JPS6027606A - Preparation of nitrogen by pressure swing adsorption method - Google Patents

Preparation of nitrogen by pressure swing adsorption method

Info

Publication number
JPS6027606A
JPS6027606A JP58133050A JP13305083A JPS6027606A JP S6027606 A JPS6027606 A JP S6027606A JP 58133050 A JP58133050 A JP 58133050A JP 13305083 A JP13305083 A JP 13305083A JP S6027606 A JPS6027606 A JP S6027606A
Authority
JP
Japan
Prior art keywords
adsorption
product
adsorption tower
adsorption column
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58133050A
Other languages
Japanese (ja)
Other versions
JPH0379048B2 (en
Inventor
Masahito Kawai
雅人 川井
Takashi Inui
隆 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP58133050A priority Critical patent/JPS6027606A/en
Publication of JPS6027606A publication Critical patent/JPS6027606A/en
Publication of JPH0379048B2 publication Critical patent/JPH0379048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids

Abstract

PURPOSE:To improve yield of product of nitrogen gas without reducing its purity, by sending the product of nitrogen gas to a regenerated adsorption column adjusted to the same pressure as that of an adsorption column after adsorption, regenerating the adsorption column after adsorption process under reduced pressure. CONSTITUTION:A gas in the adsorption column 4a is made to flow in the bottom of the adsorption colum 4b after regeneration in vacuum. Simultaneously, at the initial stage, the valve 14 is opened, a product of nitrogen gas from the product tank 11 is fed to the top of the adsorption column 4b. When an outlet oxygen from the adsorption column 4a reaches a certain given tolerance value, the pressure of the adsorption column 4a and the adsorption column 4b is made equal through a pipe line passing through the valves 9, 12, and 13. In the operation, the valve 14 is in closed state. When the pressure of the two columns is made completely equilibrium in the operation, the valve 11 is closed, the valves 15 and 16 are opened, and the adsorption column 4a is regenerated by the vacuum pump 10. A raw material of pressurized air introduced in the adsorption column 4a is separated from oxygen which is adsorbed and removed, the raw material is made into the product of nitrogen gas, and sent to the product tank. The above- mentioned processes are repeated, consequently, the product of high-purity nitrogen gas is continuously prepared in high recovery ratio.

Description

【発明の詳細な説明】 この発明はプレッシャースイング吸着法によって空気か
ら窒素ガスを分離製造する方法に凹するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for separating and producing nitrogen gas from air by pressure swing adsorption.

従来、カーボンシープスなどの酸素を吸着する吸着剤を
用いて空気より窒素ガスを製造する、いわゆるプレッシ
ャースイング吸着法による窒素ガス製造方法が知られて
いる。このような窒素ガス製造方法の1つとして、例え
に第1図に示した特公昭56−9442号公報記載の方
法がある。原料空気れ管1よシ圧縮機2に送られ、ここ
で4kg/d程度に加圧されたのち、切換弁3aを経て
、切替使用される2基の吸着塔4a、4bの一方の吸着
塔4aに送シ込、まれる。吸着塔4a、4bにはカーボ
ンシープスなどの酸素な曖先的に吸着する吸着剤が充填
されており、加圧状態で導入された原料空気中の酸素が
吸着され、吸着塔4a出口には窒素を主成分とする製品
窒素ガスが得られる。
BACKGROUND ART Conventionally, a method for producing nitrogen gas using a so-called pressure swing adsorption method is known, in which nitrogen gas is produced from air using an adsorbent that adsorbs oxygen such as carbon sheep. One such method for producing nitrogen gas is the method described in Japanese Patent Publication No. 56-9442 as shown in FIG. 1, for example. The raw material air is sent through the pipe 1 to the compressor 2, where it is pressurized to about 4 kg/d, and then passes through the switching valve 3a to one of the two adsorption towers 4a and 4b to be used. 4a is sent and received. The adsorption towers 4a and 4b are filled with an adsorbent that vaguely adsorbs oxygen, such as carbon sheep, and the oxygen in the feed air introduced under pressure is adsorbed, and at the outlet of the adsorption tower 4a, oxygen is adsorbed. Product nitrogen gas containing nitrogen as a main component is obtained.

この製品窒素ガスは管5、弁6a、流を調整弁7を経て
、供給先に送られる。(吸着工程)−七して、所定公の
酸素を吸着して飽々口寸前と論った吸着塔4aは、切換
弁3aの切換によって原料空気の導入が停止され、再生
工程を終え減圧下にある他の吸着塔4bと管8、弁9を
通して連通される。このi作によって、吸着塔4aの上
部に溜っている窒素ガスが吸着塔4bに流れ、2つの吸
N塔4a、4bの内圧が等しくなる。(均圧工程) ついで、原料空気は吸着塔4bに送られ、製品窒素ガス
が同様に製造される。また、吸着塔4aは真空ボレプ1
゛0に接続されて吸引減圧され、吸着剤に吸着された酸
素が脱着され、吸着剤が再生される。(再生工程) 以下同様に、この一連操作を吸M塔4a、4bについて
父互に繰シ返すことによって、製品)ぺ素ガスが得られ
る。以上の工程をまとめると第1表のよ4うになる。
This product nitrogen gas is sent to a supply destination via a pipe 5, a valve 6a, and a flow regulating valve 7. (Adsorption process)-7 Then, the adsorption tower 4a, which had adsorbed the specified amount of oxygen and was on the verge of exhaustion, stopped the introduction of raw air by switching the changeover valve 3a, and completed the regeneration process and was brought under reduced pressure. It is communicated with another adsorption tower 4b through a pipe 8 and a valve 9. By this operation, the nitrogen gas accumulated in the upper part of the adsorption tower 4a flows to the adsorption tower 4b, and the internal pressures of the two N absorption towers 4a and 4b become equal. (Pressure equalization step) Next, the raw air is sent to the adsorption tower 4b, and product nitrogen gas is produced in the same way. In addition, the adsorption tower 4a has a vacuum volume 1
It is connected to zero and the pressure is reduced by suction, the oxygen adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated. (Regeneration Step) In the same manner, this series of operations is repeated for each of the M absorption towers 4a and 4b, thereby obtaining a product (pere gas). The above steps can be summarized as shown in Table 1.

第1表 ところで、上記のような窒素製造方法には下記のような
欠点が指摘されており、その解決が望まれている。
Table 1 By the way, the following drawbacks have been pointed out in the nitrogen production method as described above, and a solution to these problems is desired.

すなわち、上記均圧工程で、吸着操作の終了した吸着塔
を減圧する除、この吸着塔から他方の再生工程を終えた
低圧な吸着塔に向けて放出されるため、吸着酸素の脱着
が起こり、放出ガス中の酸素言壱社が急激に上昇してし
まう。そのため、一方の吸着塔から放出されるガス中の
貧有配素が他方の再生工程を終えた吸着塔内の吸着剤に
吸着され(吸着塔が汚染され)ることになり、高純良の
窒素を得ようとする場合の支障となる。
That is, in the above-mentioned pressure equalization step, when the adsorption tower that has completed the adsorption operation is depressurized, the adsorbed oxygen is released from this adsorption tower toward the other low-pressure adsorption tower that has completed the regeneration step, so that adsorbed oxygen is desorbed. The amount of oxygen in the released gas increases rapidly. As a result, the deficient nitrogen in the gas released from one adsorption tower is adsorbed by the adsorbent in the other adsorption tower that has completed the regeneration process (contaminating the adsorption tower), resulting in high purity nitrogen. It becomes a hindrance when trying to obtain.

これに対し、特開昭57−132526号公報には、吸
着塔と製品音素ガスの供給先との間に製品槽を設けた装
置を便い、第2図に示すような連続した工程によって高
純度な製品窒素ガスを艮好な収率で得るとともに省エネ
ルギー化も実現できるとしている。
On the other hand, JP-A-57-132526 discloses an apparatus in which a product tank is provided between an adsorption tower and a supply destination of product phoneme gas, and a continuous process as shown in FIG. The company says it will be able to obtain pure nitrogen gas at a high yield and also save energy.

上記公報に記載の方法の特徴は、図の工程2または工程
5にあシ、それらの重工i1またれ4において、破過前
(吸着塔から吐出される製品窒素ガスが未だ所定の製品
品位を保っている時点)で、製品吐出な打切シ、引続い
て流出するガスを用いて他の塔の加圧を行なうとしてい
る。
The feature of the method described in the above publication is that in step 2 or step 5 of the figure, in the heavy industry i1 or 4, the product nitrogen gas discharged from the adsorption tower still has a predetermined product quality. At this point, the product discharge is stopped, and the outflowing gas is then used to pressurize other columns.

しかし、この方法においては、上記工442または5の
後で、吸着終了した方の吸着塔は、吸着圧を保ったまま
で、放圧工程(工程3.6)に入ることになるため、場
内空隙に存在するガスの回収を行なうことができず、そ
の結果、製品の回収率を上げることができないことにな
る。
However, in this method, after step 442 or 5, the adsorption tower that has completed adsorption enters the depressurization step (step 3.6) while maintaining the adsorption pressure. It is not possible to recover the gas present in the product, and as a result, it is not possible to increase the recovery rate of the product.

この発明は上記事情に鑑みてなされたもので、プレッシ
ャースイング吸着法によって窒素を製造するに除して、
純度を低下さすることなく製品窒素ガスの収量を上げる
ことのできる酸素のP遣方法を提供することを目的とす
るものである。
This invention was made in view of the above circumstances, and while nitrogen is produced by the pressure swing adsorption method,
The object of the present invention is to provide a method for using oxygen that can increase the yield of product nitrogen gas without reducing its purity.

以下、この発明を図面をβ照して−Fシ<説@Tjする
。第3図はこの発明を実施するに好適な装f、tの一例
を示すもので、第1図に示した装置と共通する部分には
同一符号を付して説明を簡略化する。
Hereinafter, this invention will be explained with reference to the drawings. FIG. 3 shows an example of a device f, t suitable for carrying out the present invention, and parts common to the device shown in FIG. 1 are given the same reference numerals to simplify the explanation.

吸着塔4aK導入された加圧原料空気性、酵素が吸着除
去されて、製品窒素ガスとなシ、切換弁6a、管5を経
て製品槽11に送られる(吸着工程)。
The pressurized raw material air and enzymes introduced into the adsorption tower 4aK are adsorbed and removed, and the product nitrogen gas is sent to the product tank 11 via the switching valve 6a and the pipe 5 (adsorption step).

製品窒素ガス中の酸素濃度が製品−1IA度よシも増加
した時点で弁6aが閉じられるとともに弁 9゜12.
13が開けられ、吸着塔4a内のガスが真空再生済みの
吸着塔4b王都へ流入さげられる。
When the oxygen concentration in the product nitrogen gas increases by more than product-1IA degrees, the valve 6a is closed and the valve 9.12.
13 is opened, and the gas in the adsorption tower 4a flows into the vacuum-regenerated adsorption tower 4b.

これと同時に初期において、弁14が開けられて製品槽
11から製品窒素ガスが吸着塔4bの上部に供給される
。この操作では弁3a、’ 、12゜13.14以外の
弁は、開の状態におる(均圧(11工程)。
At the same time, at the beginning, the valve 14 is opened and the product nitrogen gas is supplied from the product tank 11 to the upper part of the adsorption tower 4b. In this operation, the valves other than valves 3a, 12, 13, and 14 are open (pressure equalization (step 11)).

上記吸着塔4aからの出口酸素がある所定の峰等値に到
達したら、弁3aが閉じられて原料空気の供給が止めら
れ、弁9 .12.13を通る管路を介して吸着塔4a
と吸着塔4bとが同正にされる。この時、弁14it、
閉の状態にある(均圧(■)工i)。
When the outlet oxygen from the adsorption tower 4a reaches a certain predetermined peak value, the valve 3a is closed to stop the feed air supply, and the valve 9. 12. Adsorption tower 4a via a line passing through 13
and the adsorption tower 4b are made to be the same. At this time, valve 14it,
It is in a closed state (pressure equalization (■) work i).

上記操作で2塔が完全に平衡な圧力にされたら、弁11
が閉められるとともに弁15.16が開けられ、真空ポ
ンプlOによシ吸着塔4aが再生される(再生工程)。
After the two towers are brought to a completely balanced pressure by the above operation, the valve 11
is closed, valves 15 and 16 are opened, and the adsorption tower 4a is regenerated by the vacuum pump IO (regeneration step).

上記(再生工程)において、一方の吸着塔4bには弁3
dを介して加圧原料空気が導入され、吸着塔4bは吸着
工程になる。この工程が終ると、弁16が1.44しら
れるとともに、弁17 、12.15が開かれ、吸着塔
4b内のガスが真空再生済みのg&着塔4a下部へ流入
され、同時に弁18を介して製品illからの製品窒素
ガ、スが吸着塔4aの上部に供給される(均圧(11工
程)。
In the above (regeneration step), one adsorption tower 4b has a valve 3.
Pressurized feed air is introduced through d, and the adsorption tower 4b enters the adsorption stage. When this step is completed, valve 16 is closed at 1.44, valves 17 and 12.15 are opened, and the gas in the adsorption tower 4b flows into the lower part of the vacuum-regenerated g&adsorption tower 4a, and at the same time, the valve 18 is closed. The product nitrogen gas from the product ill is supplied to the upper part of the adsorption tower 4a through the pressure equalization (step 11).

引き続いて、前記均圧曲工程が吸着塔4a、4bを位置
父換した状態で行なわれ、最後に弁3aだけが開状態に
され、原料空気により吸着塔4aが吸着圧まで再加圧さ
れる(原料加圧工程)。
Subsequently, the pressure equalization bending process is carried out with the adsorption towers 4a and 4b switched in position, and finally, only the valve 3a is opened, and the adsorption tower 4a is repressurized to the adsorption pressure with the feed air. (Raw material pressurization process).

この後、前記(吸着工程)に戻り、前記工程が繰υ返さ
れ、それによって高純度な製品窒素ガスが高回収率で連
続してKlられる。以上の工程をまとめると下記第2表
のようになる。
Thereafter, the process returns to the adsorption process, and the process is repeated, whereby high-purity product nitrogen gas is continuously produced at a high recovery rate. The above steps are summarized as shown in Table 2 below.

第2表 この発明では、均圧工程を2つの工a(Itと(11)
とに分けたことによって、製品窒素ガスの9111度の
宏定性と、その収量を向上させることができている。
Table 2 In this invention, the pressure equalization process is performed using two processes a (It and (11)).
By dividing the nitrogen gas into two parts, it is possible to improve the 9111 degree stability of the product nitrogen gas and its yield.

このことを上記第2表を参照して説明する。This will be explained with reference to Table 2 above.

均圧(IJ工程では、原料を供給して吸着圧力を一定に
保ったまま製品品位よルは低いが、原料よりは窒素ガス
が濃縮された組成を持つ混合ガスを得て、これを加圧用
ガスとして真空再生の済んだ吸着塔に送っている。そし
て、この工程の初期においては、両吸着塔の圧力差が大
きいため極めて大きい流逸で加圧用ガスが流入し、真空
再生済みの吸着塔の上部まで製品品位を越える酸素分が
持ち込まれる恐れがあるため、上記再生済みの吸着塔の
上部には製品窒素ガスを供給して、この吸着塔上部が酸
素で汚染されるのを防ぐようにしている。
Pressure equalization (In the IJ process, the raw material is supplied and the adsorption pressure is kept constant, but the product quality is low, but a mixed gas with a composition that is more concentrated in nitrogen gas than the raw material is obtained, and this is used for pressurization. It is sent as a gas to the adsorption tower that has been vacuum regenerated.At the beginning of this process, because the pressure difference between the two adsorption towers is large, the pressurizing gas flows in with an extremely large flow loss, and the gas for pressurization flows into the adsorption tower that has undergone vacuum regeneration. Since there is a risk that oxygen exceeding the product quality may be brought to the top of the adsorption tower, product nitrogen gas is supplied to the top of the regenerated adsorption tower to prevent the upper part of the adsorption tower from being contaminated with oxygen. ing.

従って、この工程の実施は、製品の回収率の点で効果が
あるだけでなく、再生済みの吸着塔の下部から流入する
ガスによシ塔内の吸着剤が流動化するのを防ぐと言った
実用面での利点もある訳である。
Therefore, implementation of this step is not only effective in terms of product recovery, but also prevents the adsorbent in the tower from becoming fluidized by the gas flowing in from the bottom of the regenerated adsorption tower. There are also practical advantages.

また、均圧(6)工dでは、吸着工程後の吸着塔の上部
と再生済みの吸着塔の下部とを連通させている。そのた
め、吸着工程後の吸着塔内の空隙に吸着圧力で保持され
た原料よりは幾分窒素ガスが濃縮された混合ガスを回収
することが可能となり、回収率の向上に寄与している。
Further, in the pressure equalization step (6) d, the upper part of the adsorption tower after the adsorption step is communicated with the lower part of the regenerated adsorption tower. Therefore, it is possible to recover a mixed gas that is somewhat more concentrated in nitrogen gas than the raw material held under adsorption pressure in the voids in the adsorption tower after the adsorption step, contributing to an improvement in the recovery rate.

なお、この発明の特徴は、上記したように均圧(1)お
よび曲の工程、つまシ第2表において、工程2.3ある
いは6.7にあるのであり、そのため、工程4.8がな
くてもこの発明のプロセスには特に支障はないので、上
記工程4、Bを省くようにしてもよい。
The feature of this invention is that, as mentioned above, the pressure equalization (1) and the bending process are in step 2.3 or 6.7 in Table 2, so step 4.8 is not included. However, since this does not pose any particular problem to the process of the present invention, steps 4 and B may be omitted.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

〔実施例〕〔Example〕

第3図に示したこの発明の実施に好適な装置にオイて、
吸着塔4a、4bに8時のカーボンシープスを充填して
櫨々運転したところ、第3表に示すような最も望ましい
運転条件を得ることができた。そして、その運転の結果
、99.9−の高純度な製品窒素ガスが得られた。
In the apparatus shown in FIG. 3 suitable for carrying out the invention,
When the adsorption towers 4a and 4b were filled with 8 o'clock carbon sheep and operated continuously, the most desirable operating conditions as shown in Table 3 could be obtained. As a result of this operation, a product nitrogen gas with a purity of 99.9- was obtained.

第3表 以上説明したように、この発明に詠るプレッシャースイ
ング吸着法による窒素製造方法は、吸着塔と良品窒素ガ
スの供給先との間に製品槽を設け、吸着1極を終了した
吸着塔に原料空気を供給して、この吸着塔内の窒素に富
むガスを再生済みの他の吸着塔下部に流入すると同時に
、この再生済みの吸着塔上部に前記製品槽から製品窒素
ガスを供給する均゛圧(1)工程と、この均圧(1)工
程終了後に上記吸着1機終了後の吸着塔の上部と前記再
生済みの吸着塔の下部とを連通して両吸着塔を同圧にす
る均圧曲工程とから均圧工程を構成したものなので、製
品窒素ガスの純度を低下させることなく、製品窒素ガス
の収量を大幅に増加さ止ることができる。
As explained above in Table 3, the method for producing nitrogen using the pressure swing adsorption method described in this invention is to provide a product tank between the adsorption tower and the supply destination of good quality nitrogen gas, and the adsorption tower that has completed one adsorption pole. At the same time, the nitrogen-rich gas in this adsorption tower flows into the lower part of another regenerated adsorption tower, and at the same time, the product nitrogen gas is supplied from the product tank to the upper part of this regenerated adsorption tower.゛After the pressure (1) step and the pressure equalization (1) step, the upper part of the adsorption tower after the completion of the first adsorption machine is communicated with the lower part of the regenerated adsorption tower to make both adsorption towers at the same pressure. Since the pressure equalization process is composed of the pressure equalization bending process, the yield of the product nitrogen gas can be significantly increased without reducing the purity of the product nitrogen gas.

【図面の簡単な説明】[Brief explanation of the drawing]

jl(1図は従来のプレッシャースイング吸着法による
窒素製造方法の一例に使われていた装置の構成図、第2
図は従来のプレッシャースイング吸着法による窒素製造
方法の他の例の工程図、第3図はこの発明を実施するに
好適な装置の一例を示す構成図である。 2・・・圧縮機、3a、3a、6a、6b、9 +13
.14,15,16.17.18・・・切換弁、4a、
4b・・・吸着塔、lO・・・真空ポンプ、11・・・
製品槽。 出顔人日本tX8株式会社 第1図 ゝl(J 第2図
jl (Figure 1 is a block diagram of a device used in an example of the conventional pressure swing adsorption method for producing nitrogen, Figure 2
The figure is a process diagram of another example of the conventional nitrogen production method using the pressure swing adsorption method, and FIG. 3 is a configuration diagram showing an example of an apparatus suitable for carrying out the present invention. 2...Compressor, 3a, 3a, 6a, 6b, 9 +13
.. 14,15,16.17.18...Switching valve, 4a,
4b...Adsorption tower, lO...Vacuum pump, 11...
Product tank. Appearance Person Japan tX8 Co., Ltd. Figure 1 (J Figure 2

Claims (1)

【特許請求の範囲】 原料空気中の酸素を吸着する吸着剤が充填されたa数の
吸着塔を切換弁によシ、吸着・均圧・再生・均圧・製品
再加圧の各工程に順次切換えることによシ連続的に艮品
窪床ガスを製造する方法において、 前記吸着塔と製品窒素ガスの供給先との間に製品檜な設
け、 前記均圧工程を、吸着工程を終了した吸着塔に原料空気
を供給して、この吸着塔より吐出する窒素に冨むガスを
再生済みの他の吸着塔下部よシ流入すると同時に、この
再生済みの吸着塔上部に前記製品槽から製品窒素ガスを
供給する均圧(11工程と、 前記均圧(11工程終了後に、原料空気の導入な停止し
て前記吸着工程終了後の吸着塔の上部と前記再生済みの
吸着塔の下部とを連通して両吸着塔を同圧にする均圧曲
工程とから構成すると共に、前記均圧工程(111の後
に再生済みの吸着塔に前記r、v品楢よ#)!l!!品
窒素ガスを送入する一方、吸着工程後の吸着塔を減圧再
生することを特徴とするプレッシャースイング吸着法に
よるNMIAa造方法。
[Claims] A number of adsorption towers filled with an adsorbent that adsorbs oxygen in the raw air are used in each step of adsorption, pressure equalization, regeneration, pressure equalization, and product repressurization by using a switching valve. In the method of continuously producing nitrogen gas by switching sequentially, a product cylinder is provided between the adsorption tower and the supply destination of the product nitrogen gas, and the pressure equalization step and the adsorption step are completed. Feedstock air is supplied to the adsorption tower, and the nitrogen-rich gas discharged from this adsorption tower flows into the lower part of another adsorption tower that has been regenerated, and at the same time, the product nitrogen from the product tank is fed into the upper part of the regenerated adsorption tower. Pressure equalization for supplying gas (step 11); After completion of the pressure equalization (step 11), the introduction of raw air is stopped and the upper part of the adsorption tower after the adsorption step is communicated with the lower part of the regenerated adsorption tower. and a pressure equalization bending step to make both adsorption towers at the same pressure. A method for producing NMIAa using a pressure swing adsorption method, which is characterized in that the adsorption tower is regenerated under reduced pressure after the adsorption step.
JP58133050A 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method Granted JPS6027606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133050A JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133050A JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Publications (2)

Publication Number Publication Date
JPS6027606A true JPS6027606A (en) 1985-02-12
JPH0379048B2 JPH0379048B2 (en) 1991-12-17

Family

ID=15095641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133050A Granted JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JPS6027606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917710A (en) * 1988-03-17 1990-04-17 Sumitomo Seika Chemicals Co., Ltd. Process for recovering oxygen enriched gas
US4925461A (en) * 1989-02-01 1990-05-15 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
JPH0731828A (en) * 1993-07-23 1995-02-03 Sumitomo Seika Chem Co Ltd Gas separation method
KR100861550B1 (en) 2008-06-10 2008-10-02 (주)원하이테크 Apparatus for generating concentrated gas being capable of controlling concentration of gas by using flow control valve and method of generating concentrated gas by using the same
JP2018043906A (en) * 2016-09-14 2018-03-22 株式会社クラレ Nitrogen gas separation method, and nitrogen gas separation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917710A (en) * 1988-03-17 1990-04-17 Sumitomo Seika Chemicals Co., Ltd. Process for recovering oxygen enriched gas
US4925461A (en) * 1989-02-01 1990-05-15 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
JPH0731828A (en) * 1993-07-23 1995-02-03 Sumitomo Seika Chem Co Ltd Gas separation method
KR100861550B1 (en) 2008-06-10 2008-10-02 (주)원하이테크 Apparatus for generating concentrated gas being capable of controlling concentration of gas by using flow control valve and method of generating concentrated gas by using the same
JP2018043906A (en) * 2016-09-14 2018-03-22 株式会社クラレ Nitrogen gas separation method, and nitrogen gas separation apparatus

Also Published As

Publication number Publication date
JPH0379048B2 (en) 1991-12-17

Similar Documents

Publication Publication Date Title
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
EP0449448B1 (en) Process for producing oxygen enriched product stream
US4070164A (en) Adsorption-desorption pressure swing gas separation
US4925461A (en) Process for separating nitrogen gas by pressure swing adsorption system
EP0793991A1 (en) Improved vacuum pressure swing adsorption process
US5772737A (en) Process for treating a gas mixture by pressure swing adsorption
US6045603A (en) Two phase pressure swing adsorption process
JPH04330913A (en) Absorption process for separating gaseous mixture
EP0699467B1 (en) Simultaneous step pressure swing adsorption process
JPH0477681B2 (en)
JPH09851A (en) Pressure swing adsorption method recirculating void gas
JPH0263520A (en) Method and apparatus for separating oxygen from air
US20060162565A1 (en) Apparatus for producing oxygen and method for controlling the same
EP0849218B1 (en) Nitrogen PSA with intermediate pressure transfer
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JPS6027606A (en) Preparation of nitrogen by pressure swing adsorption method
JPH0810551A (en) Method for removing carbon dioxide from raw gas
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
GB2154895A (en) Process for producing oxygen-rich gas
JPH0683771B2 (en) Pretreatment method for gas separation
JPH05184851A (en) Method for producing stream of oxygen rich product
JPH0379049B2 (en)
EP1352680A2 (en) Pressure swing adsorption process with controlled internal depressurization flow
GB2163669A (en) Apparatus for the separation of a gaseous mixture by pressure swing adsorption (PSA)
KR19990039543A (en) Three tower pressure circulating adsorption system and separation method of raw material gas