JPS62175327A - Constant quantity exhausting method for pulverized/ granular substance - Google Patents

Constant quantity exhausting method for pulverized/ granular substance

Info

Publication number
JPS62175327A
JPS62175327A JP1478586A JP1478586A JPS62175327A JP S62175327 A JPS62175327 A JP S62175327A JP 1478586 A JP1478586 A JP 1478586A JP 1478586 A JP1478586 A JP 1478586A JP S62175327 A JPS62175327 A JP S62175327A
Authority
JP
Japan
Prior art keywords
pressure
powder
upper space
constant quantity
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1478586A
Other languages
Japanese (ja)
Inventor
Hideto Kawada
河田 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1478586A priority Critical patent/JPS62175327A/en
Publication of JPS62175327A publication Critical patent/JPS62175327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide constant quantity exhaustion of pulverized substance by holding steady the pressure in a constant quantity storing hopper, holding steady the level of the pulverized substance in the hopper, and allowing an agitating vane to make the substance density steady. CONSTITUTION:A control box 12 is installed, into which are fed a pressure signal for the upper space of a constant quantity exhaust machine 4 and a pressure signal for the upper space of a storing hopper, followed by comparison of these signals with the setting value stored in said control box 12, whereupon control is made so as to put the upper space pressure of said constant quantity exhaust machine 4 identical to the setting value. In this control, an atmospheric release valve 21 installed on a line 12a is opened when the upper space pressure of said storing hopper 1 is higher than the set pressure value for the upper space of the constant quantity exhaust machine 4. At the same time, a control is made so as to throttle a valve 22 for aeration air. If the pressure in the constant quantity exhaust machine 4 is higher than the upper space pressure of storing hopper 1, a valve 14 makes exhaustion to the upper space of storing hopper 1.

Description

【発明の詳細な説明】 〈産業土の利用分野〉 この発明は、工業プラント等に設置される粉粒体定量排
出機から気流輸送管内に粉粒体を定量供給する方法に関
する。
Detailed Description of the Invention <Field of Application of Industrial Soil> The present invention relates to a method for quantitatively supplying powder and granular material into an air flow transport pipe from a powder and granular material quantitative discharge machine installed in an industrial plant or the like.

〈従来の技術及びその問題点〉 汚泥焼却炉において、脱水汚泥を焼却する場合、燃焼排
ガス中にはイオウ酸化物等環境上有害な物質が発生する
のが常である。従って、これら公害上の有害物質をある
基準値内に抑制するために種々の手法がとられる訳であ
るが、イオウ酸化物(以下SOxと称す9をある基準値
内に抑制する一つの手段として脱硫剤粉末を直接焼却炉
内に供給して炉内脱硫を行なう方法がある。この場合、
脱水汚泥性状によって燃焼排ガス中のSOx発生量は8
00〜2000ppm位の範囲に渡って変動するのが常
であり、SOxをある基準値、例えば20ppm以内に
抑制しようとすればその反応率に必要な脱硫剤を段階的
に定量供給してやる必要がある。この場合、粉粒体定量
排出機を用い脱硫剤粉末を供給してやる手段がある。
<Prior art and its problems> When dehydrated sludge is incinerated in a sludge incinerator, environmentally harmful substances such as sulfur oxides are usually generated in the combustion exhaust gas. Therefore, various methods are used to suppress these polluting harmful substances within certain standard values. There is a method to perform in-furnace desulfurization by supplying desulfurizing agent powder directly into the incinerator.In this case,
Depending on the properties of dehydrated sludge, the amount of SOx generated in combustion exhaust gas is 8.
It usually fluctuates over a range of about 00 to 2000 ppm, and in order to suppress SOx to a certain standard value, for example 20 ppm, it is necessary to supply the desulfurizing agent required for the reaction rate in a stepwise manner. . In this case, there is a means of supplying the desulfurizing agent powder using a powder quantitative discharge machine.

このように粉体を流動層に供給する装置としては、重原
油灰(主成分は未燃カーボンと灰分)(IP灰と称す)
を定量に流動層に供給する装置が知られている。(実公
昭60−26265号)第2図において、KP灰は通常
管路8aからホッパ2aに気流輸送により供給され、輸
送に使用した気体(空気)は集じん器9a経由排出され
る。ホッパ2aに貯留されたEP灰はロータリフィーダ
3a経由定量貯留ホツパ2bに送られ、更にロータリフ
ィーダ3bから流動層燃焼炉1aへKP灰を供給するE
P灰供給管4aに供給される。供給されたIP灰は送風
機5aからの輸送用気体により流動層燃焼炉1aの流動
層に供給される。またその他に使用する燃料は助燃燃料
ポンプ7aから流動層燃焼炉に供給され運転が安定した
のちKP灰は自燃すること\なる。この場合ロータリフ
ィーダ(第3a図第3b図)は駆動軸13aの囲りに展
出する複数の羽根11aにより複数の小室14aが形成
され、この小室に供給充填されるHP灰の重量が一定で
あるときは、駆動軸の回転数を一定にするとEP灰、の
供給は定量となる。
As a device for supplying powder to a fluidized bed in this way, heavy crude oil ash (main components are unburned carbon and ash) (referred to as IP ash) is used.
A device is known that supplies a fixed amount of water to a fluidized bed. (Utility Model Publication No. 60-26265) In FIG. 2, KP ash is usually supplied from a pipe line 8a to a hopper 2a by pneumatic transport, and the gas (air) used for transport is discharged via a dust collector 9a. The EP ash stored in the hopper 2a is sent to the quantitative storage hopper 2b via the rotary feeder 3a, and KP ash is further supplied from the rotary feeder 3b to the fluidized bed combustion furnace 1a.
The P ash is supplied to the ash supply pipe 4a. The supplied IP ash is supplied to the fluidized bed of the fluidized bed combustion furnace 1a by the transport gas from the blower 5a. Further, other fuels to be used are supplied to the fluidized bed combustion furnace from the auxiliary combustion fuel pump 7a, and after the operation becomes stable, the KP ash self-combusts. In this case, the rotary feeder (Figs. 3a and 3b) has a plurality of small chambers 14a formed by a plurality of blades 11a extending around the drive shaft 13a, and the weight of HP ash supplied and filled into these small chambers is constant. In some cases, if the rotational speed of the drive shaft is kept constant, the supply of EP ash becomes constant.

しかしこのロータリフィーダはケーシング1Oa内を回
転する羽根をもつことにより微小の寸法ながら羽根先端
については隙間θ1.側面については隙間e2をもつ必
要がある。この隙間は過少であると噛りを生じロータリ
フィーダを破損する。しかし一方において気体と混合し
た粉体は水のような性状をもち微小な隙間から漏れてロ
ータリフィーダの定量供給の精度を低め、一方において
ロータリフィーダの入口側と出口側に圧力差を必要とし
ている場合にはその平衡を崩すこと\なる。
However, because this rotary feeder has blades that rotate within the casing 1Oa, the blade tips have a gap of θ1. It is necessary to have a gap e2 on the side surface. If this gap is too small, jamming will occur and the rotary feeder will be damaged. However, on the other hand, powder mixed with gas has water-like properties and leaks through minute gaps, reducing the precision of the rotary feeder's quantitative supply.On the other hand, a pressure difference is required between the inlet and outlet sides of the rotary feeder. In some cases, that equilibrium may be disrupted.

第4a図、第4b図は第2図の定量貯留ホッパ2bとロ
ータリフィーダ3bの関係を更に改善した装置である。
4a and 4b show an apparatus in which the relationship between the quantitative storage hopper 2b and the rotary feeder 3b in FIG. 2 is further improved.

貯留ホッパ1に供給された粉体(脱硫剤を例にとり以下
説明する)は定量排出機4内に脱硫剤が切り出される(
ロータリフィーダ等の羽根間の一定容積を利用する送出
をいう)際、閉塞防止を目的とし、切り出しを良好状態
に保つためエアレーション用空気がエアレーションパッ
ト19から貯留ホッパ1内下部に供給されるが、普通4
〜5¥1の圧がないとエアレーション効果が十分得られ
ない。この際、エアレーション空気はロータリパルプ2
、二重ダンパー3の組合せの溝造をもってエアシールし
ても、全てが貯留ホッパ1.1:部に抜けきらず一部は
定量排出機4ホツパー側へ漏れ込む結果定量排出機4の
上部空間内圧は通常600〜800mmHzo位のオー
ダーであるが1〜近くにまでと昇する。また、定量排出
機4の底部フィーダ8からは常時脱硫剤粉末輸送用空気
が漏れ込む場合があり、フィーダ8の回転数及び定量排
出機内粉末1・〃高の違いにより、定量排出機4内圧は
常に変動している。
The powder (explained below using desulfurization agent as an example) supplied to the storage hopper 1 is fed into a quantitative discharge machine 4 where the desulfurization agent is cut out (
When using a fixed volume between the blades of a rotary feeder, etc.), aeration air is supplied from the aeration pad 19 to the lower part of the storage hopper 1 in order to prevent blockage and keep the cutting in good condition. Normal 4
A sufficient aeration effect cannot be obtained unless there is a pressure of ~5 yen. At this time, the aeration air is the rotary pulp 2
Even if the double damper 3 is air-sealed with the groove structure in combination, not all of it can escape into the storage hopper 1.1, and some of it leaks into the hopper side of the metering discharger 4. As a result, the internal pressure in the upper space of the metering discharger 4 is The frequency is usually on the order of 600 to 800 mmHz, but it increases to 1 or close to 1. In addition, the air for transporting the desulfurizing agent powder may constantly leak from the bottom feeder 8 of the quantitative discharge machine 4, and the internal pressure of the quantitative discharge machine 4 may vary depending on the rotation speed of the feeder 8 and the height of the powder 1 inside the quantitative discharge machine. constantly changing.

この定量排出機4の底面に接続するフィーダ8は駆動用
モータ8bでその駆動軸を鉛直にして回転している。こ
のフィーダ8はロータリフィーダをその軸を鉛直にした
ようなもので、複数の羽根8dにより複数の小室8θを
形成し、供給シュート8gまたは定量排出機4の底面に
設けた開口8fから粉体を供給しシュー)8cを介し、
又はフィーダ本体の平行する面を挾持する輸送管10に
粉体を排出している。従って、従来の定量排出機におい
ては、容積一定の「ますJ (枡)である小室8Cをも
って定量制御しようとしても、上述の圧変動により十分
効果のある定量性を得る事ができないという問題がある
The feeder 8 connected to the bottom of the metering discharger 4 is rotated by a drive motor 8b with its drive shaft vertical. This feeder 8 is like a rotary feeder with its axis vertical, and has a plurality of small chambers 8θ formed by a plurality of blades 8d, and powder is fed from a supply chute 8g or an opening 8f provided at the bottom of the metering discharger 4. supply shoe) 8c,
Alternatively, the powder is discharged into a transport pipe 10 that holds the parallel surfaces of the feeder body. Therefore, in the conventional quantitative dispensing machine, even if quantitative control is attempted using the small chamber 8C, which is a square with a constant volume, there is a problem in that it is not possible to obtain sufficiently effective quantitative performance due to the above-mentioned pressure fluctuations. .

これらの問題点を要約すると、ロータリフィーダ型の粉
体の定量供給には下記条件を満す必要がある。
To summarize these problems, it is necessary to satisfy the following conditions for quantitative feeding of powder using a rotary feeder.

(a)駆動軸の定速回転 (b)ロータリフィーダ人口側と出口側の圧力差の変化
のないこと (Q)定量貯留ホッパ内の圧力の定常 (、i)定量貯留ホッパ内の粉体レベルの一定(θ)定
量貯留ホッパ内の粉体の密度の一定(f)V;i間e、
  e、の定常(第3a図、第3b図)〈発明の目的〉 この発明は前記要因のうち(b)(C)(d) (e)
を対象とする解決手段を提案しようというものである。
(a) Constant speed rotation of the drive shaft (b) No change in the pressure difference between the rotary feeder intake side and outlet side (Q) Steady pressure in the quantitative storage hopper (i) Powder level in the quantitative storage hopper constant (θ) constant density of powder in the quantitative storage hopper (f) V;
e, steady state (Figures 3a and 3b) <Object of the invention> This invention solves (b) (C) (d) (e) among the above factors.
The aim is to propose a means of solving this problem.

く手段の概要〉 この発明は前記定[社貯留ホッパ内の圧力を定常にし、
同ホッパ内粉体レベルを定常にし、粉体密度を定常にす
べく攪拌羽根を設け、粉体を定量排出する方法である。
Outline of Means for Keeping the Pressure in the Storage Hopper Constant The present invention provides
This is a method of discharging a fixed amount of powder by providing a stirring blade to keep the powder level in the hopper constant and the powder density constant.

〈実施例〉 以下この発明の実施例を粉体を脱硫剤粉末とし第1図を
用いて説明する。定量排出機4の脱硫剤粉末層高レベル
低(以下Lレベルと称す)を検出する事により、エアレ
ーション空気が送り込まれ貯留ホッパー15に貯留され
ている脱硫剤粉末は、層高レベルを高く(以下Hレベル
と称す)矛検出するまで定量排出機4へ供給される。定
量排出機番に供給された脱硫剤粉末15は攪拌羽根7に
よって攪拌されながらフィーダ8へ供給される。フィー
ダ8の供給羽根6で形成される小室へ供給された脱硫剤
粉末15は煙突出口におけるイオウ酸化物濃度(以下S
Ox値と称す)のある基準値内、例えば20ppm以下
に抑制しようとすれば、それに対応する量だけ供給羽根
用電動機8の回転数を変化させる事により輸送空気用ブ
ロワ−11からの空気により焼却炉(図示せず)へ空気
輸送される。脱硫剤粉末15が貯留ホッパー1から定量
排出機4ヘロータリフイーダ2で送出される場合、エア
レーション空気がエアレーションバット19から4〜5
〜で貯留ホッパー1の下部へ供給される。しかしすべて
の量が貯留ホッパ1の上部空間部へ抜は大気中に抜は出
すものではなく、先に説明したようにロータリフィーダ
2と何割かはシール装置3の様な二重のシール装置をも
ってしても定量排出機4のホッパー上部空間へ漏れ込み
ホッパー内圧は1〜近くにも達する。
<Example> Examples of the present invention will be described below with reference to FIG. 1, using desulfurizing agent powder as the powder. By detecting a low high level (hereinafter referred to as L level) of the desulfurizing agent powder layer of the metering discharger 4, aeration air is sent in and the desulfurizing agent powder stored in the storage hopper 15 raises the layer height level to a high level (hereinafter referred to as L level). (referred to as H level) is supplied to the fixed quantity discharger 4 until it is detected. The desulfurizing agent powder 15 supplied to the quantitative discharge machine number is supplied to the feeder 8 while being stirred by the stirring blade 7. The desulfurizing agent powder 15 supplied to the small chamber formed by the supply vane 6 of the feeder 8 has a sulfur oxide concentration (hereinafter referred to as S) at the chimney outlet.
If an attempt is made to suppress the oxygen content to within a certain standard value (referred to as the Ox value), for example, 20 ppm or less, the rotational speed of the supply blade electric motor 8 is changed by a corresponding amount to incinerate the air from the transport air blower 11. Pneumatically transported to a furnace (not shown). When the desulfurizing agent powder 15 is sent out from the storage hopper 1 to the quantitative discharge machine 4 and the rotary feeder 2, aeration air is sent from the aeration vat 19 to 4 to 5
~ is supplied to the lower part of the storage hopper 1. However, not all of the amount is discharged into the upper space of the storage hopper 1 into the atmosphere, but as explained earlier, the rotary feeder 2 and some portion have a double sealing device such as the sealing device 3. Even if the amount of liquid is exceeded, it leaks into the upper space of the hopper of the quantitative discharger 4, and the internal pressure of the hopper reaches 1 to nearly 1.

このような状態になるとフィーダ8に供給される粉体の
密度が変化し、定容積の供給はされても定重量の供給は
されず密度の変化に対応してモータ8aの回転数を変化
させねばならぬこと\なる。
In such a state, the density of the powder supplied to the feeder 8 changes, and although a constant volume is supplied, a constant weight is not supplied, and the rotation speed of the motor 8a is changed in response to the change in density. It must be done.

この実施例においては、制御箱12を設け、定量排出機
番の上部空間の圧力信号と、貯留ホッパの北部空間の圧
力信号とをこの制御箱に送り制御箱12に記憶する設定
値とこの信号の数値を対比し、定量排出機4の上部空間
の圧力を設定値にする制御をする。
In this embodiment, a control box 12 is provided, and a pressure signal in the upper space of the quantitative discharge machine number and a pressure signal in the northern space of the storage hopper are sent to this control box, and set values to be stored in the control box 12 and this signal are sent to the control box. The pressure in the upper space of the quantitative discharge machine 4 is controlled to the set value by comparing the numerical values.

その制御は、もし貯留ホッパ1の上部空間の圧力が定量
排出機4の1部空間の設定圧力値より高いときは管路1
2aに設けた大気放出用弁21を開とする。同時にエア
レーション空気用の弁22を絞る制御をする。また定量
排出機番内の圧力が貯留ホッパ1の丘部空間内圧力より
高いときは弁14によりこの貯留ホッパ1の上部空間に
排出する。(貯留ホッパl内の粉体レベルの条件によっ
てはこのような場合も生ずる。)〈実施例2〉 なお実施例1の場合に加え、粉粒体輸送管10のフィー
ダ8の接続部上流の圧力発信管23の信号を制御箱20
に送り定量排出機番の上部空間圧力との差圧を制御因子
とし、因子数を増し、より丁寧な定量供給の制御をする
こともできる。 4〈実施例3) 前記実施例1.2の制御を作業員が前記各圧力計を見乍
ら手動で前記各弁を操作することもできる。
The control is such that if the pressure in the upper space of the storage hopper 1 is higher than the set pressure value in the first part of the metering discharge machine 4, the pipe line 1
The atmosphere release valve 21 provided at 2a is opened. At the same time, control is performed to throttle the aeration air valve 22. Further, when the pressure within the quantitative discharge machine number is higher than the pressure within the hill space of the storage hopper 1, the valve 14 discharges to the upper space of the storage hopper 1. (Such a case may also occur depending on the conditions of the powder level in the storage hopper l.) <Example 2> In addition to the case of Example 1, the pressure upstream of the connection part of the feeder 8 of the powder transport pipe 10 The signal from the transmitting tube 23 is sent to the control box 20.
It is also possible to use the differential pressure between the upper space pressure of the metered discharge machine number and the upper space pressure as a control factor, increase the number of factors, and perform more careful metered supply control. 4 (Embodiment 3) The control described in Embodiment 1.2 can also be carried out by an operator manually operating each of the valves while looking at each of the pressure gauges.

なお第1図はフィーダ8を2基示しているがそれ以上の
基数のフィーダとし、一台の定量排出機で複数の数の管
による粉体の送出を同時にすることができる。
Although FIG. 1 shows two feeders 8, it is possible to use a larger number of feeders, and to simultaneously send out powder through a plurality of tubes with one quantitative discharge machine.

〈発明の効果〉 制御箱20.貯留ホッパ上部空間の圧力の圧力発信器、
定量供給機番の上部空間圧力の圧力発信器、排気用の管
路12.12a及びこれら管路の制御弁を設けた本発明
を実施することにより、定量排出機番ホッパー1部空間
内の圧力を常に一定にフントロールできフィーダ8に供
給される粉粒体は一定の割合でその小室内に充満される
ため、フィーダ8からは一定貴の粉粒体が粉粒体輸送管
10に供給される結果、装置の定量性は著しく向上した
<Effect of the invention> Control box 20. A pressure transmitter for the pressure in the upper space of the storage hopper,
By carrying out the present invention, which is equipped with a pressure transmitter for the pressure in the upper space of the quantitative feed machine, exhaust pipes 12.12a, and control valves for these pipes, the pressure in the first space of the quantitative discharge machine hopper can be reduced. Since the powder and granules supplied to the feeder 8 fill the small chamber at a constant rate, a constant amount of powder and granules are supplied from the feeder 8 to the granule transport pipe 10. As a result, the quantitative performance of the device was significantly improved.

、図面のf10単な説明 第1図はこの発明の一実施例を示す装置の縦断面と管路
の図面、第2図は従来の定量輸送機の説明図、第3a図
はロータリフィーダの縦断面図、第3b図は第3a図の
A−A断面図、第4a図は従来の定量輸送機の縦断面図
、第4b図はフィーダ8を模式に示す斜視図である。
, f10 simple description of the drawings. Figure 1 is a longitudinal cross-section of an apparatus and a pipe line showing an embodiment of the present invention. Figure 2 is an explanatory diagram of a conventional mass transporter. Figure 3a is a longitudinal cross-section of a rotary feeder. FIG. 3b is a cross-sectional view taken along the line A-A in FIG. 3a, FIG. 4a is a vertical cross-sectional view of a conventional quantitative transporter, and FIG. 4b is a perspective view schematically showing the feeder 8.

1・・・・・・貯留ホッパ  2・・・・・・ロータリ
フィーダ3・・・・・・シールダンパ 4・・・・・・
定量排出機5・・・・・・攪拌羽根   6・・・・・
・供給羽根7・・・・・・撹拌機用電動機 8・・・・・・フィーダ 9・・・・・・輸送空気短管
10・・・・・・粉粒体輸送管 11・・・・・・空気輸送用ファン 15・・・・・・脱硫剤粉末 16・・・・・・バグフ
ィルタ−17・・・・・・エキスパンションジヨイント
18・・・・・・イオウ酸化物濃度発信器第1図 へ二 第40図 旧丈穫    杭旧
1...Storage hopper 2...Rotary feeder 3...Seal damper 4...
Quantitative discharge machine 5... Stirring blade 6...
- Supply vane 7...Agitator motor 8...Feeder 9...Transporting air short pipe 10...Powder transport pipe 11... ... Air transport fan 15 ... Desulfurizing agent powder 16 ... Bag filter - 17 ... Expansion joint 18 ... Sulfur oxide concentration transmitter No. Go to Figure 1. Figure 40.

Claims (1)

【特許請求の範囲】 1、定量排出機上部空間の圧力の信号と、貯留ホッパ上
部空間の圧力の信号とを記憶と指令信号を出す制御箱に
送りこの制御箱の指令により前記2つの圧力をこれら2
つの空間を接続する管路と大気放出管路に設けた制御弁
の開閉により調節し粉粒体の定量送出をすることを特徴
とする粉粒体定量排出方法。 2、粉粒体輸送管とフィーダとの接続部より上流の粉粒
体輸送管内圧力の信号を前記制御箱に送り粉粒体の定量
送出をすることを特徴とする特許請求の範囲第1項記載
の粉粒体定量排出方法。
[Claims] 1. The signal of the pressure in the upper space of the metering discharger and the signal of the pressure in the upper space of the storage hopper are sent to a control box that stores and outputs command signals, and the two pressures are adjusted according to the commands of this control box. These 2
1. A method for quantitatively discharging powder and granular material, the method comprising controlling the opening and closing of a control valve provided in a pipe connecting two spaces and a control valve provided in an atmospheric discharge pipe to deliver a fixed amount of powder and granular material. 2. A signal of the internal pressure of the powder or granule transport pipe upstream from the connection portion between the powder or granule transport pipe and the feeder is sent to the control box for quantitative delivery of the powder or granule. The method for quantitatively discharging powder and granular material described.
JP1478586A 1986-01-28 1986-01-28 Constant quantity exhausting method for pulverized/ granular substance Pending JPS62175327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1478586A JPS62175327A (en) 1986-01-28 1986-01-28 Constant quantity exhausting method for pulverized/ granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1478586A JPS62175327A (en) 1986-01-28 1986-01-28 Constant quantity exhausting method for pulverized/ granular substance

Publications (1)

Publication Number Publication Date
JPS62175327A true JPS62175327A (en) 1987-08-01

Family

ID=11870709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1478586A Pending JPS62175327A (en) 1986-01-28 1986-01-28 Constant quantity exhausting method for pulverized/ granular substance

Country Status (1)

Country Link
JP (1) JPS62175327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136953A (en) * 1998-08-27 2000-05-16 Mitsui Chemicals Inc Device for supplying fixed quantity of powder, and method for supplying fixed quantity of powder using the same
JP2007178371A (en) * 2005-12-28 2007-07-12 Kao Corp Powder and grain weighing device and method
JP2012103037A (en) * 2010-11-08 2012-05-31 Ricoh Co Ltd Exhaust device of automatic measuring/charging equipment
JP2012188282A (en) * 2011-03-14 2012-10-04 Kajima Corp Powder volumetric feeding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613313U (en) * 1979-07-11 1981-02-04
JPS5644855A (en) * 1979-09-07 1981-04-24 Siemens Ag Ring interference gage
JPS5874431A (en) * 1981-10-19 1983-05-04 ポ−ル・ワ−ス・ソシエテ・アノニム Device for controlling content and filling of distributing tank for powder material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613313U (en) * 1979-07-11 1981-02-04
JPS5644855A (en) * 1979-09-07 1981-04-24 Siemens Ag Ring interference gage
JPS5874431A (en) * 1981-10-19 1983-05-04 ポ−ル・ワ−ス・ソシエテ・アノニム Device for controlling content and filling of distributing tank for powder material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136953A (en) * 1998-08-27 2000-05-16 Mitsui Chemicals Inc Device for supplying fixed quantity of powder, and method for supplying fixed quantity of powder using the same
JP2007178371A (en) * 2005-12-28 2007-07-12 Kao Corp Powder and grain weighing device and method
JP2012103037A (en) * 2010-11-08 2012-05-31 Ricoh Co Ltd Exhaust device of automatic measuring/charging equipment
JP2012188282A (en) * 2011-03-14 2012-10-04 Kajima Corp Powder volumetric feeding method

Similar Documents

Publication Publication Date Title
US4311102A (en) Burning system
CA1260992A (en) Pneumatic transportation system with a material feeder
US8496898B2 (en) Fluidized bed carbon dioxide scrubber for pneumatic conveying system
JP2006248741A (en) Moisture control device and method for coal ash
WO2009143402A2 (en) Method and apparatus to deliver solid fuel to a combustion zone
JPS62175327A (en) Constant quantity exhausting method for pulverized/ granular substance
CN207680355U (en) A kind of anti-compaction pulverized limestone helix transporting device
US4940010A (en) Acid gas control process and apparatus for waste fired incinerators
GB2134673A (en) Control of pressure within a pulverizer
CN104321590B (en) For the method transporting the impurity in pressurised fluidized bed incinerator system
CN214862107U (en) Ash-deposition wetting ash discharging device of bag-type dust collector of biomass boiler
JP3707855B2 (en) Waste supply device
EP1836440B1 (en) Device for feeding refuse-derived fuels (rdf) to combustion apparatuses
JP2001280625A (en) Waste supply apparatus for combustion apparatus
WO1982000992A1 (en) Conveying of bulk materials
CN215842424U (en) Material injection device for desulfurization
CN208115501U (en) A kind of purification device of dry fume deacidification
JPS6151206B2 (en)
JP2005331235A (en) Waste supply device
JP2004051260A (en) Powdery and granular material feeder
JP3978701B2 (en) Method and apparatus for supplying powdery improvement material into earth and sand transport pipe
CN1704647A (en) Pneumatic conveying system for spraying calcium in stokehole
JPH0351632Y2 (en)
KR890001400B1 (en) Air transfer and mix apparatus for powder
JPS6357685B2 (en)