本発明を完成するに至っ
た。
The reason why stress corrosion cracking occurred in parts using Incoloy 800, which has been used in the past, was due to the knowledge that the chemical composition of Incoloy 800 and the processing conditions change the metallographic structure of the material, increasing the material's susceptibility to stress corrosion cracking. Based on this, the present inventors have completed the present invention as a result of intensive research into chemical components and processing conditions that reduce the stress corrosion cracking susceptibility of materials.

すなわち本発明は、 (1)重量比でC:α04チ以下、Si: 1%以下、
Mn:2%以下、Ni: 25%以上、45チ以下、C
r: 25%以上35チ以下、Mo: 6 %以下、P
、S:[101%以下、残部F’s  よりなる耐応力
腐食割れ性に優れたFθ基合金及び(2)重量比でC:
Q、04チ以下、Sl:1%以下、Mn: 2%以下、
Ni: 25%以上45%以下、Or: 25%以上3
5%以下、Mo:6%以下、P、S:0.01%以下、
残部F’s  よりなるFe午 基合金を、850〜1250で、圧下率にして、20%
以上の熱間加工を施した後、900〜1150℃で2分
〜5時間保持してから空冷以上の速い冷却速度で冷却す
ることを特徴、とする室温下のα2%耐力が21 kg
/rtn2以上、引張強さが53kg/rnrn2以上
の強度を有し、かつ高温高圧水中での耐応力腐食割れ性
の優れた固溶強化型Fe基合金の製造方法 である。
That is, the present invention provides: (1) C: α04 or less, Si: 1% or less in weight ratio;
Mn: 2% or less, Ni: 25% or more, 45% or less, C
r: 25% or more and 35% or less, Mo: 6% or less, P
, S: [101% or less, the balance F's, an Fθ-based alloy with excellent stress corrosion cracking resistance, and (2) C: by weight ratio
Q, 04chi or less, Sl: 1% or less, Mn: 2% or less,
Ni: 25% or more and 45% or less, Or: 25% or more3
5% or less, Mo: 6% or less, P, S: 0.01% or less,
A Fe base alloy consisting of the balance F's was rolled at a rolling reduction rate of 20% at a rolling stock of 850 to 1250.
After the above hot working, it is held at 900-1150℃ for 2 minutes to 5 hours and then cooled at a faster cooling rate than air cooling.The α2% yield strength at room temperature is 21 kg.
/rtn2 or more, a tensile strength of 53kg/rnrn2 or more, and a solid solution strengthened Fe-based alloy that has excellent stress corrosion cracking resistance in high-temperature, high-pressure water.

〔作用〕[Effect]

本発明Fe基合金の各合金元素の限定理由及び熱処理、
加工条件の限定理由は以下のとおりである。
Reasons for limiting each alloying element of the present invention Fe-based alloy and heat treatment,
The reasons for limiting the processing conditions are as follows.

各合金元素の限定理由 C;Cは固溶強化型元素であシ所定の強度を得るには、
ある程度の量が必要である。しかし、多く含むと、溶体
化処理後の冷却過程で鋭敏化し、耐応力腐食割れ性を低
下させるので0.04チ以下とする。
Reason for limiting each alloying element C; C is a solid solution strengthening element. To obtain the specified strength,
A certain amount is required. However, if it is included in a large amount, it will become sensitive during the cooling process after solution treatment and reduce stress corrosion cracking resistance, so the content should be 0.04 inches or less.

81、Mn ;81.Mnは合金中の不純物としての酸
素を取除く作用をもつが、反面多くなると、応力腐食割
れ性を低下させる。従ってSi#Mntは低い方が良(
Si: 1 %以下、Mn: 2 %以下とする。
81, Mn;81. Mn has the effect of removing oxygen as an impurity in the alloy, but on the other hand, when the amount increases, it reduces stress corrosion cracking resistance. Therefore, the lower Si#Mnt is, the better (
Si: 1% or less, Mn: 2% or less.

P、S;P、8は粒界に偏析し、粒界結合力を低下させ
るのみでなく、電気化学的に有害な元素であり、低い方
が好ましい(101%以下)。
P, S; P, 8 segregates at grain boundaries and not only reduces grain boundary bonding strength, but is also an electrochemically harmful element, and the lower the content, the better (101% or less).

Ni; Ni  は合金の耐すラクセーション性ヲ保持
させるとともに、C2−を含むような環境下での耐応力
腐食割れ性を向上させるので、多く含有する方が良いが
、多量に含んだ場合には、脱気高温高圧水中での耐応力
腐食割れ性が低下するため、25チ以上、45%以下と
する。
Ni: Ni maintains the luxation resistance of the alloy and improves stress corrosion cracking resistance in environments containing C2-, so it is better to contain a large amount, but if it is contained in a large amount, Since the stress corrosion cracking resistance in deaerated high temperature and high pressure water decreases, it should be set at 25% or more and 45% or less.

Or; Orは耐応力腐食割れ性を保持させる上で最も
重要な元素でろD、25%以上添加することが良い。し
かしあまシ多量に添加すると凝固偏析が著しく鍛造しに
くくなるばかシか、均質なインゴットができにくいので
35−以下とする。
Or; Or is the most important element for maintaining stress corrosion cracking resistance, and is preferably added in an amount of 25% or more. However, if a large amount of slender is added, solidification segregation will occur and it will be difficult to forge, or it will be difficult to form a homogeneous ingot, so it should be set at 35- or less.

MO; MOは耐食性を向上させるが、多くなると熱間
加工性を著しく劣化させるため6%以下とする。
MO: MO improves corrosion resistance, but if too much MO deteriorates hot workability significantly, it should be kept at 6% or less.

本発明Fa 基合金の熱処理・加工方法の限定理由 本発明Fe基合金の熱間加工性を保持するには比較的高
温で加工する必要があシ、加工条件は850〜1250
℃で行う必要がおる。また耐応力腐食割れ性を保持する
Kは均質かつ大きな加工率を与えることが望ましく、熱
間加工としては圧下率で20%以上にする。
Reasons for limiting the heat treatment/processing method for the Fe-based alloy of the present invention In order to maintain the hot workability of the Fe-based alloy of the present invention, it is necessary to process it at a relatively high temperature, and the processing conditions are 850-1250.
It is necessary to do it at ℃. Further, K, which maintains stress corrosion cracking resistance, is desirably given a homogeneous and large working rate, and for hot working, the reduction rate is 20% or more.

熱処理条件としては、高強度を保持し、かつ高い耐応力
腐食割れ性を保持させるには、900℃以上1150℃
以下で溶体化処理を施す。溶体化処理温度が1150℃
を越えると耐応力腐食割れ性が劣化するとともに高強度
が保持できなくなる。
The heat treatment conditions are 900°C or higher and 1150°C to maintain high strength and high stress corrosion cracking resistance.
Solution treatment is performed below. Solution treatment temperature is 1150℃
If the stress corrosion cracking resistance is exceeded, stress corrosion cracking resistance deteriorates and high strength cannot be maintained.

本発明のFθ基合金の効果を立証するために下記のよう
な試験を行った。
In order to prove the effects of the Fθ-based alloy of the present invention, the following tests were conducted.

0応力腐食割れ試験 軽水炉環境下で蒸気発生器伝熱管等に本発四Fθ基合金
が用いられた場合の耐応力腐食割わ性を評価するため、
PWR−次系水を模擬し六下記の表1に示す環境下で、
第1図に示すUAンド試験片を浸漬し、高応力を負荷し
た各供斜材の応力腐食割れ試験を5oooh迄実施し、
割れの有無を調査した。
0-stress corrosion cracking test In order to evaluate the stress corrosion cracking resistance when the present four Fθ-based alloy is used for steam generator heat exchanger tubes etc. in a light water reactor environment,
Under the environment shown in Table 1 below, simulating PWR-order system water,
A stress corrosion cracking test was carried out on each diversion member by immersing the UA-and test piece shown in Fig. 1 and applying high stress up to 5oooh.
The presence or absence of cracks was investigated.

表1試験条件 (1)温度 360℃ (2)   圧  力    2 1 4 kg/cm
2G(3)   水  質 pH(at2S℃)約7 H3BO3濃度(asB)  約500 ppmLi0
1(d度(asLi)   約   2 ppmH,約
30cc−8TP/に9 ” H20DO2< 5 p
pb OL−< 0.1 ppm 0供試材 本試験に用いた供試材(代表例)の化学成分を表2に、
表2の/166の供試材の熱処理・加工:  条件の例
を表3に示す。
Table 1 Test conditions (1) Temperature 360℃ (2) Pressure 2 1 4 kg/cm
2G (3) Water quality pH (at2S℃) approx. 7 H3BO3 concentration (asB) approx. 500 ppmLi0
1 (d degree (asLi) approx. 2 ppmH, approx. 30cc-8TP/9''H20DO2<5p
pb OL-< 0.1 ppm 0 Test material Table 2 shows the chemical composition of the test material (representative example) used in this test.
Heat treatment/processing of sample material /166 in Table 2: Examples of conditions are shown in Table 3.

表  2 表 5 7166(D供試材の熱処理、加工方法と耐応
力腐食割れ性×;割れるり 01割れなし 0試験結果 合金成分を変化させて耐応力屑食割れ性を検討した結果
は次のとおり。
Table 2 Table 5 7166 (Heat treatment, processing method and stress corrosion cracking resistance of test material D Street.

a)C2Cr社、熱処理条件と耐応力腐食割れ性 第2図に示すように、ciは0.04%以下、Cr量は
25%以上で、1250℃以下で溶体化処理?施したも
のが耐応力腐食割れ性に優れて優れている。
a) C2Cr Co., heat treatment conditions and stress corrosion cracking resistance As shown in Figure 2, ci is 0.04% or less, Cr content is 25% or more, and solution treatment is performed at 1250°C or less. The treated products have excellent stress corrosion cracking resistance.

b)  Si、Mni熱処理条件と耐応力腐食割れ性第
3図に示すように、Si 量は1チ以下、Mn量は2%
以下で900℃以上で溶体化処理を施したものが耐応力
腐食割れ性に優れている。
b) Si, Mni heat treatment conditions and stress corrosion cracking resistance As shown in Figure 3, the amount of Si is 1% or less, and the amount of Mn is 2%.
Those subjected to solution treatment at 900° C. or higher have excellent stress corrosion cracking resistance.

C)熱間加工条件と耐応力腐食割れ性 前掲の表3に示すように熱間加工は所定の温度(この種
合金では900〜1200℃が良い)で圧下率20チ以
上の熱間加工を施すと耐応力腐食割れ性が良い。
C) Hot working conditions and stress corrosion cracking resistance As shown in Table 3 above, hot working is carried out at a specified temperature (900 to 1200°C is good for this type of alloy) and at a reduction rate of 20 inches or more. When applied, it has good stress corrosion cracking resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の合金組成及び製造方法によシ耐応力腐食割れ性
に漬れたFe基合金が得られる。
The alloy composition and manufacturing method of the present invention provide an Fe-based alloy with excellent stress corrosion cracking resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明Fe基合金の耐応力腐食割れ性を評価す
るための試験方法を示し図、第2図はFe基合金の耐応
力腐食割れ性に及ぼすC2Or量の影響を示す図表、第
5図はFe基合金の耐応力腐食割れ性に及ばすSi、M
n量の影響2示す図表である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第1図
Figure 1 shows a test method for evaluating the stress corrosion cracking resistance of the Fe-based alloy of the present invention, and Figure 2 is a chart showing the influence of the amount of C2Or on the stress corrosion cracking resistance of the Fe-based alloy. Figure 5 shows the effects of Si and M on the stress corrosion cracking resistance of Fe-based alloys.
It is a chart showing the influence of n amount 2. Sub-Agents 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsuo Anzai Figure 1

Claims (1)

【特許請求の範囲】 1)重量比でC:0.04%以下、Si:1%以下、M
n:2%以下、Ni:25%以上、45%以下、Cr:
25%以上、35%以下、Mo:6%以下、P、S、:
0.01%以下、残部Feよりなる耐応力腐食割れ性に
優れたFe基合金。 2)重量比でC:0.04%以下、Si:1%以下、M
n:2%以下、Ni:25%以上45%以下、Cr:2
5%以上35%以下、Mo:6%以下、P、S:0.0
1%以下、残部FeよりなるFe基合金を、850〜1
250℃で、圧下率にして、20%以上の熱間加工を施
した後、900〜1150℃で2分〜5時間保持してか
ら空冷以上の速い冷却速度で冷却することを特徴とする
室温下の0.2%耐力が21kg/mm^2以上、引張
強さが53kg/mm^2以上の強度を有し、かつ高温
高圧水中での耐応力腐食割れ性の優れた固溶強化型Fe
基合金の製造方法。
[Claims] 1) Weight ratio: C: 0.04% or less, Si: 1% or less, M
n: 2% or less, Ni: 25% or more, 45% or less, Cr:
25% or more, 35% or less, Mo: 6% or less, P, S,:
An Fe-based alloy with excellent stress corrosion cracking resistance consisting of 0.01% or less and the balance being Fe. 2) Weight ratio: C: 0.04% or less, Si: 1% or less, M
n: 2% or less, Ni: 25% or more and 45% or less, Cr: 2
5% or more and 35% or less, Mo: 6% or less, P, S: 0.0
Fe-based alloy consisting of 1% or less and the balance Fe, 850-1
Room temperature characterized by hot working at 250°C with a rolling reduction of 20% or more, holding at 900-1150°C for 2 minutes to 5 hours, and then cooling at a faster cooling rate than air cooling. Solid solution strengthened Fe with a lower 0.2% yield strength of 21 kg/mm^2 or more, a tensile strength of 53 kg/mm^2 or more, and excellent stress corrosion cracking resistance in high-temperature, high-pressure water.
Method of manufacturing base alloy.
JP1785386A 1986-01-31 1986-01-31 Fe-base alloy excellent in stress corrosion cracking resistance and its production Pending JPS62177155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1785386A JPS62177155A (en) 1986-01-31 1986-01-31 Fe-base alloy excellent in stress corrosion cracking resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1785386A JPS62177155A (en) 1986-01-31 1986-01-31 Fe-base alloy excellent in stress corrosion cracking resistance and its production

Publications (1)

Publication Number Publication Date
JPS62177155A true JPS62177155A (en) 1987-08-04

Family

ID=11955219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1785386A Pending JPS62177155A (en) 1986-01-31 1986-01-31 Fe-base alloy excellent in stress corrosion cracking resistance and its production

Country Status (1)

Country Link
JP (1) JPS62177155A (en)

Similar Documents

Publication Publication Date Title
JPS6013061B2 (en) High strength ferrite alloy
Loria et al. Type 304 stainless steel with 0.5% boron for storage of spent nuclear fuel
JPS6389650A (en) Heat-treatment of nickel base alloy
JPS62177155A (en) Fe-base alloy excellent in stress corrosion cracking resistance and its production
Cupp The effect of neutron irradiation on the mechanical properties of zirconium-2.5% niobium alloy
US4494987A (en) Precipitation hardening austenitic superalloys
JPH03138343A (en) Nickel-base alloy member and its production
CA1131104A (en) Process for treating weldments
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPH0225515A (en) Treatment for preventing stress corrosion cracking brough about by irradiation with radioactive rays in austenite stainless steel
JPS62177156A (en) Fe alloy having excellent stress corrosion cracking resistance and its production
JPS62167839A (en) Ni base alloy and its manufacture
JPH0114991B2 (en)
JPS63140057A (en) Ni-base alloy excellent in stress corrosion cracking resistance and its production
JPH0447008B2 (en)
JPH02225622A (en) Heat treatment for clad steel tube
JPS5985850A (en) Heat treatment of ni alloy
JPS62167837A (en) Ni base alloy and its manufacture
JPS58177417A (en) Treatment for deposit hard ferrite alloy
WO2021254143A1 (en) High-strength ultra-corrosion-resistant non-magnetic stainless steel and preparation method therefor
JPS6462446A (en) Manufacture of ni-base alloy combining high strength with high toughness and excellent in stress corrosion cracking resistance
JPS6396214A (en) Production of high-strength high-toughness spring material having excellent scc resistance
JPS58157937A (en) Manufacture of high temperature gas cooling reactor temper material and alloy therefor
JPH0517303B2 (en)
Clarke et al. Stress Corrosion Cracking Behavior of Newer Iron Chromium-Nickel Alloys at 550° F in High Purity Water