JPS62176515A - Pretreatment device for gas separation - Google Patents

Pretreatment device for gas separation

Info

Publication number
JPS62176515A
JPS62176515A JP61017941A JP1794186A JPS62176515A JP S62176515 A JPS62176515 A JP S62176515A JP 61017941 A JP61017941 A JP 61017941A JP 1794186 A JP1794186 A JP 1794186A JP S62176515 A JPS62176515 A JP S62176515A
Authority
JP
Japan
Prior art keywords
adsorption
pressure
valve
outlet
adsorption column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61017941A
Other languages
Japanese (ja)
Other versions
JPH0683771B2 (en
Inventor
Kazuo Someya
染矢 和夫
Shoji Koyama
小山 祥二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61017941A priority Critical patent/JPH0683771B2/en
Publication of JPS62176515A publication Critical patent/JPS62176515A/en
Publication of JPH0683771B2 publication Critical patent/JPH0683771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To reduce the quantity of pressurizing gas with raw air and decrease pressure variation by providing conduits connecting the outlet of each adsorption column and the inlet or outlet of other columns and providing valves on midway of each conduit. CONSTITUTION:Raw air is sent into an adsorption column 8a from an inlet valve 1a, and water content and CO2 are removed, being transmitted to an after-flow as purified air. On the other hand, reclaimed gas is sent into an adsorption column 8 from an inlet valve 3c and water content and CO2 are removed to be discharged out of a valve 4c into outer air. Further, an adsorption column 8b, completing reclamation and pressurized up to adsorption pressure, goes into the adsorption process by opening valves 1b and 2b after a specific period of time. After completing reclamation at the adsorption column 8c, a pressure equalization valve 7a is opened to equalize pressure of the adsorption columns 8a and 8c, and then the adsorption column 8c is pressurized up to adsorption pressure by a pressurizing valve 5c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガス分離における前処理として、水分および
C02を吸着するガス分屋における前処理装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pretreatment device in a gas branch that adsorbs moisture and CO2 as a pretreatment in gas separation.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば特開昭58−214771号記載
のように、再生が終了した吸着塔の加圧風量が予定値に
なるように流量制御することにより、装置内の圧力変動
を抑制していた。しかし、このような制御をしても、再
生時において吸着塔内は大気圧となっており、これをl
O分程度の加圧時間内で吸着圧力まで加圧することによ
って0゜2〜0.3Kg/dの圧力変動が生じていた。
Conventional equipment suppresses pressure fluctuations within the equipment by controlling the flow rate so that the pressurized air volume of the adsorption tower after regeneration reaches a predetermined value, as described in JP-A-58-214771, for example. Ta. However, even with this kind of control, the inside of the adsorption tower remains at atmospheric pressure during regeneration, and this
Pressurizing to the adsorption pressure within a pressurizing time of about 0 minutes caused a pressure fluctuation of 0.2 to 0.3 kg/d.

この圧力変動は後工程でのガス分離に悪影響を与え、例
えば上述の圧力変動によって製品N2の組成の変動が約
0.1−0.3 ppmQ2あった。また、この切換時
必要となる加圧ガス量(パージロス)は、原料空気量の
5〜7%程度必要となり、その分製品の原単位を悪くし
ていた。
This pressure fluctuation had an adverse effect on gas separation in the subsequent process, and for example, the above-mentioned pressure fluctuation caused a fluctuation in the composition of the product N2 by about 0.1-0.3 ppmQ2. Further, the amount of pressurized gas (purge loss) required at the time of this switching is about 5 to 7% of the amount of raw material air, which worsens the unit consumption of the product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、切換時の加圧ガス盟が多く必要なこと
により、装置の圧力変動が大きいという問題があり、パ
ージロスも大きいという問題な残している。
The above-mentioned conventional technology has the problem of large pressure fluctuations in the device due to the need for a large number of pressurized gas channels at the time of switching, and still has the problem of large purge loss.

本発明の目的は、従来技術による表面の圧力変動を大幅
に改善することにある。
The aim of the invention is to significantly improve surface pressure fluctuations according to the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

再生工程のための脱圧な行う吸着塔と吸着工程のための
加圧を行う吸着塔を均圧することにより、原料空気によ
る加圧ガス量を約50%減少でき、さらに原単位につい
ても改善できる。このため、本発明では、おのおのの吸
着塔出口と他塔の入口または出口とを連通ずる導管と、
そのおのおのの導管の途中に弁を設ける構成とし、再生
工程のための脱圧な行う吸着塔と吸着工程のための加圧
を行う吸着塔との均圧運転を可能とした。
By equalizing the pressure of the adsorption tower that depressurizes for the regeneration process and the adsorption tower that pressurizes for the adsorption process, the amount of pressurized gas due to feed air can be reduced by about 50%, and the basic unit can also be improved. . Therefore, in the present invention, a conduit that communicates the outlet of each adsorption tower with the inlet or outlet of another tower;
A valve was installed in the middle of each conduit to enable equal pressure operation between the adsorption tower that depressurizes the regeneration process and the adsorption tower that pressurizes the adsorption process.

〔作   用〕[For production]

従来技術の切換チャートの例を第2図に、本発明の切換
チャートの例を第3図に示す。
An example of a conventional switching chart is shown in FIG. 2, and an example of a switching chart of the present invention is shown in FIG.

従来技術では、例えば15分切換の場合、吸着圧力(約
6に9/cr!t)から再生圧力(大気圧)までの脱圧
が約5分、また加圧が約10分であり3塔を順次切換え
て使用されていた。
In the conventional technology, for example, in the case of a 15-minute changeover, it takes about 5 minutes to depressurize from the adsorption pressure (about 6 to 9/cr!t) to the regeneration pressure (atmospheric pressure), and about 10 minutes to pressurize, which requires 3 towers. It was used by switching sequentially.

しかし、各基の加圧時間と他塔の脱圧時間とが一致しな
いため均圧工程を設けられない。本発明では、これを第
3図のようにした。すなわち、例えば15分切換えの場
合、吸着時間は20分とし、内2塔使用時間を10分、
単独使用時間を10分とす・る。また、脱圧時間は5分
とし、内2分は他塔を加圧する均圧時間、残り3分は約
3 Kp/crIから大気圧までの脱圧時間、加圧時間
は10分とし、内2分は他より加圧する均圧時間、残り
8分は約31’q/cflより約6 匂/1fflまで
原料空気により加圧する加圧時間とした。
However, the pressure equalization step cannot be provided because the pressurization time of each group and the depressurization time of other columns do not match. In the present invention, this is done as shown in FIG. That is, for example, in the case of a 15-minute changeover, the adsorption time is 20 minutes, and the usage time of two towers is 10 minutes,
The individual use time is 10 minutes. In addition, the depressurization time is 5 minutes, of which 2 minutes is the pressure equalization time to pressurize other columns, and the remaining 3 minutes is the depressurization time from about 3 Kp/crI to atmospheric pressure.The pressurization time is 10 minutes. The remaining 8 minutes were a pressure equalization time in which the pressure was increased more than the rest, and the remaining 8 minutes were a pressure application time in which the pressure was increased from about 31'q/cfl to about 6 odor/1ffl using raw air.

したがって加圧に使用する原料空気の量を約半分にでき
、装置への圧力変動および原単位を改善できる。なお吸
着塔自体の負荷は従来と変りなく仕様的には同じものが
使用可能である。
Therefore, the amount of raw material air used for pressurization can be approximately halved, and pressure fluctuations to the equipment and unit consumption can be improved. Note that the load on the adsorption tower itself is the same as in the past, and the same specifications can be used.

〔実 施 例〕〔Example〕

以下、本発明を具体的な実施例である第1図によって詳
細に説明する。第1図は、3塔式の例であり、ここでは
15分毎の切替えがなされる場合について説明する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 1, which is a specific embodiment. FIG. 1 shows an example of a three-column type, and here, a case will be described in which switching is performed every 15 minutes.

約6h/iに圧縮された原料空気は、入口弁la(ある
いはlb、lc)より吸着剤を充填した吸着塔8a(あ
るいは8b、8c)に送られる。
The raw material air compressed to about 6 h/i is sent from an inlet valve la (or lb, lc) to an adsorption tower 8a (or 8b, 8c) filled with an adsorbent.

ここで後流の深冷分離装置内で固化する水分およびC0
2を吸着除去し、出口弁2a(あるいは2b。
Here, water and CO solidify in the downstream cryogenic separator.
2 is adsorbed and removed, and the outlet valve 2a (or 2b) is removed by adsorption.

2c)を経て精製空気として後流に送られる。なお、吸
着塔での吸着方式は圧力差スイング方式(PSA)で行
う。一方、再生ガスとしては、後工程の深冷分離装置で
窒素、酸素やアルゴンを製品として採取した残りのほぼ
大気圧の不純窒素ガスを用い、再生ガス人口弁3c(あ
るいは3a、3b)よりPSA吸着塔8c(あるいは8
a、sb)に送られる。ここで吸着されている水分およ
びC02を脱看再生後弁4c(あるいは4a、4b)を
経て大気に放出される。一方再生が完了し、吸着圧力ま
で加圧されたP8に吸着塔8b(あるいは8c、8a)
は、所定の切換時間(15分)経過後、大口弁1b(あ
るいはIc、iaL出口弁2b(あるい+!2c、2a
)が開となり、A塔。
2c) and sent to the downstream stream as purified air. The adsorption method in the adsorption tower is a pressure differential swing method (PSA). On the other hand, as the regeneration gas, the remaining impure nitrogen gas at almost atmospheric pressure, which is obtained by collecting nitrogen, oxygen, and argon as products in the post-process cryogenic separator, is used. Adsorption tower 8c (or 8
a, sb). The moisture and CO2 adsorbed here are released into the atmosphere through the valve 4c (or 4a, 4b) after being regenerated. On the other hand, the regeneration is completed and the adsorption tower 8b (or 8c, 8a) is placed in P8 which has been pressurized to the adsorption pressure.
After the predetermined switching time (15 minutes) has passed, the large outlet valve 1b (or Ic, iaL outlet valve 2b (or +!2c, 2a)
) becomes open and A tower.

B塔の2塔を同時に吸着させる(5分間)。C塔の再生
工程が終了次第、均圧弁7a(あるいは7b、7c)を
開とし、A塔とC塔を約3Kq/iに均圧する(2分間
)。均圧後A塔は、脱圧弁6a(あるいは6b、sc)
を開とし、塔内を大気圧まで脱圧後、つぎの再生工程に
そなえ、一方C塔は、加圧弁5c(あるいはsa、sb
)により約6 K9/dまで加圧される。この加圧工程
時のガス量は、加圧ガス量調節計9で調節し、装置の圧
力変動を最小に抑九る。なおこの均圧および脱圧工程時
の再生ガスが流れない工程では、深冷分離装置より連続
して排出される不純窒素ガスを圧力調節計10により調
節して、弁11により大気放出される。以上の工程は、
第3図に示した切換チャートの如く順次各基について進
められる。
Adsorb the two towers of B tower at the same time (5 minutes). As soon as the regeneration process of the C tower is completed, the pressure equalization valve 7a (or 7b, 7c) is opened to equalize the pressure of the A tower and the C tower to about 3 Kq/i (for 2 minutes). After pressure equalization, the A tower is operated by pressure relief valve 6a (or 6b, sc)
After opening the column and depressurizing the inside of the column to atmospheric pressure, the column is prepared for the next regeneration step.
) to approximately 6 K9/d. The amount of gas during this pressurization step is adjusted by a pressurized gas amount controller 9 to minimize pressure fluctuations in the apparatus. Note that in the pressure equalization and depressurization steps in which the regeneration gas does not flow, the impure nitrogen gas continuously discharged from the cryogenic separator is regulated by the pressure regulator 10 and released into the atmosphere by the valve 11. The above process is
The switching is performed sequentially for each group as shown in the switching chart shown in FIG.

以上に述べたように各塔出口と他塔入口とを連通する導
管と、各導管途中に均圧弁7a+7b。
As described above, there are conduits that communicate the outlet of each column with the inlet of another column, and pressure equalization valves 7a and 7b in the middle of each conduit.

7Cとを設けたこと着こより、従来加圧工程で0→6 
Kq / crdの昇圧を10分間で行っていたのを、
3→6す/crIlの昇圧を8分間で行えば良いことに
なる。これは原料空気mfmの割合を約60%にできる
ことを示すすなわち(3/8 )/(6/I O)中0
.60となる。
Since 7C was installed, the conventional pressurization process changed from 0 to 6.
Kq/crd was boosted in 10 minutes, but
It is sufficient to increase the pressure from 3 to 6 s/crIl in 8 minutes. This indicates that the ratio of feed air mfm can be approximately 60%, that is, (3/8)/(6/I O) 0
.. It will be 60.

言い換えると定容量式の圧縮機の場合は、深冷分離器に
送られる精製空気量の変動を小さくでき圧力変動を小さ
くして安定した製品純度が得られることになる。さらに
付は加えると、従来この変動分を考慮して定格原空量の
6〜8チ大きめの圧縮機が必要であったのを小型化でき
ることになる。
In other words, in the case of a fixed displacement compressor, it is possible to reduce fluctuations in the amount of purified air sent to the cryogenic separator, reduce pressure fluctuations, and obtain stable product purity. Furthermore, in consideration of this variation, a compressor that was 6 to 8 inches larger than the rated raw air capacity was previously required, but it is now possible to downsize the compressor.

一方、脱圧ガスを約50チ回収することにより、従来切
換によるパージロスとして原空量の5〜7チあったロス
を半減でき、製品の原単位向上も計れた。
On the other hand, by recovering approximately 50 inches of depressurized gas, the purge loss due to conventional switching, which was 5 to 7 inches of the original air volume, could be halved, and the product consumption rate could be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧力変動を少なくできる。また、これ
によって、製品ガスの純度の安定化にも役立つ。更に、
パージロスを少な(できることになり、製品の原単位の
改善にもなる。
According to the present invention, pressure fluctuations can be reduced. This also helps stabilize the purity of the product gas. Furthermore,
This will reduce purge loss and improve the unit consumption of the product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のフローシートである。第2
図は従来技術のPSA切換チャートである。第3図は本
発明の一実施例におけるPSA切換チャートである。 I a、  b、  c−−−−−−空気人口弁、  
2a、b、c−・・空気出口弁、3a、b、c・・・・
・・再生ガス入口弁、4a、b、c・・・・・・再生ガ
ス出口弁、5a、  b、  c・・・・・・加圧弁、
5a、b、c・・・・・・脱圧弁、7a、b。
FIG. 1 is a flow sheet of one embodiment of the present invention. Second
The figure is a conventional PSA switching chart. FIG. 3 is a PSA switching chart in one embodiment of the present invention. I a, b, c------Pneumatic valve,
2a, b, c--air outlet valve, 3a, b, c...
... Regeneration gas inlet valve, 4a, b, c ... Regeneration gas outlet valve, 5a, b, c ... Pressurization valve,
5a, b, c... pressure relief valve, 7a, b.

Claims (1)

【特許請求の範囲】[Claims] 1、吸着剤を充填した吸着塔を3塔以上有し、該吸着塔
のそれぞれの入側に入口弁と、該吸着塔のそれぞれの出
側に出口弁とを設け、該入口弁および出口弁を操作する
ことによって、原料ガスを少なくとも一つの吸着塔に供
給して、原料ガス中の水分および二酸化炭素を圧力スイ
ング方式で吸着除去するようにしたガス分離における前
処理装置において、前記おのおのの吸着塔出口と他塔の
入口または出口とを連通する導管を設けると共に、それ
ら各導管の途中に弁を設けたことを特徴とするガス分離
における前処理装置。
1. It has three or more adsorption towers filled with adsorbent, and an inlet valve is provided on the inlet side of each of the adsorption towers, and an outlet valve is provided on the outlet side of each of the adsorption towers, and the inlet valve and the outlet valve are provided. In a pretreatment device for gas separation, in which a raw material gas is supplied to at least one adsorption tower and moisture and carbon dioxide in the raw material gas are adsorbed and removed by a pressure swing method, each of the adsorption towers is 1. A pretreatment device for gas separation, characterized in that a conduit is provided that communicates a column outlet with an inlet or an outlet of another column, and a valve is provided in the middle of each of these conduits.
JP61017941A 1986-01-31 1986-01-31 Pretreatment method for gas separation Expired - Lifetime JPH0683771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017941A JPH0683771B2 (en) 1986-01-31 1986-01-31 Pretreatment method for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017941A JPH0683771B2 (en) 1986-01-31 1986-01-31 Pretreatment method for gas separation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7259855A Division JP2644211B2 (en) 1995-10-06 1995-10-06 Pretreatment method in gas separation

Publications (2)

Publication Number Publication Date
JPS62176515A true JPS62176515A (en) 1987-08-03
JPH0683771B2 JPH0683771B2 (en) 1994-10-26

Family

ID=11957803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017941A Expired - Lifetime JPH0683771B2 (en) 1986-01-31 1986-01-31 Pretreatment method for gas separation

Country Status (1)

Country Link
JP (1) JPH0683771B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031442B1 (en) 1997-02-10 2006-04-18 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for personal routing in computer-simulated telephony
US6104802A (en) 1997-02-10 2000-08-15 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
US6985943B2 (en) 1998-09-11 2006-01-10 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US7907598B2 (en) 1998-02-17 2011-03-15 Genesys Telecommunication Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
US6332154B2 (en) 1998-09-11 2001-12-18 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing media-independent self-help modules within a multimedia communication-center customer interface
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122273A (en) * 1976-02-27 1977-10-14 Boc Ltd Method and apparatus for increasing ratio of ingredient gas
JPS5528725A (en) * 1978-08-22 1980-02-29 Murakami Masako Recovery method of oil floating on water surface
JPS5595079A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Method and device for previously treating air separator
JPS5750722A (en) * 1980-09-05 1982-03-25 Ranco Inc Snap operating switch
JPS5813510A (en) * 1981-06-25 1983-01-26 ドクタ− レンチユラ アルツナイミツテル ゲ−エムベ−ハ− ウント コンパニ− Solid medicine for oral administration
JPS60239310A (en) * 1984-05-14 1985-11-28 Nippon Steel Corp Process for recovering argon from smelting waste gas using argon-oxygen mixture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122273A (en) * 1976-02-27 1977-10-14 Boc Ltd Method and apparatus for increasing ratio of ingredient gas
JPS5528725A (en) * 1978-08-22 1980-02-29 Murakami Masako Recovery method of oil floating on water surface
JPS5595079A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Method and device for previously treating air separator
JPS5750722A (en) * 1980-09-05 1982-03-25 Ranco Inc Snap operating switch
JPS5813510A (en) * 1981-06-25 1983-01-26 ドクタ− レンチユラ アルツナイミツテル ゲ−エムベ−ハ− ウント コンパニ− Solid medicine for oral administration
JPS60239310A (en) * 1984-05-14 1985-11-28 Nippon Steel Corp Process for recovering argon from smelting waste gas using argon-oxygen mixture

Also Published As

Publication number Publication date
JPH0683771B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
US5518526A (en) Pressure swing adsorption process
US5882380A (en) Pressure swing adsorption process with a single adsorbent bed
US5415683A (en) Vacuum pressure swing adsorption process
US4376640A (en) Repressurization of pressure swing adsorption system
CA2199317C (en) Improved vacuum pressure swing adsorption process
CA1276889C (en) Pressure swing adsorption process
EP0008882A1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
US5707425A (en) Helium recovery from higher helium content streams
US5536299A (en) Simultaneous step pressure swing adsorption process
KR19990044962A (en) Vacuum pressure circulation adsorption system and method
US5542966A (en) Helium recovery
JPH07745A (en) Gas separation
GB1572532A (en) Method for separation of a gaseous mixture
US20060162565A1 (en) Apparatus for producing oxygen and method for controlling the same
US5738709A (en) Nitrogen PSA with intermediate pressure transfer
JPS62176515A (en) Pretreatment device for gas separation
US5985003A (en) Oxygen production process by pressure swing adsorption separation
CA1182765A (en) Repressurization for pressure swing adsorption system
EP0055961B1 (en) Repressurization process for pressure swing adsorption system
JP2644211B2 (en) Pretreatment method in gas separation
Kim et al. Production of high-purity nitrogen from air by pressure swing adsorption on zeolite X
JPS6027606A (en) Preparation of nitrogen by pressure swing adsorption method
EP1352680A2 (en) Pressure swing adsorption process with controlled internal depressurization flow