JPS62176119A - Triple-terminal standard capacitor - Google Patents

Triple-terminal standard capacitor

Info

Publication number
JPS62176119A
JPS62176119A JP61018557A JP1855786A JPS62176119A JP S62176119 A JPS62176119 A JP S62176119A JP 61018557 A JP61018557 A JP 61018557A JP 1855786 A JP1855786 A JP 1855786A JP S62176119 A JPS62176119 A JP S62176119A
Authority
JP
Japan
Prior art keywords
capacitor
circuit
terminal
dielectric
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61018557A
Other languages
Japanese (ja)
Other versions
JPH0374499B2 (en
Inventor
晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electric Meters Inspection Corp JEMIC
Original Assignee
Japan Electric Meters Inspection Corp JEMIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electric Meters Inspection Corp JEMIC filed Critical Japan Electric Meters Inspection Corp JEMIC
Priority to JP61018557A priority Critical patent/JPS62176119A/en
Publication of JPS62176119A publication Critical patent/JPS62176119A/en
Publication of JPH0374499B2 publication Critical patent/JPH0374499B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電気量の精密測定に用いる三端子形標準
コンデンサに係わり、特にその1(1失係数に起因する
測定該差要因等を除くため、損失係数を補償する回路を
付加した三端子形標準コンデンサに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a three-terminal standard capacitor used for precision measurement of various quantities of electricity, and in particular, the present invention relates to a three-terminal standard capacitor used for precision measurement of various quantities of electricity, and in particular, to This invention relates to a three-terminal standard capacitor with a circuit added to compensate for the loss factor.

〔従来の技術〕[Conventional technology]

構造に特に配癒した標準器用の二端子形空気コンデンザ
の中には、損失係数が10−5以下の高精度のものがあ
るが、かかる空気コンデンサは比誘電率が小さいために
、10009F以下の小音量の範囲でしか使用されない
。そこで、一般には損失係数が10−4〜10−3程度
の小型に造られた誘電体コンデンサ(空気以外の誘電体
を用いた−6の)が、標準器用として現在広く用いられ
ている。
Among the two-terminal air capacitors for standard devices that are specially designed for the structure, there are high-precision ones with a loss coefficient of 10-5 or less, but because such air capacitors have a small dielectric constant, Used only at low volumes. Therefore, dielectric capacitors (-6 using a dielectric material other than air) that are made in a small size and have a loss coefficient of about 10-4 to 10-3 are currently widely used as standard capacitors.

しかし、誘電体コンデンサは、上記のように損失係数が
極めて小さいとは言えないために、これを標準として各
梯電気伍を測定した場合には、測定回路が複雑になる程
、コンデンサの損失係数が誤差要因として問題どなって
来る。
However, as mentioned above, dielectric capacitors cannot be said to have an extremely small loss coefficient, so when measuring each level of electric power using this as a standard, the more complex the measurement circuit, the more the loss coefficient of the capacitor. becomes a problem as an error factor.

かかる損失係数による測定誤差を除去するために、従来
から用いられている電子式のコンデンリ゛測定器等にお
いては、演算増幅器を用いて、抵抗端子の電圧降下分を
極性反転して負性の等価抵抗を得る方法が用いられてい
る。
In order to eliminate measurement errors due to such loss coefficients, conventionally used electronic capacitor measuring instruments use operational amplifiers to reverse the polarity of the voltage drop at the resistor terminal and convert it into a negative equivalent. A method of obtaining resistance is used.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

かかる従来の補償方法においては、演算増幅器の雑音、
利得、安定度など増幅器自身の特性による制約から、誘
電体コンデンサの10失係数の補償は10−4程疫が限
度である。しかし、高精度測定用に適した標準コンデン
サを提供するためには、その損失係数を10−5以下ま
で補償する必要がある。
In such conventional compensation methods, operational amplifier noise,
Due to constraints due to the characteristics of the amplifier itself, such as gain and stability, compensation for the 10 lapse coefficient of a dielectric capacitor is limited to about 10 -4. However, in order to provide a standard capacitor suitable for high precision measurements, it is necessary to compensate its loss factor to 10-5 or less.

〔発明の構成及び作用〕[Structure and operation of the invention]

そこで、本発明は、接地端子を兼ねるシールドケース内
に第1のコンデンナを収納して成る三端子形標準コンデ
ンザに、第2及び第3のコンデンυと抵抗器とから成る
Y結線形の補償回路を接続し、この補償回路から得られ
る負性の等価抵抗を第1のコンデンナの両端子間に与え
ることにより、自失係数がほとんど零に近い三端子形標
準コンデン4ノを実現するものである。
Therefore, the present invention provides a Y-connected compensation circuit consisting of a three-terminal standard capacitor in which a first capacitor is housed in a shield case that also serves as a ground terminal, second and third capacitors υ, and a resistor. A three-terminal standard capacitor with a self-destruction coefficient close to zero is realized by connecting a negative equivalent resistance obtained from this compensation circuit between both terminals of the first capacitor.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は、本発明に係る三端子形標1%j−コンTンサ
の一実施例を示す。
FIG. 1 shows an embodiment of a three-terminal type 1% j-contact sensor according to the present invention.

同図にJ3いて、コンデンサcoは、この標Q+・コン
デンサの定義容量として用いられている誘電体コンデン
勺である。この誘電体コンデン1すCoは、実装上は、
第2図(a)に示すように接地端子Gを兼ねた静電シー
ルドケースS内に収納されている。これらを等価回路で
表わすと第2図(b)のようになり、この等価回路要素
が第1図にも用いられている。因みに、第2図の構成は
、従来の一般的な三端子形標準コンデンサの構成である
In the same figure, the capacitor J3 is a dielectric capacitor used as the defined capacitance of this standard Q+ capacitor. In terms of mounting, this dielectric capacitor 1SCo is
As shown in FIG. 2(a), it is housed in an electrostatic shield case S which also serves as a ground terminal G. These can be expressed as an equivalent circuit as shown in FIG. 2(b), and this equivalent circuit element is also used in FIG. Incidentally, the configuration shown in FIG. 2 is that of a conventional general three-terminal standard capacitor.

更に、本実施例では、誘電体コンデンサ−coの両端子
H,L間に小容量コンデンサC、Cが相互に直列接続さ
れ、両手容量コンデンサC1゜C2の相互接続点とシー
ルドケースS(接地端子G)との間に可変抵抗器Rが接
続されている。後述するように、この2つの小容量コン
デンナC1゜C2と可変抵抗器RとからなるY結線形の
回路によって、誘電体コンデンサC8の損失係数の補償
が可能となる。尚、この補償回路はシールドケースSの
外側に設けられている。
Furthermore, in this embodiment, small capacitance capacitors C and C are connected in series between both terminals H and L of the dielectric capacitor -co, and the interconnection point of the two-handed capacitance capacitors C1 and C2 and the shield case S (ground terminal A variable resistor R is connected between G) and G). As will be described later, the loss coefficient of the dielectric capacitor C8 can be compensated by the Y-connected circuit consisting of the two small capacitance capacitors C1°C2 and the variable resistor R. Note that this compensation circuit is provided outside the shield case S.

以下、上記のように構成された本実施例の作用を説明す
る。
Hereinafter, the operation of this embodiment configured as described above will be explained.

まず、第2図(b)を参照して補償回路を付加する前の
従来の標準コンデンサの損失係数について説明する。
First, the loss coefficient of a conventional standard capacitor before adding a compensation circuit will be explained with reference to FIG. 2(b).

同図において、コンデンサCCは、誘電g1° g2 体コンデンサC8とシールドケースS間の標遊容昂に起
因するこの標準コンデンサの対地容量である。また、誘
電体コンデンサC6ど並列の抵抗Roは、この誘電体コ
ンデンサ“coの誘電体損失に相当する等価損失抵抗で
ある。尚、以下の説明において、各回路要素の参照符号
は各要素の電気的値としても使用する。
In the figure, the capacitor CC is the ground capacitance of this standard capacitor due to the deflection between the dielectric g1° g2 body capacitor C8 and the shield case S. In addition, a resistance Ro parallel to the dielectric capacitor C6 is an equivalent loss resistance corresponding to the dielectric loss of this dielectric capacitor "co". In the following explanation, the reference numeral of each circuit element is the electrical resistance of each element. Also used as a target value.

誘電体コンデンサC8の一方の端子Hは電源に接続され
、他方の端子りはシールドケースSと同じ接地電位で用
いられる。このため、対地容量Cg1は電源に並列に加
わり、対地容量 Ca 2は実質上コンデンサとしての
作用がなくなる。その結果、この標準コンデンサの対地
容量CCは測定01″ g2 対象から切り離され、誘電体コンデンサC8< Il’
1失抵抗R8を含む)のみがこの標準コンデン4)定義
容量として用いられることになる。
One terminal H of the dielectric capacitor C8 is connected to the power supply, and the other terminal is used at the same ground potential as the shield case S. Therefore, the ground capacitance Cg1 is added in parallel to the power supply, and the ground capacitance Ca2 substantially no longer functions as a capacitor. As a result, the ground capacitance CC of this standard capacitor is separated from the measurement object, and the dielectric capacitor C8 <Il'
1) will be used as this standard capacitor 4) defined capacitance.

よって、角周波数ωにお【プるこの従来の標準コンデン
サの等価損失係数り。は、 Do=1/ωCoR8 で表わされる。
Therefore, the equivalent loss coefficient of this conventional standard capacitor at the angular frequency ω is: is expressed as Do=1/ωCoR8.

次に、小容量コンデンサC、C2と可変抵抗器Rとから
成る補償回路の作用について説明する。
Next, the operation of the compensation circuit including the small capacitance capacitors C and C2 and the variable resistor R will be explained.

第3図(a)はこの補償回路のみを示したものである。FIG. 3(a) shows only this compensation circuit.

これを同図(b)のような△結線形の等価回路に変換し
てみると、誘電体コンデンサC6の両端子)−1,11
?!Iに加わる並列インピーダンスZH1は、 ωし1    ωU2 と表わされる。ここで、 となるように回路定数を選定ずれば、 となり、並列インピーダンスZ!1.は負性の抵抗成分
と等価になる。
Converting this to an equivalent circuit with a △ connection as shown in the same figure (b), we find that both terminals of the dielectric capacitor C6) -1, 11
? ! The parallel impedance ZH1 added to I is expressed as ω1 ωU2. Here, if we select the circuit constants so that , we get , and the parallel impedance Z! 1. is equivalent to a negative resistance component.

次に、以上の考察に基づき、第3図(b)の等価回路を
用いて第1図を書き替えた第4図を参照して、本実施例
の作用を説明する。
Next, based on the above consideration, the operation of this embodiment will be explained with reference to FIG. 4, which is a rewrite of FIG. 1 using the equivalent circuit of FIG. 3(b).

第4図において、端子H,Lと接地端子Gとの間に補償
回路ににつで新たに生じたインピーダンスZIIcI’
 ZLGは、対地インピーダンスとなるため、従来の三
端子形標準コンデン(すが有づ°る対地容量CCと同様
に、定義容量C8に何ら不都合g1・  g2 を与えない回路定数どなる。従って、並列インピーダン
スZ のみが定義容量C8に作用する。上11[ 述のように、並列インピーダンスZ11.は負性の抵抗
成分であり、その値は角周波数ωと補償回路の回路定数
C,C2,Rによって定まる。よって、可変抵抗器Rを
適宜調節して、 l  ZHLI  =R。
In Fig. 4, a new impedance ZIIcI' is generated in the compensation circuit between terminals H, L and ground terminal G.
Since ZLG is an impedance to ground, it is a circuit constant that does not give any disadvantage g1 and g2 to the defined capacitance C8, similar to the ground capacitance CC of a conventional three-terminal standard capacitor.Therefore, the parallel impedance Only Z acts on the defined capacitance C8. As mentioned above, the parallel impedance Z11 is a negative resistance component, and its value is determined by the angular frequency ω and the circuit constants C, C2, and R of the compensation circuit. Therefore, by adjusting the variable resistor R appropriately, l ZHLI =R.

となるようにすれば、定義容ff1c。に関づる損失係
数を零に補償することができることは明らかである。更
に詳しく説明すれば、本実施例における定義容量Cに関
する損失係数D11.は、ωしof<o       
 G。
If we make it so, the definition volume ff1c. It is clear that the loss factor associated with can be compensated to zero. To explain in more detail, the loss coefficient D11. related to the defined capacitance C in this embodiment. is ω of<o
G.

で表わされる。尚、(3)式の第1項り。は誘電体コン
デンサC6自身の損失係数、第2項は損失係数り。を補
償する項Cある。
It is expressed as Note that the first term of equation (3) is is the loss coefficient of the dielectric capacitor C6 itself, and the second term is the loss coefficient. There is a term C that compensates for.

この(3)式に基づき、 となるように、角周波数ωに応じて可変抵抗器RをSl
!I整寸れば、損失係数DIILを零に補償することが
できる。
Based on this equation (3), the variable resistor R is changed to Sl according to the angular frequency ω so that
! By adjusting I, the loss coefficient DIIL can be compensated to zero.

以上のように、本実施例によれば、損失係数が10−4
〜10−3程度の三端子形JfA準コンデンサに、2個
の固定コンデンサ゛ど可変抵抗器とから成る極めで簡単
な回路を接続するだけで、この標準コンデンサ′の損失
係数を特定の周波数に対して補10することが可能であ
る。この補償量は可変抵抗器により調節できるので、補
償回路用のコンデンサC,C2は公差が数%程度の部品
用コンデンサで充分である。しかも、油筒増幅器などの
電子回路を用いていないため、損失係数を極めて零に近
い値まで補償することができ、10−5以下の損失係数
が要求される高精度測定用の標準コンデンサを確実に提
供できる。また、周波数の変更に対しては、小さい変更
については可変抵抗器Rの調整で、また大ぎい変更につ
いてはコンデンサ−C1゜C2及び可変抵抗器Rの選定
を変えることによって、自由に対応することができる。
As described above, according to this embodiment, the loss coefficient is 10-4.
By simply connecting a very simple circuit consisting of two fixed capacitors and a variable resistor to a three-terminal JfA quasi-capacitor of approximately 10-3, the loss coefficient of this standard capacitor can be adjusted for a specific frequency. It is possible to supplement by 10. Since this amount of compensation can be adjusted using a variable resistor, component capacitors with a tolerance of several percent are sufficient for the compensation circuit capacitors C and C2. Furthermore, since no electronic circuits such as oil cylinder amplifiers are used, the loss coefficient can be compensated to a value extremely close to zero, making it possible to use standard capacitors for high-precision measurements that require a loss coefficient of 10-5 or less. can be provided to In addition, you can freely respond to changes in frequency by adjusting the variable resistor R for small changes, and by changing the selection of capacitors C1 and C2 and variable resistor R for large changes. I can do it.

(発明の効果) 以上説明したように、本発明によれば、三端子形標準コ
ンデンリーに対し2つのコンデン1すと抵抗器とから得
られる負性の並列等価抵抗を加えることによりこの標準
コンデンサの損失抵抗を補(τtするようにしているの
で、補償回路の回路定数の調節により補t!1mの調整
が容易にでき、しかし演惇増幅器等の電子回路を用いて
いないので精度の高い調整が可能であり、したがって損
失係数が極めて零に近い高品質の標準コンデンサーを提
供づることが可能となる。
(Effects of the Invention) As explained above, according to the present invention, by adding a negative parallel equivalent resistance obtained from two capacitors and a resistor to a three-terminal standard capacitor, this standard capacitor can be Since the loss resistance is compensated for (τt), the compensation t!1m can be easily adjusted by adjusting the circuit constants of the compensation circuit. However, since no electronic circuit such as a differential amplifier is used, highly accurate adjustment is not possible. Therefore, it is possible to provide a high quality standard capacitor with a loss coefficient extremely close to zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は第1
図のうら従来の構成と共通する部分の実回路及び等価回
路を承り図、第3図は第1図の補償回路の部分の実回路
及び等価回路を示す図、第4図は第1図の等価回路であ
る。 C・・・誘電体コンデンサ(定義容量)、Ro・・・誘
電体コンデンサのC8のW filb FA失低抵抗1
」、L・・・誘電体コンデンサ“coの両端子、S・・
・静電シールドケース、G・・・接地端子、 CC・・・誘電体コンデン4JのC8の対地容は、gl
o  g2 C,C2・・・小容量コンデンサ、R・−・可変抵抗器
、ZHL・・・並列インピーダンス。 出願人代理人  佐  藤  −雄 R0 第1図 (q)     (b) 第2図
Fig. 1 is a circuit diagram showing one embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
The other side of the figure shows the actual circuit and equivalent circuit of the part common to the conventional configuration, Figure 3 shows the actual circuit and equivalent circuit of the compensation circuit part of Figure 1, and Figure 4 shows the actual circuit and equivalent circuit of the part of the compensation circuit in Figure 1. This is an equivalent circuit. C...Dielectric capacitor (defined capacitance), Ro...C8 of dielectric capacitor W filb FA low resistance 1
", L... Both terminals of dielectric capacitor "co, S...
・Electrostatic shield case, G...Ground terminal, CC...Dielectric capacitor 4J C8's ground capacity is gl
o g2 C, C2...Small capacity capacitor, R...Variable resistor, ZHL...Parallel impedance. Applicant's agent Sato-O R0 Figure 1 (q) (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims]  接地端子を兼ねるシールドケース内に第1のコンデン
サを収納して成るものにおいて、前記第1のコンデンサ
の両端子間に第2及び第3のコンデンサを相互に直列に
接続し、この第2及び第3のコンデンサの相互接続点と
前記シールドケースとの間に抵抗器を接続し、前記第2
及び第3のコンデンサ並びに前記抵抗器とにより、前記
第1のコンデンサに対し、その損失係数を補償するよう
な負性の並列等価抵抗を与えるようにしたことを特徴と
する三端子形標準コンデンサ。
A first capacitor is housed in a shield case that also serves as a ground terminal, and a second and third capacitor are connected in series between both terminals of the first capacitor. A resistor is connected between the interconnection point of the second capacitor and the shield case, and
A three-terminal standard capacitor, characterized in that the third capacitor and the resistor provide the first capacitor with a negative parallel equivalent resistance that compensates for its loss coefficient.
JP61018557A 1986-01-30 1986-01-30 Triple-terminal standard capacitor Granted JPS62176119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018557A JPS62176119A (en) 1986-01-30 1986-01-30 Triple-terminal standard capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018557A JPS62176119A (en) 1986-01-30 1986-01-30 Triple-terminal standard capacitor

Publications (2)

Publication Number Publication Date
JPS62176119A true JPS62176119A (en) 1987-08-01
JPH0374499B2 JPH0374499B2 (en) 1991-11-27

Family

ID=11974925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018557A Granted JPS62176119A (en) 1986-01-30 1986-01-30 Triple-terminal standard capacitor

Country Status (1)

Country Link
JP (1) JPS62176119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156551A (en) * 2001-09-06 2003-05-30 Sumitomo Metal Ind Ltd Method for calibrating capacitance meter, calibrating standard capacitance box, method for measuring electrostatic capacity, box for measuring capacity and capacitance meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156551A (en) * 2001-09-06 2003-05-30 Sumitomo Metal Ind Ltd Method for calibrating capacitance meter, calibrating standard capacitance box, method for measuring electrostatic capacity, box for measuring capacity and capacitance meter

Also Published As

Publication number Publication date
JPH0374499B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
EP1072865B1 (en) Sensor signal processing apparatus
Preethichandra et al. A simple interface circuit to measure very small capacitance changes in capacitive sensors
JPS60500395A (en) Tunable active filter
GB2251693A (en) Miniature silicon accelerometer and method
Moschytz Gain-sensitivity product-a figure of merit for hybrid-integrated filters using single operational amplifiers
JPS5986322A (en) Attenuator compensator
JPH03172014A (en) Active filter
US4391146A (en) Parallel T impedance measurement circuit for use with variable impedance sensor
JPS62176119A (en) Triple-terminal standard capacitor
JPS58167973A (en) Monitor circuit for capacitor
US4272735A (en) Single amplifier variable gyrator
Harrison et al. A Two‐Wire IC Compatible Capacitive Transducer Circuit
EP0189347A2 (en) Second order all pass network
JPS5916835Y2 (en) Input circuit of electronic equipment
US4163221A (en) Capacitance to digital conversion system
JPH0441611Y2 (en)
Smith et al. Low-Power Sensor Interfaces
JPH0533062Y2 (en)
JP2542245B2 (en) Voltage output circuit
JPH0212054B2 (en)
SU930589A1 (en) Reactance simulator
JPH0964691A (en) Active filter
EP1399792A1 (en) Self-bootstrapping transducer interface
SU1061067A1 (en) Variable value angle of loss tangent measure
Singh On demand realization of a frequency-dependent negative resistance and an infinite input impedance