JPS6217688A - Spacer for fuel aggregate - Google Patents

Spacer for fuel aggregate

Info

Publication number
JPS6217688A
JPS6217688A JP60155916A JP15591685A JPS6217688A JP S6217688 A JPS6217688 A JP S6217688A JP 60155916 A JP60155916 A JP 60155916A JP 15591685 A JP15591685 A JP 15591685A JP S6217688 A JPS6217688 A JP S6217688A
Authority
JP
Japan
Prior art keywords
spacer
fuel element
fuel
cladding tube
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60155916A
Other languages
Japanese (ja)
Inventor
桜井 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP60155916A priority Critical patent/JPS6217688A/en
Publication of JPS6217688A publication Critical patent/JPS6217688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉燃料集合体の燃料要素を保持する燃料
集合体用スペーサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spacer for a fuel assembly that holds a fuel element of a nuclear reactor fuel assembly.

(発明の背景〕 原子炉に使用する燃料集合体は、その燃料要素同士の間
にスペーサを介在して冷却材流路が確保されており、且
つ、これらの燃料要素がスペーサに設けた板ばね部材を
介して接触保持されている。
(Background of the Invention) In a fuel assembly used in a nuclear reactor, a spacer is interposed between the fuel elements to ensure a coolant flow path, and these fuel elements are connected to a leaf spring provided in the spacer. They are held in contact via a member.

またスペーサの材料としては、現行の沸騰水型原子炉、
加圧木型原子炉等においては、中性子経済を考慮して熱
中性子吸収断面積の小さいジルコニウムを基合金とする
ジルカロイが使用されており、板ばねの部分のみ硬度の
高いインコネルが使用されている。ところで、このよう
な燃料要素の保持構造においては、近年法のような問題
点が指摘されている。すなわち、燃料要素をインコネル
製等の板ばね等で接触保持する場合には、原子炉運転中
に、この接触部位で板ばね(インコネル)と燃料要素被
覆管(ジルカロイ)との間に電気化学的な分極反応が生
じ、その結果、燃料被覆管のスペーサ接触部位にアノー
ド溶解反応(電気化学的腐食機構)が生じ、燃料被覆管
のスペーサ接触部位の腐食度合が大きくなるという問題
点を有していた。(「高性能燃料の開発」市川通生著2
日本原予力情報センタ資料Na8411245の35頁
〜36頁)。
In addition, the materials for the spacer include current boiling water reactors,
In pressurized wooden reactors, etc., Zircaloy, which is a zirconium-based alloy with a small thermal neutron absorption cross section, is used in consideration of neutron economy, and Inconel, which has high hardness, is used only for the leaf springs. . Incidentally, in recent years, problems such as legal problems have been pointed out in such a fuel element holding structure. In other words, when the fuel element is held in contact with a leaf spring made of Inconel or the like, electrochemical damage occurs between the leaf spring (Inconel) and the fuel element cladding tube (Zircaloy) at this contact area during reactor operation. As a result, an anode dissolution reaction (electrochemical corrosion mechanism) occurs at the spacer contact area of the fuel cladding, which increases the degree of corrosion at the spacer contact area of the fuel cladding. Ta. (“Development of High-Performance Fuel” by Michio Ichikawa 2
(Pages 35-36 of Nippon Hara Yoryoku Information Center Material Na8411245).

更に、このようなアノード反応が生じると、燃料要素被
覆管に酸化膜が生成されるが、原子炉燃料の燃焼度が増
加した場合には、この酸化膜と燃料要素被覆管との間に
熱膨張差が生じて酸化膜がはがれ落ち、局部的に異常な
腐食が著鴇しく進行し。
Furthermore, when such an anode reaction occurs, an oxide film is generated on the fuel element cladding tube, but when the burnup of the reactor fuel increases, heat is generated between this oxide film and the fuel element cladding tube. Due to the difference in expansion, the oxide film peels off, and localized abnormal corrosion progresses rapidly.

燃料被覆管の健全性を著しく損なうおそれがあった。従
って、このような問題点を解消することが望まれ、従来
においても1例えば特開昭59−24289号公報、特
開昭59−95494号公報に示すような防食手段が提
案されていた。これらの従来手段は、いずれも燃料要素
被覆管の外表面に燃料要素被覆管のアノード反応を抑制
する異種金属を張付けることにより、燃料要素被覆管の
局部的な腐食を防止するものであり、確かに防食効果を
図り得るものであるが、しかし、これらの従来手段によ
れば、燃料要素被覆管の製造工程が煩雑化し、これに伴
い燃料要素被覆管の製造コストが高くなると共に、異種
金属張付は部での燃料要素被覆管の強度が変化する等の
おそれがあった。
There was a risk that the integrity of the fuel cladding tube would be significantly impaired. Therefore, it is desired to solve these problems, and corrosion prevention means have been proposed in the past, for example, as shown in Japanese Patent Laid-Open No. 59-24289 and Japanese Patent Laid-Open No. 59-95494. All of these conventional means prevent local corrosion of the fuel element cladding tube by pasting dissimilar metals on the outer surface of the fuel element cladding tube to suppress the anode reaction of the fuel element cladding tube. Although it is true that corrosion prevention effects can be achieved, these conventional means complicate the manufacturing process of the fuel element cladding tube, which increases the manufacturing cost of the fuel element cladding tube, and also increases the production cost of the fuel element cladding tube. There was a risk that the strength of the fuel element cladding tube would change at certain points.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みてなされたものであり、その目
的とするところは、原子炉運転時におけるスペーサの構
成部材と燃料要素被覆管との接触部位での燃料要素被覆
°管の異常腐食を防止し、更にこの防食手段を煩雑な製
造工程を要することなく容易に形成することができる燃
料集合体用スペーサを提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to prevent abnormal corrosion of the fuel element cladding tube at the contact area between the spacer component and the fuel element cladding tube during nuclear reactor operation. It is an object of the present invention to provide a spacer for a fuel assembly that prevents corrosion and further allows the corrosion prevention means to be easily formed without requiring a complicated manufacturing process.

〔発明の概要〕[Summary of the invention]

本発明は、上記技術的課題を解決するために、燃料要素
集合体を構成する燃料要素被覆管をスペーサ構成部材を
介して接触保持するスペーサにおいて、前記スペーサ構
成部材の表面部に、前記燃料要素被覆管よりも電気化学
的に卑なる金属被膜層を形成して成るものであり、この
ような金属被膜層をスペーサ構成部材の表面部に形成す
ることにより、スペーサ構成部材側の標準電極電位を低
くし、他方、燃料要素被覆管側の標準電極電位を高くす
ることが可能となり、よって燃料被覆管のアノード溶解
反応を抑制することができる。従つて燃料要素被覆管に
は防食機能が動き、原子炉運転中における燃料被覆管の
局部的な異常腐食の発生を防止することができる。
In order to solve the above-mentioned technical problem, the present invention provides a spacer that holds a fuel element cladding tube constituting a fuel element assembly in contact with each other via a spacer component, in which the fuel element is attached to a surface portion of the spacer component. It is formed by forming a metal coating layer that is electrochemically more base than the cladding, and by forming such a metal coating layer on the surface of the spacer component, the standard electrode potential on the spacer component side can be increased. On the other hand, it is possible to lower the standard electrode potential on the fuel element cladding side, thereby suppressing the anode dissolution reaction of the fuel cladding. Therefore, the fuel element cladding tube has a corrosion protection function, and it is possible to prevent localized abnormal corrosion of the fuel cladding tube during operation of the nuclear reactor.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に基づき説明する。同
図は原子炉の燃料集合体用スペーサの平面図を示すもの
で、その基本構造は従来のこの種スペーサと同様の構造
を呈するものであり、スペーサ1は外枠1′の内部に多
数の格子部材2を直交状に配設して成り、この格子部材
2に囲まれた平面空間内に燃料要素3を装荷している。
An embodiment of the present invention will be described below with reference to FIG. This figure shows a plan view of a spacer for a fuel assembly in a nuclear reactor. Its basic structure is similar to that of conventional spacers of this type, and the spacer 1 has many parts inside an outer frame 1'. It is made up of grid members 2 arranged orthogonally, and a fuel element 3 is loaded in a plane space surrounded by the grid members 2.

また、燃料要素3は、スペーサ1に設けた板ばね4.バ
ンド突起5及びデバイダ6により接触保持されている。
Further, the fuel element 3 is connected to a leaf spring 4 provided on the spacer 1. The band protrusion 5 and the divider 6 hold the band in contact with each other.

7は、板ばね4.バンド突起5及びデバイダ6の表面に
メッキ処理して成るアルミニウム被膜(以下、アルミニ
ウムと称する)であり、このアルミニウム7は、燃料要
素3をスペーサ1に装荷した場合に、燃料要素3の被覆
管(ジルカロイ製)と接触するものである。
7 is a leaf spring 4. This is an aluminum coating (hereinafter referred to as aluminum) formed by plating the surfaces of the band protrusion 5 and the divider 6. When the fuel element 3 is loaded onto the spacer 1, the aluminum coating (hereinafter referred to as aluminum) coats the cladding tube ( Zircaloy).

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

原子炉運転中において、スペーサ1の板ばね4゜バンド
突起5.デバイダ6は、1次冷却水の中で。
During reactor operation, the leaf spring 4 degree band protrusion 5 of the spacer 1. Divider 6 is in the primary cooling water.

その表面アルミニウム7が燃料要素3の外表面と接触す
ることから1次のような電気化学的な作用が生じる。即
ち、下記に示す第1表から明らかなように、アルミニウ
ム7の標準電極電位の方が、ジルコニウム(燃料要素3
の被覆管)の標準電極電位よりも低いので、アルミニウ
ム7は燃料要素3の被覆管を高電位側にカソード分極さ
せることになり、燃料要素3の被覆管とアルミニウム7
の間に、燃料要素被覆管のアノード反応を抑制する、い
わゆる局部電池が形成される。
Since the surface aluminum 7 contacts the outer surface of the fuel element 3, a first-order electrochemical action occurs. That is, as is clear from Table 1 shown below, the standard electrode potential of aluminum 7 is higher than that of zirconium (fuel element 3).
Since the standard electrode potential of the cladding tube of the fuel element 3 is lower than the standard electrode potential of the cladding tube of the fuel element 3, the aluminum 7 cathodically polarizes the cladding tube of the fuel element 3 to the high potential side.
During this, a so-called local cell is formed which suppresses the anodic reaction of the fuel element cladding.

第1表 従って、原子炉運転中において、燃料要素3の被覆管は
、スペーサ1の接触部位で13アノ一ド反応が抑制され
、いわゆるカソード防食機能(犠性アノード方式)が働
き、その結果、燃料要素被覆管に局部的な異常腐食が生
じるのを防止することができる。
Table 1 Accordingly, during reactor operation, the 13 anode reaction in the cladding tube of the fuel element 3 is suppressed at the contact area with the spacer 1, and the so-called cathodic corrosion protection function (sacrificial anode method) is activated, and as a result, It is possible to prevent abnormal local corrosion from occurring in the fuel element cladding tube.

第2図は、スペーサ1の板ばね4等にアルミニウム7を
メッキ処理した場合における防食試験の結果を示すもの
で、横軸にメッキ層の厚さをとり。
FIG. 2 shows the results of a corrosion protection test when the plate spring 4 of the spacer 1 was plated with aluminum 7, and the horizontal axis represents the thickness of the plating layer.

縦軸にメッキ処理を施した場合とメッキ処理を施さない
場合に生成された燃料要素被覆管の酸化膜の厚さの比を
とったものである。同図から明らかなように、例えば、
厚さ約50μmのメッキ処理を行った場合には、メッキ
を行わない場合に比べて、燃料要素被覆管の腐食量(酸
化膜生成量)が約80%程度になり、更にメッキ層の厚
さが増大するにつれて腐食量が減少する結果が得られ、
メッキ層を施すことにより防食効果を奏することが実証
された。なお、メッキ層が約100μm以上になると、
第2図に示すように防食効果が飽和状態になるので、こ
の飽和領域に至るまでの範囲内でメッキ層の厚さの設定
を行うと効率的である。
The vertical axis represents the ratio of the thickness of the oxide film of the fuel element cladding tube formed when plating is applied and when no plating is applied. As is clear from the figure, for example,
When plating is applied to a thickness of approximately 50 μm, the amount of corrosion (amount of oxide film formed) on the fuel element cladding tube is approximately 80% compared to when no plating is performed, and the thickness of the plating layer also decreases by approximately 80%. The results showed that as the amount of corrosion increases, the amount of corrosion decreases.
It has been demonstrated that applying a plating layer has an anticorrosion effect. In addition, when the plating layer becomes about 100 μm or more,
As shown in FIG. 2, the anticorrosion effect reaches a saturated state, so it is efficient to set the thickness of the plating layer within a range up to this saturated region.

また1本例ではメッキ層にアルミニウム7を使用するが
、アルミニウム材は材料照射炉等で核燃料の被覆材とし
て使用されており、熱中性子吸収断面積が小さいので中
性子経済上の見地からしても使用上の問題はなく、従来
と同程度の中性子照射特性を維持することができる。更
にアルミニウムは燃料要素被覆管を構成するジルコニウ
ム或いはジルコニウム合金よりも軟らかい金属であるた
めに、燃料要素被覆管と板ばね等の接触時における燃料
要素被覆管の傷の発生を低減させることができる。
In addition, in this example, Aluminum 7 is used for the plating layer, but aluminum is used as a coating material for nuclear fuel in material irradiation reactors, etc., and has a small thermal neutron absorption cross section, so it is not suitable from a neutron economic standpoint. There are no problems in use, and neutron irradiation characteristics comparable to conventional ones can be maintained. Furthermore, since aluminum is a softer metal than zirconium or zirconium alloy constituting the fuel element cladding, it is possible to reduce the occurrence of scratches on the fuel element cladding when the fuel element cladding comes into contact with a leaf spring or the like.

なお、本例はスペーサ1の板ばね4等をアルミニウムに
より被膜して成るが、これに限定するものでなく、燃料
要素被覆管よりも電気化学的に卑なるその他の金属材料
を使用しても同様の作用。
In this example, the leaf spring 4 of the spacer 1 is coated with aluminum; however, the present invention is not limited to this, and other metal materials that are electrochemically more base than the fuel element cladding tube may also be used. Similar effect.

効果を得られることは勿論である。Of course, it is effective.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、原子炉運転時における燃
料要素被覆管とスペーサ構成部材との接触により生じる
燃料要素被覆管の異常腐食の発生を防止し、ひいては燃
料要素の健全性を維持することができる燃料集合体用ス
ペーサを提供することができる。しかも、そのスペーサ
の構造自体も複雑化することがなく容易に製作すること
ができる等の効果を奏する。
As described above, according to the present invention, occurrence of abnormal corrosion of the fuel element cladding tube caused by contact between the fuel element cladding tube and the spacer component during reactor operation is prevented, and the integrity of the fuel element is maintained. It is possible to provide a spacer for a fuel assembly that can. Moreover, the structure of the spacer itself does not become complicated and can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す燃料集合体用スペー
サの一部省略平面図、第2図は同上のスペーサを使用し
た場合における、スペーサ構成部材のメッキ層の厚さと
燃料被覆管に生成された酸化膜厚さとの関係を示す説明
図である。
Fig. 1 is a partially omitted plan view of a spacer for a fuel assembly showing an embodiment of the present invention, and Fig. 2 shows the thickness of the plating layer of the spacer component and the fuel cladding tube when the same spacer is used. FIG. 2 is an explanatory diagram showing the relationship between the thickness of the oxide film generated in

Claims (1)

【特許請求の範囲】 1、燃料要素集合体を構成する燃料要素被覆管をスペー
サ構成部材を介して接触保持するスペーサにおいて、前
記スペーサ構成部材の表面部に、前記燃料要素被覆管よ
りも電気化学的に卑なる金属被膜層を形成して成ること
を特徴とする燃料集合体用スペーサ。 2、特許請求の範囲第1項において、前記燃料要素被覆
管は、ジルコニウム製或いはジルコニウム合金製の被覆
管から成り、且つ前記スペーサ構成部材の金属被膜層は
、アルミニウム或いはアルミニウム合金により形成され
て成る燃料集合体スペーサ。
[Scope of Claims] 1. In a spacer that holds fuel element cladding tubes constituting a fuel element assembly in contact with each other via a spacer component, a surface portion of the spacer component has an electrochemical structure that is lower than that of the fuel element cladding tube. A spacer for a fuel assembly, characterized in that it is formed by forming a metal coating layer that is less base in nature. 2. In claim 1, the fuel element cladding tube is made of zirconium or zirconium alloy, and the metal coating layer of the spacer component is made of aluminum or aluminum alloy. Fuel assembly spacer.
JP60155916A 1985-07-17 1985-07-17 Spacer for fuel aggregate Pending JPS6217688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60155916A JPS6217688A (en) 1985-07-17 1985-07-17 Spacer for fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155916A JPS6217688A (en) 1985-07-17 1985-07-17 Spacer for fuel aggregate

Publications (1)

Publication Number Publication Date
JPS6217688A true JPS6217688A (en) 1987-01-26

Family

ID=15616312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155916A Pending JPS6217688A (en) 1985-07-17 1985-07-17 Spacer for fuel aggregate

Country Status (1)

Country Link
JP (1) JPS6217688A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386991A (en) * 1977-01-10 1978-07-31 Hitachi Ltd Supporting spacer for reactor fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386991A (en) * 1977-01-10 1978-07-31 Hitachi Ltd Supporting spacer for reactor fuel

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4728488A (en) Wear resistant zirconium base alloy article for water reactors
EP0712938B1 (en) Zirconium alloy
US3170847A (en) Self-moderating fuel element
JPS58195185A (en) Zirconium alloy membrane having improved corrosion resistance
JPS6217688A (en) Spacer for fuel aggregate
JPS58199836A (en) Zirconium alloy diaphragm with improved anticorrosion
JP4318478B2 (en) Fuel assembly for boiling water LWR
US3864220A (en) Method for Reducing Hydrogen Absorption of Zirconium by Anodizing
EP0986069A1 (en) A device and a method for preventing shadow corrosion
US3586744A (en) Method of preparing a fuel plate containing low density fuel particles
US4769210A (en) Apparatus for use in liquid alkali environment
JPS6215490A (en) Lattice for fuel aggregate
JPS5860286A (en) Cladding tube of nuclear fuel element
JPH11326573A (en) Improving method for hydrogen absorption resistivity of fuel assembly structure member and clad tube
Claudson et al. Operational performance of bonded and unbonded uranium fuel rods
JPH0441794B2 (en)
JPS5940195A (en) Nuclear fuel element for fast breeder
JPS6269194A (en) Corrosion inhibiting method of fuel channel box
JPH06281766A (en) Nuclear reactor fuel rod
Stein et al. CORROSION OF ZIRCALOY-2 SHEET WELDMENTS
Steele Beryllium Corrosion
JPS6314316B2 (en)
JPS6250688A (en) Fuel channel box
JPH02293693A (en) Nuclear fuel element