JPS6217517B2 - - Google Patents

Info

Publication number
JPS6217517B2
JPS6217517B2 JP1445980A JP1445980A JPS6217517B2 JP S6217517 B2 JPS6217517 B2 JP S6217517B2 JP 1445980 A JP1445980 A JP 1445980A JP 1445980 A JP1445980 A JP 1445980A JP S6217517 B2 JPS6217517 B2 JP S6217517B2
Authority
JP
Japan
Prior art keywords
enzyme
group
formula
lower alkyl
immobilized enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1445980A
Other languages
Japanese (ja)
Other versions
JPS56113290A (en
Inventor
Tohei Morya
Masaki Okazaki
Junnosuke Yamauchi
Makoto Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1445980A priority Critical patent/JPS56113290A/en
Publication of JPS56113290A publication Critical patent/JPS56113290A/en
Publication of JPS6217517B2 publication Critical patent/JPS6217517B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固定化酵素とその製造方法に関し、更
に詳しくは下記一般式() (ここで、R1は水素原子または低級アルキル
基、Bは
The present invention relates to an immobilized enzyme and a method for producing the same, and more specifically to the following general formula () (Here, R 1 is a hydrogen atom or a lower alkyl group, B is

【式】または[expression] or

【式】 R2,R3,R4は低級アルキル基(置換基を含んで
もよい)、Xはアンモニウム窒素と塩を形成する
陰性の基、AはB及びアミド基の窒素原子を連結
する基、をそれぞれ意味している。) で示される共重合単位を含む変性ポリビニルアル
コール(以下、PVAという)に酵素を吸着して
なる固定化酵素とその製造方法に関する。 従来より、酵素による触媒反応を利用して各種
の物質を発酵法で製造するにあたり、酵素を固定
化して反応生成物との分離を容易にし、連続運転
を可能ならしめる所謂「固定化酵素技術」が知ら
れている。固定化の方法としては、グルタールア
ルデヒドなどの架橋剤で酵素同士を結合させる架
橋法、イオン交換樹脂やガラスビーズなどに酵素
を結合させる担体結合法あるいはコラーゲン膜や
ゲル状の合成高分子の中に酵素を包む包括法など
があり、これらの方法による固定化酵素は通常は
粒状、膜状あるいはゲル状でありカラムなどの反
応槽に充てんして使用される。一方、固定化酵素
をより一層取扱い易くするために繊維形状とする
方法も検討されており、例えば特開昭54―138624
号においてはアミノアセタール化したPVA繊維
に酵素を固定化する技術が開示されている。しか
しながら、PVAをアミノアセタール化する方法
は原料費が高価でありまた、工程が複雑で工業的
な実施が困難である上、アミノアセタール化した
PVAの濃厚水溶液は条件によつては不溶化反応
を起こし易く、その場合には水溶液が不安定、不
均一となつて紡糸をすることが困難になるという
欠点があつた。 本発明者らは酵素の吸着固定性能に優れ、かつ
工業的に安価かつ安定に繊維を形成し得るPVA
系高分子を開発すべく検討した結果、酢酸ビニル
と次の一般式(イ)で示される重合性単量体 (ここで、R1は水素原子または低級アルキル
基、Bは
[Formula] R 2 , R 3 , and R 4 are lower alkyl groups (which may contain substituents), X is a negative group that forms a salt with ammonium nitrogen, and A is a group that connects B and the nitrogen atom of the amide group. , respectively. ) This invention relates to an immobilized enzyme obtained by adsorbing an enzyme to modified polyvinyl alcohol (hereinafter referred to as PVA) containing a copolymerized unit represented by the following formula, and a method for producing the same. Conventionally, when producing various substances by fermentation using catalytic reactions by enzymes, so-called "immobilized enzyme technology" has been used to immobilize enzymes to facilitate their separation from reaction products and enable continuous operation. It has been known. Immobilization methods include a cross-linking method in which enzymes are bonded to each other using a cross-linking agent such as glutaraldehyde, a carrier bonding method in which the enzyme is bonded to an ion exchange resin or glass beads, or a method in which enzymes are bonded to collagen membranes or gel-like synthetic polymers. Another method is to enclose the enzyme, and the enzyme immobilized by these methods is usually in the form of particles, membranes, or gels, and is used by filling it into a reaction tank such as a column. On the other hand, in order to make the immobilized enzyme even easier to handle, methods of making it into a fiber shape are also being considered.
In this issue, a technology for immobilizing enzymes on aminoacetalized PVA fibers is disclosed. However, the method of converting PVA into aminoacetal requires expensive raw materials, the process is complicated, and it is difficult to implement industrially.
A concentrated aqueous solution of PVA tends to cause an insolubilization reaction depending on the conditions, and in that case, the aqueous solution becomes unstable and non-uniform, making spinning difficult. The present inventors have developed PVA, which has excellent adsorption and fixation performance for enzymes and can form fibers industrially at low cost and stably.
As a result of our study to develop a system polymer, we found that vinyl acetate and a polymerizable monomer represented by the following general formula (a) (Here, R 1 is a hydrogen atom or a lower alkyl group, B is

【式】または[expression] or

【式】 R2,R3,R4は低級アルキル基(置換基を含んで
もよい)、Xはアンモニウム窒素と塩を形成する
陰性の基、AはB中の窒素原子とアミド基中の窒
素原子を連結する基、をそれぞれ意味してい
る。) との共重合体中の酢酸ビニル単位を部分的にある
いは完全にケン化して得た変性PVAは工業的製
造が容易で、かつその水溶液は安定性に優れてお
り、更にこの変性PVAを紡糸して得た繊維を酵
素水溶液中に浸漬することにより容易に繊維に酵
素を固定化し得ること、またこの繊維状の固定化
酵素は取扱いが便利である上高い酵素活性を発現
し、発酵工業にとり極めて有用であることを確認
して本発明を完成したものである。 上記一般式()で示される共重合単位を含む
変性PVAの製造法の詳細は特願昭54―89078号明
細書中に示した通りであり、上記一般式(イ)で示さ
れる重合性単量体と酢酸ビニルを共重合した後酢
酸ビニル単位をケン化することにより最も有効か
つ簡便に製造される。(イ)式中R1は水素原子また
は低級アルキル基であるが、通常水素原子または
メチル基が好ましく、更に酢酸ビニルとの共重合
反応における重合速度が大である点で水素原子で
あることが好ましい。Bは3級アミノ基
[Formula] R 2 , R 3 , R 4 are lower alkyl groups (which may contain substituents), X is a negative group that forms a salt with ammonium nitrogen, A is the nitrogen atom in B and the nitrogen in the amide group Each refers to a group that connects atoms. ) Modified PVA obtained by partially or completely saponifying the vinyl acetate units in a copolymer with PVA is easy to produce industrially, and its aqueous solution has excellent stability. The enzyme can be easily immobilized on the fiber by immersing the obtained fiber in an enzyme aqueous solution, and this fibrous immobilized enzyme is convenient to handle and exhibits high enzyme activity, making it suitable for the fermentation industry. The present invention was completed after confirming that it is extremely useful. The details of the method for producing modified PVA containing copolymerized units represented by the above general formula () are as shown in the specification of Japanese Patent Application No. 54-89078. It is most effectively and simply produced by copolymerizing the polymer with vinyl acetate and then saponifying the vinyl acetate unit. In the formula (a), R 1 is a hydrogen atom or a lower alkyl group, but usually a hydrogen atom or a methyl group is preferable, and a hydrogen atom is more preferable because it has a high polymerization rate in the copolymerization reaction with vinyl acetate. preferable. B is a tertiary amino group

【式】または4級アンモニウム塩[Formula] or quaternary ammonium salt

【式】でありR2,R3,R4は置換基 を含んでもよい低級アルキル基を、Xはアンモニ
ウム窒素と塩を形成する陰性の基を示している。
R2,R3,R4は通常の目的ではすべてメチル基が
好ましいが、特殊な目的にはエチル基、プロピル
基等の低級アルキル基あるいは反応性を付与する
目的でメチロール基、あるいはカチオン基の密度
を向上させる目的でアミノアルキル基など置換基
を含有した低級アルキル基も用いられる。Xとし
ては塩素,シユウ素,ヨウ素などのハロゲン原子
またはCH3OSO3あるいはCH3C6H4SO3が好まし
いが、とりわけ塩素原子が、経済上、安全上ある
いは変性PVAの特性上好ましい。アミノ基は四
級アンモニウム塩の形である場合、変性PVAの
製造上好ましいが三級アミンでも製造可能であり
本発明の効果を発現させ得る。 アミノ基B中の窒素原子とアミド基の窒素原子
を連結する基であるAは安定な結合を含む基であ
れば何れも用いられるが、通常直鎖状または分岐
した脂肪族の基が用いられる。脂肪族の基のうち
次式の括弧中の式で表わされるような側鎖のある
脂肪族の基をAとする単量体はアミド結合の安定
性が特に高いこと、その合成が経済的に有利であ
ることの二つの理由によつてとりわけ優れてい
る。 ここで、R6,R7は炭素数10以下のアルキル
基、R8は水素原子または炭素数10以下のアルキ
ル基、nは0から2までの整数を意味している。 上記一般式(イ)で示される単量体のうち三級アミ
ンの形のものの具体例として次のものが挙げられ
る。N―(2―ジメチルアミノエチル)アクリル
アミド,N―(2―ジメチルアミノエチル)メタ
クリルアミド,N―(3―ジメチルアミノプロピ
ル)アクリルアミド,N―(3―ジエチルアミノ
プロピル)アクリルアミド,N―(3―ジメチル
アミノプロピル)メタクリルアミド,N―(3―
ジエチルアミノプロピル)メタクリルアミド,N
―(1,1―ジメチル―3―ジメチルアミノプロ
ピル)アクリルアミド,N―(1,1―ジメチル
―3―ジメチルアミノプロピル)メタクリルアミ
ド,N―(1,1―ジエチル―3―ジメチルアミ
ノブチル)アクリルアミド,N―(1―メチル―
1,3―ジフエニル―3―ジエチルアミノプロピ
ル)メタクリルアミド,N―(3―ジメチルアミ
ノヘキシル)アクリルアミド,N―(3―メチル
エチルアミノプロピル)メタクリルアミド。 上記一般式(イ)で示される単量体のうち四級アン
モニウムの形のものは上述した三級アミン型単量
体を次のような四級化剤で四級化することにより
容易に得ることができる。硫酸ジアルキル、例え
ばジメチル硫酸,ジエチル硫酸,ジプロピル硫
酸,アルキルまたはアリールスルホン酸のC1
C4エステル、例えばメタンスルホン酸,ベンゼ
ンスルホン酸またはトルエンスルホン酸などのメ
チル―,エチル―,プロピル―またはブチルエス
テル,ハロゲン化ベンジル例えば塩化ベンジルま
たは臭化ベンジル,ハロゲン化アルキル例えば塩
化メチル,臭化メチル,ヨウ化メチル,塩化エチ
ル,臭化エチルまたはヨウ化エチルなどである。 上記一般式(イ)で示される単量体として上述した
例のうち次の4種類の単量体
[Formula] where R 2 , R 3 and R 4 represent lower alkyl groups which may contain substituents, and X represents a negative group that forms a salt with ammonium nitrogen.
R 2 , R 3 , and R 4 are preferably all methyl groups for normal purposes, but for special purposes they may be lower alkyl groups such as ethyl or propyl groups, or for the purpose of imparting reactivity, methylol groups or cationic groups. Lower alkyl groups containing substituents such as aminoalkyl groups are also used for the purpose of improving density. As X, a halogen atom such as chlorine, sulfur, or iodine, or CH 3 OSO 3 or CH 3 C 6 H 4 SO 3 is preferable, and a chlorine atom is particularly preferable from the economical, safety, and property standpoints of modified PVA. It is preferable for the amino group to be in the form of a quaternary ammonium salt in the production of modified PVA, but it can also be produced in the form of a tertiary amine and the effects of the present invention can be achieved. As the group A that connects the nitrogen atom in the amino group B and the nitrogen atom of the amide group, any group containing a stable bond can be used, but a linear or branched aliphatic group is usually used. . Among the aliphatic groups, monomers in which A is an aliphatic group with a side chain as shown in the formula in parentheses in the following formula have particularly high amide bond stability, and their synthesis is economical. It is particularly advantageous for two reasons. Here, R 6 and R 7 are alkyl groups having 10 or less carbon atoms, R 8 is a hydrogen atom or an alkyl group having 10 or less carbon atoms, and n is an integer from 0 to 2. Among the monomers represented by the above general formula (A), the following are specific examples of monomers in the form of tertiary amines. N-(2-dimethylaminoethyl)acrylamide, N-(2-dimethylaminoethyl)methacrylamide, N-(3-dimethylaminopropyl)acrylamide, N-(3-diethylaminopropyl)acrylamide, N-(3-dimethyl aminopropyl) methacrylamide, N-(3-
diethylaminopropyl) methacrylamide, N
-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide, N-(1,1-dimethyl-3-dimethylaminopropyl)methacrylamide, N-(1,1-diethyl-3-dimethylaminobutyl)acrylamide ,N-(1-methyl-
1,3-diphenyl-3-diethylaminopropyl)methacrylamide, N-(3-dimethylaminohexyl)acrylamide, N-(3-methylethylaminopropyl)methacrylamide. Among the monomers represented by the above general formula (a), those in the form of quaternary ammonium can be easily obtained by quaternizing the above-mentioned tertiary amine type monomer with the following quaternizing agent. be able to. Dialkyl sulfate, e.g. dimethyl sulfate, diethyl sulfate, dipropyl sulfate, alkyl or arylsulfonic acid C 1 ~
C4 esters, e.g. methyl-, ethyl-, propyl- or butyl esters such as methanesulfonic acid, benzenesulfonic acid or toluenesulfonic acid, benzyl halides e.g. benzyl chloride or benzyl bromide, alkyl halides e.g. methyl chloride, bromide Examples include methyl, methyl iodide, ethyl chloride, ethyl bromide, or ethyl iodide. The following four types of monomers among the examples mentioned above as monomers represented by the above general formula (A)

【表】 が本発明の固定化酵素に使用する変性PVAを製
造する上で、重合速度、アミド基の安定性,単量
体製造時の経済性の観点から優れている。また変
性PVAには酢酸ビニル単位が完全にケン化され
たもの及び部分的にケン化されたものゝ両者が含
まれている。 本発明の固定化酵素に使用する変性PVA中の
変性基の量、ケン化度あるいは変性PVAの重合
度は目的に応じて適宜選択され特に制限は無い
が、取扱い易い固定化酵素を製造する上でこれら
の三つの要素を上手に組合わせることが重要であ
る。一般的な目的に対しては変性基を含む共重合
単位の量は0.5〜15モル%、ケン化度は80〜100モ
ル%、重合度は500〜3000の範囲が好ましい。 このようにして得られた変性PVAは繊維状、
スポンジ状、ゲル状などの形状とした後酵素と反
応させて本発明の固定化酵素を形成せしめること
が可能であるが、こののうち繊維形状とした固定
化酵素はその取扱い易さにおいて特に優れてお
り、本発明において特に重要であるので以下繊維
状変性PVAによる固定化酵素につき説明する。 変性PVAは水に加熱溶解して、10〜50%の水
溶液となるよう調製し、常圧下あるいは高圧下に
おいて60℃〜160℃の温度のものを原液とし、通
常の乾式紡糸法または湿式紡糸法により紡糸す
る。この原液調製の際に変性基の量を調節する目
的で変性していない通常のPVAを混合して紡糸
することもできる。乾式紡糸法における紡糸筒は
90゜〜250℃の加熱空気が用いられまた、湿式紡
糸法における紡糸浴の例としては200〜450g/
の濃度で、30〜50℃の温度のボウ硝水溶液が用い
られる。紡糸された変性PVAは次に150゜〜260
℃の加熱空気中で4〜12倍に延伸した後、200゜
〜260℃で熱処理する。こうして得られた繊維は
このままで用いることもでき、更に耐水性の向上
あるいは膨潤度の調整のためにホルマール化ある
いはアセタール化してもよい。また該共重合物を
一成分とする複合繊維の形態としても使用しう
る。繊維の太さは目的に応じて任意のものとする
ことができるが通常0.5〜500デニール程度が好ま
しい。紡糸方法,延伸倍率,熱処理,ホルマール
化あるいは繊維の太さは原料の変性PVAの組成
に応じて適宜選択することが必要で、適度な膨潤
度と耐水性を付与するように調整される。 こうして得た繊維状変性PVAに酵素を吸着さ
せるにあたつては繊維を目的に応じて適宜裁断し
たり、あるいは布状に織りあるいは編んだ後、緩
衝液により酵素の性質に応じた適当なPHに調節し
た酵素水溶液中に浸漬して必要時間静置あるいは
振盪,撹拌することにより繊維状変性PVAに酵
素が吸着,固定化され固定化酵素が形成される。 本発明の固定化酵素に用いられる酵素としては
特に制限はなく目的に応じ多くの酵素を用いるこ
とができる。その例としてはインベルダーゼ,グ
ルコアミラーゼ,グルコースイソメラーゼ,グル
コースオキシダーゼ,ウレアーゼ,リボヌクレア
ーゼ,デオキシリボヌクレアーゼ,プロテアー
ゼ,乳酸デヒドロゲナーゼ,L―アミノ酸オキシ
ダーゼ,ステロイドエステラーゼ,ピルビン酸キ
ナーゼ,アセチルコリンエステラーゼ,アルカリ
性ホスフアターゼ,ラクターゼ、ロイシンアミノ
ペプチダーゼ,アミノペプチダーゼ,トリプシ
ン,パパイン,フイシン,プロナーゼ,アミノア
シラーゼ,アスパラギナーゼなどがあるがこれら
に限るものではない。また吸着に先だつて酵素の
吸着,固定化能を向上させる目的で酵素に適宜変
性を施すこと、例えばサクシニル化などの変性を
実施することも任意である。得られた固定化酵素
の作用は本来の酵素と同様であるが、固形化され
ているため、取扱い、反応液との分離,再使用が
容易となる長所を有する。固定化酵素の活性は固
定化前とくらべて通常40%以上の発現率を有す
る。 以下、実施例を挙げて本発明を説明するがこれ
らの実施例は本発明を何等限定するものではな
い。 実施例 1 トリメチル―3―(1―アクリルアミド―1,
1―ジメチルプロピル)アンモニウムクロリドと
酢酸ビニルとの共重合体をケン化してトリメチル
―3―(1―アクリルアミド―1,1―ジメチル
プロピル)アンモニウムクロリド単位を5モル%
含有し、酢酸ビニル単位のケン化度が99.9モル
%、4%水溶液の20℃における粘度(ブルツクフ
イールド型粘度計による。以下同様)が30CP
(センチポイズ)の変性PVAを合成した。この変
性PVAの35%水溶液を原液とし、これを130℃に
加熱して金板より150℃の加熱空気中に押し出す
乾式紡糸を実施後、得られた繊維を230℃で7倍
に延伸し次いで240℃で熱処理して2デニール繊
維状変性PVAを得た。この繊維1gにリン酸塩
緩衝液でPHを6に調整したインベルダーゼ水溶液
100g(国際標準単位で10000単位相当含有)を加
え、30℃で24時間振盪して酵素固定を実施した。
次いで、繊維を十分に水洗した後、インベルター
ゼの固定化率を測定したところ89%であつた。こ
うして得られた繊維状の固定化酵素に2%シヨ糖
水溶液100gを加えて30℃におけるグルコースへ
の転換速度から酵素活性発現率を求めたところ、
原料酵素の活性を100%としたとき76%の酵素活
性を示した。 実施例 2 N―(1,1―ジメチル―3―ジメチルアミノ
プロピル)アクリルアミドと酢酸ビニルとの共重
合体をケン化してN―(1,1―ジメチル―3―
ジメチルアミノプロピル)アクリルアミド単位を
6モル%含有し、酢酸ビニル単位のケン化度が
99.7モル%、4%水溶液の20℃における粘度が
20CPの変性PVAを合成した。この変性PVAの40
%水溶液を原液とし、実施例1に準じた乾式紡糸
法により3デニールの繊維状変性PVAを得た。
この繊維1gを0.5N塩酸中に1夜浸漬後十分水
洗した。この繊維1gにリン酸塩緩衝液でPH8に
調整したグルコースイソメラーゼ水溶液50g
(10000単位相当含有)を加え、30℃で24時間振盪
して酵素固定を実施した。次いで、繊維を十分水
洗した後、酵素の固定化率を測定したところ91%
であつた。こうして得られた繊維状の固定化酵素
に2%グルコース水溶液100gを加えて30℃にお
けるフルクトースへの異性化速度から酵素活性発
現率を求めたところ68%であつた。 実施例 3 トリメチル―3―(1―メタクリルアミド―プ
ロピル)アンモニウムクロリドと酢酸ビニルとの
共重合体をケン化してトリメチル―3―(1―メ
タクリルアミド―プロピル)アンモニウムクロリ
ド単位を3.5モル%含有し、酢酸ビニル単位のケ
ン化度が98.5モル%、4%水溶液の20℃における
粘度が25CPの変性PVAを合成した。この変性
PVAの38%水溶液を原液とし、実施例1に準じ
た乾式紡糸法により2デニールの繊維状変性
PVAを得た。この繊維1gにリン酸塩緩衝液で
PH8に調整したウレアーゼ水溶液50g(10000単
位相当含有)を加え、30℃で24時間振盪して酵素
固定を実施した。ウレアーゼの固定化率は78%で
あつた。こうして得られた繊維状の固定化酵素に
2%の尿素水溶液100gを加えて30℃におけるア
ンモニアの発生速度から酵素活性発現率を求めた
ところ90%であつた。 実施例 4 N―(3―ジメチルアミノプロピル)メタクリ
ルアミドと酢酸ビニルとの共重合体をケン化して
N―(3―ジメチルアミノプロピル)メタクリル
アミド単位を3モル%含有し、酢酸ビニル単位の
ケン化度が97.0モル%、4%水溶液の20℃におけ
る粘度が30CPの変性PVAを合成した。この変性
PVAの16%水溶液を原液とし、94℃に加熱し
て、金板より35℃のボウ硝水溶液中に押し出す湿
式紡糸法を実施後、得られた繊維を200℃で8.5倍
に延伸し次いで200℃で熱処理し2デニールの繊
維状変性PVAを得た。この繊維1gにリン酸塩
緩衝液でPHを6に調整したインベルダーゼ水溶液
100g(10000単位相当含有)を加え、30℃で24時
間振盪して酵素固定を実施した。インベルダーゼ
の固定化率は92%であつた。こうして得られた繊
維状の固定化酵素に2%のシヨ糖水溶液100gを
加えて30℃におけるグルコースへの転換速度から
酵素活性発現率を求めたところ75%の活性を示し
た。
[Table] is superior in producing the modified PVA used in the immobilized enzyme of the present invention from the viewpoints of polymerization rate, stability of the amide group, and economical efficiency during monomer production. Modified PVA includes both completely saponified vinyl acetate units and partially saponified vinyl acetate units. The amount of modified groups in the modified PVA used in the immobilized enzyme of the present invention, the degree of saponification, or the degree of polymerization of the modified PVA are appropriately selected depending on the purpose and are not particularly limited. It is important to skillfully combine these three elements. For general purposes, the amount of copolymerized units containing modifying groups is preferably in the range of 0.5 to 15 mol%, the degree of saponification is in the range of 80 to 100 mol%, and the degree of polymerization is in the range of 500 to 3000. The modified PVA thus obtained is fibrous,
It is possible to form the immobilized enzyme of the present invention by shaping it into a sponge-like, gel-like, etc. shape and then reacting it with an enzyme, but among these, the immobilized enzyme in the form of a fiber is particularly superior in its ease of handling. Since it is particularly important in the present invention, the immobilized enzyme using fibrous modified PVA will be explained below. Modified PVA is heated and dissolved in water to make a 10-50% aqueous solution, and the stock solution is prepared at a temperature of 60°C to 160°C under normal pressure or high pressure, and then processed using the usual dry spinning method or wet spinning method. Spun by spinning. When preparing this stock solution, it is also possible to mix and spin unmodified ordinary PVA in order to control the amount of modifying groups. The spinning tube in the dry spinning method is
Heated air at 90° to 250°C is used, and an example of a spinning bath in the wet spinning method is 200 to 450 g/
An aqueous solution of sulfur salt at a concentration of 30-50°C is used. The spun modified PVA is then heated at 150°~260°
After stretching 4 to 12 times in heated air at 200 to 260°C. The fibers thus obtained can be used as they are, or may be formalized or acetalized to improve water resistance or adjust the degree of swelling. It can also be used in the form of composite fibers containing the copolymer as one component. The thickness of the fibers can be arbitrary depending on the purpose, but is usually preferably about 0.5 to 500 deniers. The spinning method, draw ratio, heat treatment, formalization, and fiber thickness must be selected appropriately depending on the composition of the modified PVA raw material, and are adjusted to provide an appropriate degree of swelling and water resistance. In order to adsorb enzymes to the fibrous modified PVA obtained in this way, the fibers are cut as appropriate depending on the purpose, or after being woven or knitted into a cloth shape, the fibers are adjusted to an appropriate pH depending on the properties of the enzyme using a buffer solution. The enzyme is adsorbed and immobilized on the fibrous modified PVA by immersing it in an aqueous enzyme solution adjusted to the desired temperature and allowing it to stand for a required period of time or being shaken or stirred to form an immobilized enzyme. There are no particular restrictions on the enzyme used in the immobilized enzyme of the present invention, and many enzymes can be used depending on the purpose. Examples include inverdase, glucoamylase, glucose isomerase, glucose oxidase, urease, ribonuclease, deoxyribonuclease, protease, lactate dehydrogenase, L-amino acid oxidase, steroid esterase, pyruvate kinase, acetylcholinesterase, alkaline phosphatase, lactase, leucine amino acid. These include, but are not limited to, peptidase, aminopeptidase, trypsin, papain, fuicin, pronase, aminoacylase, and asparaginase. Further, prior to adsorption, it is optional to appropriately modify the enzyme, such as succinylation, for the purpose of improving the adsorption and immobilization ability of the enzyme. The function of the obtained immobilized enzyme is similar to that of the original enzyme, but since it is solidified, it has the advantage of being easy to handle, separate from the reaction solution, and reuse. The activity of the immobilized enzyme usually has an expression rate of 40% or more compared to before immobilization. The present invention will be explained below with reference to Examples, but these Examples are not intended to limit the present invention in any way. Example 1 Trimethyl-3-(1-acrylamide-1,
Saponifying a copolymer of 1-dimethylpropyl) ammonium chloride and vinyl acetate to obtain 5 mol% of trimethyl-3-(1-acrylamido-1,1-dimethylpropyl) ammonium chloride units.
The degree of saponification of vinyl acetate units is 99.9 mol%, and the viscosity of a 4% aqueous solution at 20°C (as measured by a Bruckfield viscometer; the same applies hereinafter) is 30CP.
(centipoise) modified PVA was synthesized. A 35% aqueous solution of this modified PVA is used as a stock solution, which is heated to 130°C and extruded from a metal plate into heated air at 150°C for dry spinning.The resulting fibers are stretched 7 times at 230°C and then A 2-denier fibrous modified PVA was obtained by heat treatment at 240°C. Inverdase aqueous solution adjusted to pH 6 with phosphate buffer to 1g of this fiber
100 g (containing 10,000 international standard units) was added, and the enzyme was fixed by shaking at 30°C for 24 hours.
Next, after thoroughly washing the fibers with water, the immobilization rate of invertase was measured and found to be 89%. When 100 g of a 2% sucrose aqueous solution was added to the thus obtained fibrous immobilized enzyme, the enzyme activity expression rate was determined from the conversion rate to glucose at 30°C.
The enzyme activity was 76% when the activity of the raw enzyme was taken as 100%. Example 2 A copolymer of N-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide and vinyl acetate was saponified to produce N-(1,1-dimethyl-3-
Contains 6 mol% of acrylamide units (dimethylaminopropyl), and the degree of saponification of vinyl acetate units is
The viscosity of a 99.7 mol%, 4% aqueous solution at 20℃ is
A modified PVA of 20CP was synthesized. 40 of this modified PVA
% aqueous solution as a stock solution, a fibrous modified PVA of 3 denier was obtained by a dry spinning method according to Example 1.
1 g of this fiber was immersed in 0.5N hydrochloric acid overnight and then thoroughly washed with water. 50 g of glucose isomerase aqueous solution adjusted to pH 8 with phosphate buffer per 1 g of this fiber
(containing equivalent to 10,000 units) was added, and the enzyme was fixed by shaking at 30°C for 24 hours. Next, after thoroughly washing the fibers with water, the enzyme immobilization rate was measured and found to be 91%.
It was hot. 100 g of a 2% glucose aqueous solution was added to the fibrous immobilized enzyme thus obtained, and the enzyme activity expression rate was determined from the rate of isomerization to fructose at 30°C, and was found to be 68%. Example 3 A copolymer of trimethyl-3-(1-methacrylamido-propyl) ammonium chloride and vinyl acetate was saponified to obtain a copolymer containing 3.5 mol% of trimethyl-3-(1-methacrylamido-propyl) ammonium chloride units. , a modified PVA with a degree of saponification of vinyl acetate units of 98.5 mol% and a 4% aqueous solution having a viscosity of 25CP at 20°C was synthesized. This degeneration
Using a 38% aqueous solution of PVA as a stock solution, 2-denier fibers were modified by dry spinning according to Example 1.
Got PVA. Add 1g of this fiber to phosphate buffer
50 g of an aqueous urease solution (containing 10,000 units) adjusted to pH 8 was added, and the mixture was shaken at 30° C. for 24 hours to carry out enzyme fixation. The immobilization rate of urease was 78%. 100 g of a 2% aqueous urea solution was added to the fibrous immobilized enzyme thus obtained, and the enzyme activity expression rate was determined from the rate of ammonia generation at 30°C, and was found to be 90%. Example 4 A copolymer of N-(3-dimethylaminopropyl)methacrylamide and vinyl acetate was saponified to contain 3 mol% of N-(3-dimethylaminopropyl)methacrylamide units, and a copolymer of vinyl acetate units was saponified. A modified PVA with a degree of oxidation of 97.0 mol% and a 4% aqueous solution having a viscosity of 30CP at 20°C was synthesized. This degeneration
A wet spinning method is performed in which a 16% aqueous solution of PVA is used as a stock solution, heated to 94°C, and extruded from a metal plate into a 35°C bow salt solution.The resulting fiber is stretched 8.5 times at 200°C, and then A 2-denier fibrous modified PVA was obtained by heat treatment at ℃. Inverdase aqueous solution adjusted to pH 6 with phosphate buffer to 1g of this fiber
100g (containing 10,000 units equivalent) was added and shaken at 30°C for 24 hours to carry out enzyme fixation. The immobilization rate of inverdase was 92%. 100 g of a 2% sucrose aqueous solution was added to the fibrous immobilized enzyme thus obtained, and the enzyme activity expression rate was determined from the conversion rate to glucose at 30°C, which showed an activity of 75%.

Claims (1)

【特許請求の範囲】 1 下記一般式()で示される共重合単位を含
む変性ポリビニルアルコールに酵素を吸着してな
る固定化酵素。 (ここで、R1は水素原子または低級アルキル
基、Bは【式】または【式】 R2,R3,R4は低級アルキル基(置換基を含んで
もよい)、Xはアンモニウム窒素と塩を形成する
陰性の基、AはB及びアミド基の窒素原子を連結
する基、をそれぞれ意味している。) 2 変性ポリビニルアルコールが繊維状をなして
いる特許請求の範囲第1項記載の固定化酵素。 3 酢酸ビニルと下記一般式(イ)で示される重合性
単量体との共重合体中の酢酸ビニル単位を部分的
にあるいは完全にケン化せしめて得た変性ポリビ
ニルアルコールを紡糸して繊維を形成させ、これ
を酵素水溶液中に浸漬して酵素を繊維状変性ポリ
ビニルアルコールに吸着させることを特徴とする
固定化酵素の製造方法。 (ここで、R1は水素原子または低級アルキル
基、Bは【式】または【式】 R2,R3,R4は低級アルキル基(置換基を含んで
もよい)、Xはアンモニウム窒素と塩を形成する
陰性の基、AはB中の窒素原子とアミド基中の窒
素原子を連結する基、をそれぞれ意味してい
る。)
[Scope of Claims] 1. An immobilized enzyme obtained by adsorbing an enzyme to modified polyvinyl alcohol containing a copolymerized unit represented by the following general formula (). (Here, R 1 is a hydrogen atom or a lower alkyl group, B is [Formula] or [Formula] R 2 , R 3 , R 4 are lower alkyl groups (which may contain substituents), X is ammonium nitrogen and salt (A means a group that connects B and the nitrogen atom of the amide group, respectively.) 2. The fixation according to claim 1, in which the modified polyvinyl alcohol is in the form of fibers. enzyme. 3. Modified polyvinyl alcohol obtained by partially or completely saponifying vinyl acetate units in a copolymer of vinyl acetate and a polymerizable monomer represented by the following general formula (A) is spun to make fibers. A method for producing an immobilized enzyme, which comprises forming an immobilized enzyme, and immersing the immobilized enzyme in an enzyme aqueous solution to adsorb the enzyme onto fibrous modified polyvinyl alcohol. (Here, R 1 is a hydrogen atom or a lower alkyl group, B is [Formula] or [Formula] R 2 , R 3 , R 4 are lower alkyl groups (which may contain substituents), X is ammonium nitrogen and salt (A means a group that connects the nitrogen atom in B and the nitrogen atom in the amide group, respectively.)
JP1445980A 1980-02-07 1980-02-07 Immobilized enzyme and its preparation Granted JPS56113290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1445980A JPS56113290A (en) 1980-02-07 1980-02-07 Immobilized enzyme and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1445980A JPS56113290A (en) 1980-02-07 1980-02-07 Immobilized enzyme and its preparation

Publications (2)

Publication Number Publication Date
JPS56113290A JPS56113290A (en) 1981-09-07
JPS6217517B2 true JPS6217517B2 (en) 1987-04-17

Family

ID=11861625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1445980A Granted JPS56113290A (en) 1980-02-07 1980-02-07 Immobilized enzyme and its preparation

Country Status (1)

Country Link
JP (1) JPS56113290A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269493A (en) * 1988-04-22 1989-10-26 Kyoritsu Yuki Co Ltd Immobilization of enzyme
JP2014212800A (en) * 2013-04-22 2014-11-17 日東電工株式会社 Gas phase decomposition body, gas phase decomposition unit, gas phase purifying method, and method for producing gas phase decomposition body

Also Published As

Publication number Publication date
JPS56113290A (en) 1981-09-07

Similar Documents

Publication Publication Date Title
US4141857A (en) Support matrices for immobilized enzymes
GB2090601A (en) Process for producing an acrylonitrile type polymer containing amino groups
JP2009148276A (en) Highly volumetric method for separating, purifying, concentrating, fixing and synthesizing compound, and use based on the same
NZ208287A (en) Copolymers of(meth)acrylamide derivatives and their use in binding biologically active substances
JPS6217517B2 (en)
US6149994A (en) Polymerisable polyamide derivatives
EP1352957A1 (en) Carriers for covalent immobilization of enzymes
JP4149098B2 (en) Process for producing water-swellable medical polymer gel and water-swellable medical polymer gel
JPS6217518B2 (en)
CN110551353A (en) large-volume and non-breakable crystal glue material and preparation method and application thereof
WO2011051145A1 (en) Enzyme-functionalized supports
JPS584914B2 (en) Support matrix for enzyme immobilization
JPH02242833A (en) Porous polyacrylonitrile composition and its preparation and application
JPS6217519B2 (en)
US6383584B2 (en) Azlactone-derivatized polyamides
SU1572418A3 (en) Method of obtaining immobilizing cholinesterase
JPH0343076A (en) Cell cultivation carrier
JPS59198976A (en) Fiber for immobilizing cell bodies and its production
JPH0363354B2 (en)
JPS63209588A (en) Production of immobilized enzyme
JP2008530280A (en) Macroporous plastic pearl material
JP2745327B2 (en) Adsorbent for α-cyclodextrin and its use
JP2660649B2 (en) Method for producing enzyme-immobilizing carrier
JP2795281B2 (en) Immobilized enzyme
JPS58152486A (en) Method for enzymic reaction