JPS62175478A - Method for stabilizing trioxan - Google Patents

Method for stabilizing trioxan

Info

Publication number
JPS62175478A
JPS62175478A JP1596086A JP1596086A JPS62175478A JP S62175478 A JPS62175478 A JP S62175478A JP 1596086 A JP1596086 A JP 1596086A JP 1596086 A JP1596086 A JP 1596086A JP S62175478 A JPS62175478 A JP S62175478A
Authority
JP
Japan
Prior art keywords
ether
trioxan
polymer
trioxane
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1596086A
Other languages
Japanese (ja)
Inventor
Takeshi Komiya
全 小宮
Hideji Tsuchikawa
土川 秀治
Shinichi Kimura
木村 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP1596086A priority Critical patent/JPS62175478A/en
Publication of JPS62175478A publication Critical patent/JPS62175478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

PURPOSE:To suppress formation of a very small amount of a polymer occurring in storing or transportation of a trioxan monomer and to stabilize trioxan so as not to have a bad influence on polymerization reaction, by using a noncyclic ether as a stabilizer. CONSTITUTION:Trioxan useful as a raw material monomer for producing a polyoxymethylene polymer or copolymer or a monomer mixture comprising trioxan as a main component is blended with a noncyclic ether so that trioxan is stabilized. An aliphatic ether such as diethyl ether, di-n-butyl ether, etc., or an aromatic ether such as diphenyl ether, etc., is used as the noncyclic ether. The amount of the non cyclic ether added is preferably 10-10,000ppm based on trioxan. A molecular weight modifier to control molecular weight of oxymethylene polymer, etc., may be present. EFFECT:Having no bad influence on physical properties of prepared polymer, capable of carrying out continuous polymerization, stably for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリオキシメチレン重合体たまは共重合体の製
造原料モノマーであるトリオキサン又はトリオキサンを
主成分とするモノマー混合物の保存あるいは移送時にお
ける安定化方法にかルする。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides stability during storage or transportation of trioxane, which is a raw material monomer for producing polyoxymethylene polymers or copolymers, or a monomer mixture containing trioxane as a main component. Please refer to the method of conversion.

〔従来の技術〕[Conventional technology]

ポリオキシメチレン重合体または共重合体の製造原料で
あるトリオキサンまたはトリオキサンと環状エーテルも
しくは環状ホルマール等のモノマーとの混合物(以下ト
リオキサンモノマーと称することがある)は保存、移送
に際して金属製のパイプ、ポンプ等との接触は避けられ
ず、金属表面上の微量の酸の痕跡、あるいは微量に存在
する酸性物質により少量ではあるが重合体が浮遊物とし
て生成する。また、トリオキサンの融点は64℃である
が保存時に加熱をしない場合は固化しており、使用にあ
たっては加熱して融解するが、この加熱、融解、冷却、
固化のサイクルをくり返すことより、微量の重合体の生
成が促進される。このようにして生成した重合体は原料
モノマーに不溶であるので移送に際して、パイプライン
中のパルプ、濾過器等に詰まり、移送が不可能になった
り、ポンプの弁の部分に重合体が接触すると移送の流量
が不安定になり、著しい場合は移送が不能となる。
Trioxane or a mixture of trioxane and a monomer such as cyclic ether or cyclic formal (hereinafter sometimes referred to as trioxane monomer), which is a raw material for producing polyoxymethylene polymers or copolymers, is stored and transported using metal pipes and pumps. Contact with metals, etc. is unavoidable, and traces of traces of acid on the metal surface, or traces of acidic substances present in trace amounts, produce a small amount of polymer as suspended matter. In addition, the melting point of trioxane is 64°C, but if it is not heated during storage, it will solidify, and when used, it will be heated and melted, but this heating, melting, cooling,
By repeating the solidification cycle, the production of trace amounts of polymer is promoted. The polymer produced in this way is insoluble in the raw material monomer, so when it is transported, it may clog the pulp or filter in the pipeline, making transport impossible, or if the polymer comes into contact with the pump valve. The flow rate of transfer becomes unstable, and in severe cases, transfer becomes impossible.

このような不都合を解決するために、従来は当該原料の
加熱、融解、冷却、固化のサイクルをできる限り行わな
いようにし、また、濾過器で浮遊物を濾別すると共に、
濾過器にたい積する重合物をひんばんに除去する方法が
とられている。
In order to solve these inconveniences, conventional methods have been to avoid the cycles of heating, melting, cooling, and solidifying the raw materials as much as possible, and to filter out suspended matter using a filter.
A method is used to frequently remove polymers that accumulate in the filter.

しかし上記の方法は、重合体の生成による不都合を本質
的に解決するものではなく、操作上の繁雑さ等が伴い、
新たな解決方法が望まれていた。
However, the above-mentioned method does not essentially solve the inconvenience caused by the production of polymers, and is accompanied by operational complexity.
A new solution was desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的はトリオキサンモノマーの保存、移送に際
して生ずる微量の重合体の生成を抑制し、かつ重合反応
に悪影響を与えないトリオキサンモノマーの安定化方法
を提供することにある。
An object of the present invention is to provide a method for stabilizing trioxane monomer that suppresses the formation of trace amounts of polymer during storage and transportation of trioxane monomer and does not adversely affect the polymerization reaction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に従って、トリオキサンに非環状エーテル類を添
加することを特徴とするトリオキサンの安定化方法が提
供される。
According to the present invention, there is provided a method for stabilizing trioxane, which comprises adding acyclic ethers to trioxane.

本発明によれば、非環状エーテルの添加により従来トリ
オキサンの保存、移送にさいして生じた重合体浮遊物の
生成が抑制され、加熱融解、冷却固化を繰返しても重合
体生成が促進されることがなく、かつその後の重合反応
にさいして何ら影否を及ぼさず、生成する重合体の物性
に悪影響を与えないことが判明した。
According to the present invention, the addition of an acyclic ether suppresses the formation of polymer floats that conventionally occur during storage and transportation of trioxane, and promotes polymer formation even after repeated heating and melting and cooling and solidification. It has been found that there is no oxidation, does not affect the subsequent polymerization reaction, and does not adversely affect the physical properties of the resulting polymer.

本発明で使用される非環状エーテル類は例えば脂肪族エ
ーテルまたは芳香族エーテルが好ましい。
The acyclic ethers used in the present invention are preferably, for example, aliphatic ethers or aromatic ethers.

脂肪族エーテルとしてはたとえばジアルキルエーテルが
用いられる。該アルキルは炭素数1〜12が好ましく、
更に2〜8が好ましい。これらの具体例としてはジエチ
ルエーテル、ジ−n−プロピルエーテル、ジ−n−ブチ
ルエーテル、ジヘキシルエーテル、ジオクチルエーテル
等が挙げられる。
For example, dialkyl ether is used as the aliphatic ether. The alkyl preferably has 1 to 12 carbon atoms,
Furthermore, 2 to 8 are preferable. Specific examples of these include diethyl ether, di-n-propyl ether, di-n-butyl ether, dihexyl ether, dioctyl ether, and the like.

芳香族エーテルとしてはジフェニルエーテル、ジアルキ
ルエーテル等が挙げられる。これらのエーテルのうちジ
エチルエーテル、ジ−n−ブチルエーテルが特に好まし
い。
Examples of aromatic ethers include diphenyl ether and dialkyl ether. Among these ethers, diethyl ether and di-n-butyl ether are particularly preferred.

非環状エーテル類の添加量はトリオキサンに対し10〜
10.000ppmが好ましく、更に10〜1、000
ppmが好ましい。10ppm未満ではトリオキサンの
安定化効果がなく、10. OOOppmをたえると重
合転化率の低下などをまねく。
The amount of acyclic ethers added is 10 to 10% relative to trioxane.
10.000 ppm is preferred, more preferably 10 to 1,000 ppm
ppm is preferred. If it is less than 10 ppm, there is no stabilizing effect of trioxane, and 10. If OOOppm is exceeded, the polymerization conversion rate will decrease.

本発明においてトリオキサンと混合して用いられる他の
モノマーとしては、例えばトリオキサン以外の環状エー
テルまたは環状ホルマールがあげられ、これら共モノマ
ーの使用割合はトリオキサンに対し0.4〜40モル%
好ましくは0.4〜1゜モル%である。環状エーテルま
たは環状ホルマールは例えば一般式(1)で表わされる
In the present invention, other monomers used in combination with trioxane include, for example, cyclic ethers or cyclic formals other than trioxane, and the proportion of these comonomers used is 0.4 to 40 mol% relative to trioxane.
Preferably it is 0.4 to 1 mmol%. The cyclic ether or cyclic formal is represented by the general formula (1), for example.

R。R.

ここに、式中R、Rz、R3およびR4は同一または異
なるものであり、水素原子、アルキル基まタハハロゲン
で置換されたアルキル基を表ワス。
Here, in the formula, R, Rz, R3 and R4 are the same or different and represent a hydrogen atom, an alkyl group or an alkyl group substituted with a halogen.

Rはメチレン基またはオキシメチレン基(nはO〜3の
整数)か、さらに(CHz)−0CHz −2(OCH
z(1:Hi)−0CHz  (nは1に等しく、mは
1〜4の整数)で表わされる二価の基を意味する。上記
のアルキル基は1〜5の炭素原子を有し、その水素原子
が0〜3個のハロゲン原子、殊に塩素原子に置換されて
もよい。
R is a methylene group or an oxymethylene group (n is an integer of O to 3), or (CHz)-0CHz-2(OCH
It means a divalent group represented by z(1:Hi)-0CHz (n is equal to 1, m is an integer of 1 to 4). The alkyl groups mentioned above have 1 to 5 carbon atoms, the hydrogen atoms of which may be replaced by 0 to 3 halogen atoms, especially chlorine atoms.

本発明で用いることのできる環状ホルマールまたは環状
エーテルとしてはたとえばエチレンオキシド、1.3−
ジオキソラン、またはジグリコールホルマール、エビク
ロロヒドリン、スチレンオキシド、等が好ましく、さら
には1,4−ブタンジオール−ホルマール、1,6−ヘ
キサンジオールホルマール等の環状ホルマールが好まし
い。
Examples of the cyclic formal or cyclic ether that can be used in the present invention include ethylene oxide, 1.3-
Dioxolane, diglycol formal, shrimp chlorohydrin, styrene oxide, etc. are preferred, and cyclic formals such as 1,4-butanediol formal and 1,6-hexanediol formal are more preferred.

また゛、本発明においては、オキシメチレン重合体また
は共重合体の分子量を制御するために添加する分子量調
節剤を、トリオキサンまたはトリオキサンと環状ホルマ
ールもしくは環状エーテルなどの他のモノマーとのモノ
マー混合物と、非環状エーテルとの混合物に共存させる
ことができる。
In addition, in the present invention, the molecular weight regulator added to control the molecular weight of the oxymethylene polymer or copolymer is mixed with trioxane or a monomer mixture of trioxane and other monomers such as cyclic formal or cyclic ether, and non-containing monomers. It can be made to coexist in a mixture with a cyclic ether.

分子量調節剤としては公知のものが使用でき、その具体
例としてはメチラール、オルトギ酸エステル等が挙げら
れる。
Known molecular weight regulators can be used, and specific examples thereof include methylal, orthoformate, and the like.

また、本発明において行われるオキシメチレン重合体ま
たは共重合体の重合法は、既知のいずれの方法を用いて
もよい。重合の触媒はたとえばルイス酸を用いることが
でき、該ルイス酸としては三フッ化ホウ素、および三フ
ッ化ホウ素ジエチルエーテル錯体、三フフ化ホウ素ジブ
チルエーテル錯体等の如き三フッ化ホウ素有機配位化合
物、三塩化アンチモン、三塩化ホウ素、三塩化アルミニ
ウム、四塩化スズ、四塩化チタン、五フッ化リン。
Moreover, any known method may be used for the polymerization method of the oxymethylene polymer or copolymer carried out in the present invention. As a polymerization catalyst, for example, a Lewis acid can be used, and the Lewis acid includes boron trifluoride, and boron trifluoride organic coordination compounds such as boron trifluoride diethyl ether complex, boron trifluoride dibutyl ether complex, etc. , antimony trichloride, boron trichloride, aluminum trichloride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride.

過塩素酸、トリフルオロメタンスルホン酸およびその無
水物、トリフェニルメチルヘキサフルオロアンチモネー
トアリルジアゾニウム、ヘキサフルオロホスフェート、
トリエチルオキソニウムテトラフルオロボレート、モリ
ブデンオキシドアセチルアセトオート等が挙げられるが
、これらの中では三フッ化ホウ素配位化合物が好ましく
、侍に三フッ化ホウ素ジエチルエーテル錯体および三フ
ッ化ホウ素ジブチルエーテル錯体が特に好ましい。
Perchloric acid, trifluoromethanesulfonic acid and its anhydride, triphenylmethylhexafluoroantimonate allyldiazonium, hexafluorophosphate,
Examples include triethyloxonium tetrafluoroborate, molybdenum oxide acetylacetoate, etc., but among these, boron trifluoride coordination compounds are preferred, and boron trifluoride diethyl ether complex and boron trifluoride dibutyl ether complex are preferred. Particularly preferred.

これらの触媒はトリオキサン1モルに対し、1.0XI
O−”〜1.0X10−’モルの割合で用いる。
These catalysts contain 1.0XI per mole of trioxane.
It is used in a proportion of 0-'' to 1.0×10-' mole.

、以下、実施例及び比較例により本発明を具体的に説明
する。実施例、比較例中に用いた測定値は次の測定法に
よった。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. The measured values used in the Examples and Comparative Examples were based on the following measuring method.

還元粘度:2wt%のα−ピネンを含むp−クロロフェ
ノール/Ll、2.2−テトラクロロエタン(1:1重
量比)溶液中で重合体濃度0.5g/d1. 60℃に
おいて測定。
Reduced viscosity: Polymer concentration 0.5 g/d1 in p-chlorophenol/Ll, 2.2-tetrachloroethane (1:1 weight ratio) solution containing 2 wt% α-pinene. Measured at 60°C.

Rv(50) :  222℃、真空下において50分
間重合体住成物を加熱した際の重合体残存率。
Rv(50): Percentage of polymer remaining when the polymer housing composition is heated at 222°C under vacuum for 50 minutes.

実施例1 801のステンレス製タンクにトリオキサン59.7k
g、エチレンオキシド1751 g、ジ−n−ブチルエ
ーテル62gを加えた。タンクの保温を止め室温に冷却
し固化させて12時間放置した後、再度温度を80℃に
上げ融解を行った。タンクよりステンレス製のパイプ、
バルブを経由し、ポンプによりオキシメチレン連続重合
反応機に、毎時9、0 kgの割合で当該原料を連続的
に供給し、触媒として三フッ化ホウ素ジーn−ブチルエ
ーテル錯体の0.2 M二塩化エチレン溶液をトリオキ
サン1モルに対して6X10−’モルになるように添加
して重合を行った。重合は連続して6時間行ったが、バ
ルブやパイプの閉塞は全くなく、またポンプの流量も極
めて安定していた。このようにして得られた重合体は転
化率92〜94%、還元粘度2.6〜2.9d!/g、
Rν(50)  95.4〜96.6%で安定していた
。また、連続重合終了後に、タンク、パイプ、ポンプの
内部を点検したが、重合体の付着は見られなかった。
Example 1 Trioxane 59.7k in 801 stainless steel tank
g, 1751 g of ethylene oxide, and 62 g of di-n-butyl ether were added. After stopping the heat retention of the tank, the mixture was cooled to room temperature, solidified, and left for 12 hours, and then the temperature was raised to 80° C. again to perform melting. Stainless steel pipe from the tank,
The raw material was continuously supplied to the oxymethylene continuous polymerization reactor by a pump via a valve at a rate of 9.0 kg per hour, and 0.2 M dichloride of boron trifluoride di-n-butyl ether complex was added as a catalyst. Polymerization was carried out by adding 6×10-' mol of ethylene solution to 1 mol of trioxane. Polymerization was carried out continuously for 6 hours, but there was no clogging of valves or pipes, and the flow rate of the pump was extremely stable. The polymer thus obtained has a conversion rate of 92 to 94% and a reduced viscosity of 2.6 to 2.9 d! /g,
Rv(50) was stable at 95.4 to 96.6%. Furthermore, after the continuous polymerization was completed, the inside of the tank, pipes, and pump were inspected, but no polymer was found to be attached.

比較例1 8(lステンレス製タンクにトリオキサン60.2kg
、エチレンオキシド1766gを加えた。タンクの保温
を止め室温に冷却し固化させて12時間放置した後、再
度温度を80℃に上げ融解を行った。タンク内にはすで
に重合体が浮遊していた。
Comparative Example 1 8 (60.2 kg of trioxane in a stainless steel tank)
, 1766 g of ethylene oxide were added. After stopping the heat retention of the tank, the mixture was cooled to room temperature, solidified, and left for 12 hours, and then the temperature was raised to 80° C. again to perform melting. Polymer was already floating in the tank.

タンクよりステンレス製のパイプ、バルブを経由しポン
プによりポリオキシメチレン連続重合反応機に、毎時9
.0 kgの割合で供給し、実施例1と同様にして触媒
の添加により重合を行った。供給開始後30分で、重合
体原料の供給速度が乱れ始めた。流量について常時監視
を行い、ポンプの供給速度を調整する事によりさらに3
0分間重合を継続したが、供給開始後1時間でポンプと
タンクの間に装備した濾過器に重合体が詰まり原料の供
給が不可能となり連続重合は中止した。
A pump passes from the tank through stainless steel pipes and valves to the polyoxymethylene continuous polymerization reactor at 9 pm per hour.
.. Polymerization was carried out in the same manner as in Example 1 by adding a catalyst. Thirty minutes after the start of the supply, the supply rate of the polymer raw material began to be disturbed. By constantly monitoring the flow rate and adjusting the pump supply speed,
Polymerization was continued for 0 minutes, but 1 hour after the start of supply, the filter installed between the pump and the tank was clogged with polymer, making it impossible to supply the raw material, and continuous polymerization was discontinued.

供給開始後1時間の間に得られたポリオキシメチレン重
合体は、転化率92〜95%、還元粘度2.6〜2.!
11dl/g、  Rv(50)  95.2〜96.
2%であった。
The polyoxymethylene polymer obtained within 1 hour after the start of supply had a conversion rate of 92-95% and a reduced viscosity of 2.6-2. !
11 dl/g, Rv(50) 95.2-96.
It was 2%.

パイプ、ポンプの内部を点検したが、重合体の付着は見
られなかった。
The inside of the pipe and pump was inspected, but no polymer was found.

実施例2 801のステンレス製タンクにトリオキサン42.5k
g、エチレンオキシド1247g、メチシール12g。
Example 2 Trioxane 42.5k in 801 stainless steel tank
g, ethylene oxide 1247 g, methisil 12 g.

ジーn−ブチルエーテル4.3gを加えた。タンクの温
度は80℃に保ち12時間保存した後、タンクよりステ
ンレス製のパイプ、バルブを経由してポンプによりポリ
オキシメチレン連続重合反応機に、毎時9. Okgの
割合で当該原料を連続的に供給し、触媒を添加して重合
を行った。
4.3 g of di-n-butyl ether was added. The temperature of the tank was kept at 80°C and after storage for 12 hours, the tank was pumped through stainless steel pipes and valves to a continuous polyoxymethylene polymerization reactor at 9.50 mph per hour. The raw material was continuously supplied at a rate of 1.0 kg, and a catalyst was added to carry out polymerization.

重合は連続して4時間30分行ったが、バルブ。Polymerization was carried out continuously for 4 hours and 30 minutes, but the valve was closed.

パイプの閉塞はみられず、ポンプの流量も安定していた
。゛このようにして得られた重合体は転化率92〜94
%、還元粘度2.3〜2.6411g、 Rv(50)
 95.6〜96.4%で安定していた。連続重合終了
後にタンク、パイプ、ポンプの内部を点検したが重合体
の付着は観察されなかった。
No blockages were found in the pipes, and the pump flow rate was stable.゛The polymer obtained in this way has a conversion rate of 92 to 94
%, reduced viscosity 2.3-2.6411g, Rv (50)
It was stable at 95.6-96.4%. After the continuous polymerization was completed, the inside of the tank, pipes, and pump was inspected, but no polymer adhesion was observed.

比較例2 実施例2と同様に、トリオキサンとエチレンオキシド及
びメチラールをタンクに加え、ジ−n−ブチルエーテル
は添加せずに、80℃に保温して12時間放置した。タ
ンクより連続重合反応機に毎時9.0 kgの速度で供
給を行い触媒の添加により重合を行った。供給開始後2
時間は安定に重合したが、その後原料の供給速度が乱れ
始め、制御不能となり重合は中止した。各装置を点検し
た結果ポンプの弁部分に重合体が詰まり正常な作動が不
可能となっていた。
Comparative Example 2 In the same manner as in Example 2, trioxane, ethylene oxide, and methylal were added to the tank, but without adding di-n-butyl ether, the tank was kept warm at 80°C for 12 hours. The polymer was supplied from the tank to a continuous polymerization reactor at a rate of 9.0 kg/hour, and polymerization was carried out by adding a catalyst. After supply start 2
Polymerization was stable for some time, but after that the feed rate of raw materials began to become unstable and could no longer be controlled, and polymerization was stopped. After inspecting each device, it was discovered that the valves of the pumps were clogged with polymer, making normal operation impossible.

供給開始後、2時間の間に得られたポリオキシメチレン
重合体は、転化率92〜94%、還元粘度2.1〜2.
6dl/g、  Rv(50)  94.8〜96.1
%であった。
The polyoxymethylene polymer obtained within 2 hours after the start of supply had a conversion rate of 92-94% and a reduced viscosity of 2.1-2.
6dl/g, Rv(50) 94.8-96.1
%Met.

実施例3〜4 実施例2と同様の方法で、非環状エーテルとして表−1
に示すように、ジフェニルエーテル、ジエチルエーテル
をそれぞれ用いて重合を行った結果を実施例1.2及び
比較例1.2と一緒にまとめて示した。
Examples 3-4 Table 1 was prepared as acyclic ether in the same manner as in Example 2.
As shown in Figure 2, the results of polymerization using diphenyl ether and diethyl ether are shown together with Example 1.2 and Comparative Example 1.2.

〔発明の効果〕〔Effect of the invention〕

本発明は、トリオキサンモノマーに非環状エーテル類を
添加させることにより、該七ツマ−の保存、移送の際の
微量の重合体浮遊物の生成を抑制し重合反応に悪影響を
与えず、かつ、得られる重合体の物性に悪影響を与えず
に、従来の方法による連続重合よりも長時間安定に重合
を行うことができる。
By adding acyclic ethers to the trioxane monomer, the present invention suppresses the formation of a trace amount of polymer suspended matter during storage and transportation of the trioxane monomer, and does not adversely affect the polymerization reaction. Polymerization can be carried out stably for a longer period of time than continuous polymerization by conventional methods without adversely affecting the physical properties of the resulting polymer.

Claims (3)

【特許請求の範囲】[Claims] (1)トリオキサンまたはトリオキサンを主成分とする
モノマー混合物に非環状エーテル類を添加することを特
徴とするトリオキサンの安定化方法。
(1) A method for stabilizing trioxane, which comprises adding an acyclic ether to trioxane or a monomer mixture containing trioxane as a main component.
(2)上記非環状エーテルが脂肪族エーテル及び芳香族
エーテルから選ばれる特許請求の範囲第1項記載のトリ
オキサンの安定化方法。
(2) The method for stabilizing trioxane according to claim 1, wherein the acyclic ether is selected from aliphatic ethers and aromatic ethers.
(3)上記非環状エーテルの添加量が上記トリオキサン
の10〜10,000ppmの範囲である特許請求の範
囲第1項記載のトリオキサンの安定化方法。
(3) The method for stabilizing trioxane according to claim 1, wherein the amount of the acyclic ether added is in the range of 10 to 10,000 ppm of the trioxane.
JP1596086A 1986-01-29 1986-01-29 Method for stabilizing trioxan Pending JPS62175478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1596086A JPS62175478A (en) 1986-01-29 1986-01-29 Method for stabilizing trioxan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1596086A JPS62175478A (en) 1986-01-29 1986-01-29 Method for stabilizing trioxan

Publications (1)

Publication Number Publication Date
JPS62175478A true JPS62175478A (en) 1987-08-01

Family

ID=11903293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1596086A Pending JPS62175478A (en) 1986-01-29 1986-01-29 Method for stabilizing trioxan

Country Status (1)

Country Link
JP (1) JPS62175478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409268A2 (en) * 1989-07-21 1991-01-23 Mitsubishi Gas Chemical Company, Inc. Trioxane composition and insect-proofing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409268A2 (en) * 1989-07-21 1991-01-23 Mitsubishi Gas Chemical Company, Inc. Trioxane composition and insect-proofing agent

Similar Documents

Publication Publication Date Title
US5608030A (en) Process for the preparation of polyacetals
US3256246A (en) Copolymerization of trioxane with preformed linear polymers
US4914183A (en) Steady state preparation of high bulk density polymer of carbon monoxide and olefins
SA515360476B1 (en) Production method for polyacetal copolymer
KR930000373B1 (en) Process for producing acetal copolymer
CA1057446A (en) Process for preparing a stabilized oxymethylene copolymer
US5905138A (en) Process for the preparation of copolymers
JP2015505575A (en) Thermoplastic POM material
AU2008337624A1 (en) Method for the production of polyoxymethylene homopolymers or copolymers by homopolymerizing or copolymerizing trioxane, starting from methanol
JPS62175478A (en) Method for stabilizing trioxan
US5122591A (en) Polymerization of co/olefin with increased catalyst composition concentration during polymerization start up
JP7425795B2 (en) Method for producing stable polyoxymethylene copolymer (cPOM)
JP3916787B2 (en) Process for producing polyacetal copolymer
JPH01313515A (en) Production of acetal polymer or copolymer
JP3134699B2 (en) Method for producing acetal copolymer
GB2030576A (en) Process for the production of oxymethylene copolymer moulding compositions having a low residual formaldehyde content
WO1995023171A1 (en) Process for producing acetal copolymer
US3156671A (en) Method for preparing trioxane-cyclic ether copolymers
WO1997003100A1 (en) Process for the production of polyacetal copolymer
Masamoto et al. Development of a new advanced process for manufacturing polyacetal resins. Part III. End‐capping during polymerization for manufacturing acetal homopolymer and copolymer
CN107118315A (en) The manufacture method of Copolyacetal
EP1167409B1 (en) Polyacetal copolymer and method for producing the same
JP2000169668A (en) Polyacetal resin composition and molded product obtained therefrom
JPH0333172B2 (en)
JP6853737B2 (en) Method for manufacturing polyacetal copolymer