JPS6217483B2 - - Google Patents

Info

Publication number
JPS6217483B2
JPS6217483B2 JP2075679A JP2075679A JPS6217483B2 JP S6217483 B2 JPS6217483 B2 JP S6217483B2 JP 2075679 A JP2075679 A JP 2075679A JP 2075679 A JP2075679 A JP 2075679A JP S6217483 B2 JPS6217483 B2 JP S6217483B2
Authority
JP
Japan
Prior art keywords
sensor
control
cutting height
grain
supply adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2075679A
Other languages
Japanese (ja)
Other versions
JPS55114220A (en
Inventor
Nobumasa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki Agricultural Machinery Mfg Co Ltd
Priority to JP2075679A priority Critical patent/JPS55114220A/en
Publication of JPS55114220A publication Critical patent/JPS55114220A/en
Publication of JPS6217483B2 publication Critical patent/JPS6217483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)

Description

【発明の詳細な説明】 本発明は、稲,麦等の各種穀稈に対する刈取り
および脱穀を自動的に行なうコンバインにおける
扱ぎ深さを、自動的に制御する方式に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system for automatically controlling the handling depth of a combine harvester that automatically reaps and threshes various grain culms such as rice and wheat.

近来、我国の小規模農業に適合する小形のコン
バインが開発され、次第に汎用化されつゝある
が、一般につぎの様な構造が用いられている。
Recently, small-sized combine harvesters suitable for small-scale agriculture in Japan have been developed and are gradually being used for general use, but the following structures are generally used.

すなわち、第1図はかゝるコンバインの刈取り
乃至脱穀を行なう部分を主体として示す概略平面
図であり、捧状の分草稈1a〜1eにより支持さ
れた分草体2a〜2eが前方へ突出して固定され
ており、コンバインの前進に伴ない分草体2a〜
2eにより押分けられた穀稈が分草稈1a〜1e
に沿つてコンバインの直前へ至り、コンバインの
直前下方に設けたバリカン状の刈取り部3により
刈取られたうえ、チエーン状の穀稈搬送装置4に
よつてコンバインの上方へ運ばれ、別途に設けた
穀稈搬送チエーン5へ供給された後、その回転移
動により脱穀部6内へ挿入され、一般の脱穀機と
同様の回転扱ぎ胴7により穂が脱穀されるものと
なつている。
That is, FIG. 1 is a schematic plan view mainly showing the part of such a combine harvester that performs reaping and threshing. It is fixed, and as the combine moves forward, the weeding body 2a ~
Grain culms pushed apart by 2e are separated culms 1a to 1e.
The grain is harvested by a clipper-like reaping section 3 installed just below the combine, and transported above the combine by a chain-like culm conveying device 4. After being supplied to the grain conveying chain 5, the grain is inserted into a threshing section 6 by its rotational movement, and the ears are threshed by a rotating handling cylinder 7 similar to a general threshing machine.

なお、脱穀の際、扱ぎ胴7に対する穂の相対関
係が深過ぎた場合、または浅過ぎた場合、いずれ
も完全な脱穀がなされないため、これを防止する
目的上脱穀部6の入口近傍へ穂先センサSFS、穂
元センサSFDを設け、穂の先端と付根とを検出
し、この検出状況に応じて詳細を後述する供給調
節部8を制御のうえ、穀稈搬送チエーン5に対す
る穀稈の供給状況を調節している。
In addition, when threshing, if the relative relationship of the ears to the handling barrel 7 is too deep or too shallow, complete threshing will not be achieved. A spike sensor SFS and a spike sensor SFD are provided to detect the tip and root of the spike, and depending on the detection situation, the feed adjustment unit 8, which will be described in detail later, is controlled, and the grain culm is supplied to the grain culm conveyance chain 5. adjusting the situation.

また、脱穀部6への穀稈供給有無を検出するた
め、穀稈センサSFFが穂先センサSFSおよび穂元
センサSFDと同列上に設けてあると共に分草稈
1a〜1c間の刈取つた穀稈を穀稈搬送装置4へ
渡すために、同装置4と同様の副穀稈搬送装置9
が設けてある。なお、10,11は各穀稈搬送装
置4,9へ穀稈を掻き寄せるための突起を設けた
回転輪である。
In addition, in order to detect the presence or absence of grain culm supply to the threshing unit 6, a grain culm sensor SFF is provided on the same line as the ear tip sensor SFS and the ear head sensor SFD. In order to transfer the grain to the grain culm transport device 4, an auxiliary grain culm transport device 9 similar to the grain culm transport device 4 is provided.
is provided. Incidentally, reference numerals 10 and 11 are rotary wheels provided with protrusions for raking grain culms toward the respective grain culm conveying devices 4 and 9.

第2図は穀稈搬送装置4と供給調節部8との詳
細を示し、Aは平面図、Bは側面図であり、穀稈
搬送装置4のチエーン21と供給調節部8のチエ
ーン22とはプーリ23〜26へ各々が張架さ
れ、プーリ23〜26の回転に伴ない矢印方向へ
それぞれが移動するものとなつており、刈取つた
穀稈の根本を挾持するため各チエーン21と22
とに対向してスプリングによりチエーン21,2
2へ押圧された挾持稈27〜29が設けてある。
FIG. 2 shows details of the grain culm conveyance device 4 and the supply adjustment section 8, A is a plan view, B is a side view, and the chain 21 of the grain culm conveyance device 4 and the chain 22 of the supply adjustment section 8 are Each of the chains 21 and 22 is stretched around pulleys 23 to 26, and moves in the direction of the arrow as the pulleys 23 to 26 rotate.
Chains 21 and 2 are connected by springs opposite to
2 are provided with clamping culms 27-29 pressed against each other.

また、供給調節部8は、その支持台30の軸3
1が軸受32により回動自在に軸支されており、
油圧シリンダ33のロツド34が出入するに伴な
い、軸31を中心として矢印で示すとおりに回動
する。
Further, the supply adjustment section 8 is connected to the shaft 3 of the support base 30.
1 is rotatably supported by a bearing 32,
As the rod 34 of the hydraulic cylinder 33 moves in and out, it rotates about the shaft 31 as shown by the arrow.

なお、穀稈搬送装置4のプーリ23側でチエー
ン21と挾持稈27とにより挾持された穀稈は、
挾持稈27の供給調節部8側端部で開放される
が、供給調節部8のチエーン22と挾持稈29と
により挾持されて受取られ、プーリ26側へ至つ
てから、再び穀稈搬送装置4のチエーン21と挾
持稈28とへ渡されるものとなつている。
Note that the grain culm held by the chain 21 and the clamping culm 27 on the pulley 23 side of the grain culm conveying device 4 is
The grain culm 27 is opened at the end on the side of the supply adjustment section 8, but is received while being clamped by the chain 22 of the supply adjustment section 8 and the grain culm 29, and after reaching the pulley 26 side, it is transferred again to the grain culm conveying device 4. It is intended to be passed to the chain 21 and the clamping culm 28.

したがつて、油圧シリンダ33の駆動により供
給調節部8が第3図Aのとおり、穀稈搬送装置4
と平行な状態になれば、矢印方向へ搬送される穀
稈41A〜41Dが、チエーン21により挾持さ
れる部位をほゞ変えることなく、供給調節部8に
おいて受渡しが行なわれ、チエーン21を基準と
した穂先までの長さL1が一定のまゝ穀稈搬送装
置4から送出され、第1図の穀稈搬送チエーン5
へ供給される。
Therefore, as shown in FIG.
When the grain culms 41A to 41D being conveyed in the direction of the arrow are delivered in the supply adjustment section 8 without changing the part held by the chain 21, the grain stems 41A to 41D conveyed in the direction of the arrow are delivered in the supply adjustment section 8, and The grain culm is sent out from the grain conveying device 4 with the length L 1 to the tip of the grain kept constant, and is transferred to the grain culm conveying chain 5 in Fig. 1.
supplied to

これに対し、第3図Bの状態に供給調節部8が
傾斜すると、供給調節部8から挾持稈28への受
渡しに際し、穀稈41Cの中間部が挾持稈28と
チエーン21とにより挾持されるため、長さL1
がこゝにおいてL2へ減少し、短い穀稈長L2の穀
稈41Dとなつてから第1図の穀稈搬送チエーン
5へ供給される。
On the other hand, when the feed adjustment section 8 is tilted to the state shown in FIG. Therefore, length L 1
Here, the grain culm is reduced to L 2 and becomes a grain culm 41D with a short grain culm length L 2 , which is then supplied to the grain culm conveying chain 5 in FIG.

すなわち、第3図Aの状態で穀稈搬送チエーン
5へ供給されたうえ、脱穀部6へ挿入されゝば、
穂が奥まで挿入される深扱ぎとなるのに対し、第
3図Bの状態では、穂が奥へ挿入されない浅扱ぎ
となり、刈取つた穀稈41Aの長さL1に応じ
て、第2図Bの油圧シリンダ33により供給調節
部8の傾斜を加減すれば、脱穀部6へ挿入される
穂先の深浅が制御され、適正な脱穀を行なうこと
ができる。
That is, if the grain is supplied to the grain conveying chain 5 in the state shown in FIG. 3A and then inserted into the threshing section 6,
In the state shown in Fig. 3B, the ear is treated shallowly, where the ear is inserted all the way to the back, and the grain is treated shallowly, and depending on the length L 1 of the harvested grain culm 41A, By adjusting the inclination of the supply adjusting section 8 using the hydraulic cylinder 33 shown in FIG. 2B, the depth and shallowness of the ear tip inserted into the threshing section 6 can be controlled, and proper threshing can be performed.

なお、油圧シリンダ33を駆動するため、別途
に制御装置が設けてあり、穂先センサSFS乃至穀
稈センサSFFの検出々力に基づき、適正な扱ぎ
深さとなる様自動的な制御が行なわれている。
In addition, in order to drive the hydraulic cylinder 33, a control device is separately provided, and automatic control is performed to achieve an appropriate handling depth based on the detected force of the ear tip sensor SFS or grain culm sensor SFF. There is.

この制御装置は穀稈センサSFFのオンすなわ
ち脱穀部6に対する穀稈の供給開始を条件に起動
し、穂元センサSFDのオフすなわち穂が末だ穂
元センサSFDへ接触しないときには浅扱ぎと判
断し、電磁弁へ制御出力を与えて油圧シリンダ3
3のロツド34を伸張させ、第3図Aの状態へ供
給調節部8を制御するが、穂元センサSFDおよ
び穂元センサSFS両者のオンすなわち、穂が両セ
ンサSFD、SFSへ接触したときには深扱ぎと判断
し、他の電磁弁へ制御出力を与えてロツド34を
引込ませ、第3図Bの状態へ供給調節部8を制御
のうえ、穂先センサSFSがオフ、穂元センサSFD
がオンすなわち、穂が両センサSFS、SFDの中間
にある状態に保ち、穀稈の長さに応じた制御によ
り常に穂が両センサSFS、SFDの中間にある適正
な扱ぎ深さの状態を維持する。
This control device is activated on the condition that the grain culm sensor SFF is turned on, that is, the supply of grain culms to the threshing unit 6 is started, and when the ear head sensor SFD is turned off, that is, the ear does not contact the grain head sensor SFD, it is determined that the grain is being treated lightly. Then, a control output is given to the solenoid valve to control the hydraulic cylinder 3.
The rod 34 of No. 3 is extended and the feed adjustment unit 8 is controlled to the state shown in FIG. It is determined that the rod 34 is being handled properly, and a control output is given to the other solenoid valves to retract the rod 34, and the supply adjustment section 8 is controlled to the state shown in Fig. 3B, and the tip sensor SFS is turned off and the tip sensor SFD is turned off.
is on, that is, the ear is kept in a state between the two sensors SFS and SFD, and control according to the length of the grain culm ensures that the ear is always in a state of appropriate handling depth between the two sensors SFS and SFD. maintain.

しかし、刈取られる穀稈長は、圃場によつて大
幅に変動するため、供給調節部8の回動許容範囲
もこれに応じて設定されており、穀稈の成育不揃
等により刈取つた穀稈長が変化する際には、深扱
ぎ方向と浅扱ぎ方向との制御が反復してなされ、
回動許容範囲一杯の制御動作が行なわれる現象を
生じ、この様な場合には追従速度との関係等から
返つて穂の扱ぎ残しを生ずる欠点があつた。ま
た、穂先センサSFS、穂元センサSFDに対する穂
の接触状況によつては検出ミスを生じ、不必要な
制御動作により扱ぎ残しが発生する等の欠点も有
していた。
However, since the length of the grain culm to be harvested varies greatly depending on the field, the allowable rotation range of the supply adjustment unit 8 is also set accordingly. When changing, control is repeated in the deep direction and shallow direction,
A phenomenon occurs in which the control operation is carried out at the full rotational permissible range, and in such a case, there is a drawback that some ears are left untreated due to the relationship with the follow-up speed. In addition, detection errors may occur depending on the state of contact of the ear with the ear tip sensor SFS and the ear head sensor SFD, and there are also drawbacks such as unhandled items due to unnecessary control operations.

本発明は、従来のかゝる欠点を根本的に排除す
る目的を有し、供給調節部の調節状況を検出する
供給調節センサと、刈高さを検出する刈高さセン
サとを設け、一定区間の前進中における扱ぎ深さ
および刈高さを検出のうえ、これらによつて扱ぎ
深さの平均値を求め、一定区間の前進以降は平均
値を中心とし、かつ、刈高さセンサの検出々力に
基づく刈高さによつて制御範囲の許容値を定め、
この条件にしたがつて扱ぎ深さの制御を行なう、
極めて合理的かつ扱ぎ残しの絶対に発生しない、
コンバインの扱ぎ深さ制御方式を提供するもので
ある。
The present invention aims to fundamentally eliminate such drawbacks of the conventional art, and includes a supply adjustment sensor that detects the adjustment status of the supply adjustment section and a cutting height sensor that detects the cutting height. Detect the cutting depth and cutting height during the forward movement of the cutting height sensor, calculate the average value of the cutting depth from these, and use the average value as the center after a certain section of movement, and the cutting height sensor. The allowable value of the control range is determined by the cutting height based on the detected force,
The treatment depth is controlled according to this condition.
Extremely reasonable and absolutely no leftovers,
This provides a method for controlling the handling depth of a combine harvester.

以下、実施例を示す第4図以降により本発明の
詳細を説明する。
The details of the present invention will be explained below with reference to FIG. 4 and subsequent figures showing embodiments.

第4図は、穂先センサSFS乃至穀稈センサSFF
および後述の供給調節センサS1、刈高さセンサS2
等からの検出力に応じ、供給調節部8を制御する
ため、油圧シリンダ33に対する制御出力を生ず
る制御部CNTのブロツク図であり、主体となる
マイクロプロセツサ弁のプロセツサCPUと共
に、動作条件の命令を格納した第1メモリROM
および、この命令にしたがつてプロセツサCPU
が動作するとき各種データを一時的に格納する第
2メモリRAMが設けてあり、母線を介してこれ
ら相互間のデータ授受が行なわれるものとなつて
いる。
Figure 4 shows the ear tip sensor SFS to the grain culm sensor SFF.
and supply adjustment sensor S 1 and cutting height sensor S 2 described later.
This is a block diagram of a control unit CNT that generates a control output for the hydraulic cylinder 33 in order to control the supply adjustment unit 8 according to the detected force from the main unit, the processor CPU of the microprocessor valve that is the main body, and the control unit CNT that outputs commands for operating conditions. The first memory ROM stores
And, according to this instruction, the processor CPU
A second memory RAM is provided to temporarily store various data during operation, and data is exchanged between them via the bus.

また、穂先センサSFS乃至穀稈センサSFFの検
出々力および供給調節センサS1、刈高さセンサS2
からの検出々力は、入力回路IFにおいて波形整
形、レベル合せ等を行なつたうえ入力となり、入
出力回路PIAを介して母線へ与えられるが、油圧
シリンダ33を駆動するための電磁弁MV1,MV2
に対する制御出力は、入出力回路PIAおよびドラ
イバDRを経て送出される。
In addition, the detection force and supply adjustment sensor S 1 of the ear tip sensor SFS to the grain culm sensor SFF, and the cutting height sensor S 2
The detected force from the input circuit IF undergoes waveform shaping, level matching, etc., and then becomes an input, and is applied to the bus line via the input/output circuit PIA . , MV 2
The control output for is sent via the input/output circuit PIA and driver DR.

プロセツサCPUは、穀稈センサSFFのオンす
なわち、脱穀部6に対する穀稈の供給開始を条件
に起動し、穂元センサSFDのオフすなわち穂が
末だ穂元センサSFDへ接触しないときには浅扱
ぎと判断し、電磁弁MV1へ制御出力を与えて油圧
シリンダ33のロツド34を伸張させ、第3図A
の状態へ供給調節部8を制御するか、穂元センサ
SFDおよび穂先センサSFS両者のオンすなわち、
穂が両センサSFD、SFSへ接触したときには深扱
ぎと判断し、電磁弁MV2へ制御出力を与えてロツ
ド34を引込ませ、第3図Bの状態へ供給調節部
8を制御のうえ、穂先センサSFSがオフ、穂元セ
ンサSFDがオンすなわち、穂が両センサSFS、
SFDの中間にある状態に保ち、穀稈の長さに応
じた制御により常に穂が両センサSFS、SFDの中
間にある適正な扱ぎ深さの状態を維持する。な
お、以上の制御動作は従来のものと同様である。
The processor CPU is activated on the condition that the grain culm sensor SFF is turned on, that is, the supply of grain culms to the threshing unit 6 is started, and when the ear head sensor SFD is turned off, that is, when the grain does not come into contact with the grain head sensor SFD, it is treated as shallow handling. Then, a control output is given to the solenoid valve MV 1 to extend the rod 34 of the hydraulic cylinder 33, and as shown in FIG.
Either control the supply adjustment unit 8 to the state of
Both SFD and tip sensor SFS are turned on, i.e.
When the ears come into contact with both sensors SFD and SFS, it is determined that the handling is too serious, and a control output is given to the solenoid valve MV 2 to retract the rod 34, and after controlling the supply adjustment part 8 to the state shown in Fig. 3B, The tip sensor SFS is off, the tip sensor SFD is on, that is, both sensors SFS and
The grain is kept in the middle of the SFD, and the control according to the length of the grain culm keeps the ears at the appropriate handling depth, which is in the middle of both the sensors SFS and SFD. Note that the above control operation is the same as that of the conventional one.

一方、供給調節センサS1は第2図Bに示すとお
り、支持台30の軸31と連結されており、供給
調節部8の回動角度を電気信号へ変換し、第4図
の入力回路IFへ与えるものとなつている。
On the other hand, the supply adjustment sensor S 1 is connected to the shaft 31 of the support base 30, as shown in FIG. It has become something to give to people.

すなわち、供給調節センサS1としては、相対向
して設けた発光ダイオード等の発光素子とフオ
ト・トランジスタ等の受光素子との組み合せを複
数組配設のうえ、符号状に穿設した透孔を有する
回転多孔円板により、発光素子と受光素子との間
の光路を断続するものが好適であり、回転多孔円
板の回動角度に応じた各受光素子の出力を所定ビ
ツト数の符号化信号として用いている。
That is, the supply adjustment sensor S 1 includes a plurality of combinations of light emitting elements such as light emitting diodes and light receiving elements such as photo transistors, which are arranged facing each other, and through holes drilled in a code shape. It is preferable that the optical path between the light emitting element and the light receiving element is interrupted by a rotating porous disk having a rotating porous disk, and the output of each light receiving element according to the rotation angle of the rotating porous disk is converted into an encoded signal of a predetermined number of bits. It is used as

したがつて、供給調節センサS1の検出々力によ
り、供給調節部8の調節状況に基づいて決定され
た穀稈搬送チエーン5へ供給される穀稈長が求め
られ、これにしたがつて、脱穀部6における扱ぎ
深さも検出できることになる。
Therefore, the length of the grain culm to be supplied to the grain conveying chain 5 is determined based on the adjustment status of the supply adjustment section 8 based on the detected force of the supply adjustment sensor S1, and the length of the grain culm to be supplied to the grain culm conveyance chain 5 is determined based on the adjustment status of the supply adjustment section 8. The handling depth in section 6 can also be detected.

第5図は、刈高さセンサS2の取付状況を示すコ
ンバイン先端部の側面図であり、分草稈1、分草
体2、刈取り部3、穀稈搬送装置4および倒状穀
稈引起し用の移動突起を有する引起し装置51等
を包括して支持するアーム52は、その上端が回
動自在に軸支されており、アーム52の下端部近
傍における軸受53と本体へ固定された軸受54
との間には、回転軸55,56を介して支持アー
ム57が張架され、油圧シリンダ58のロツド5
9が伸縮すると、支持アーム57の回動に伴なつ
てアーム52も回動するため、先端部全体が矢印
のとおり上下するものとなつている。
FIG. 5 is a side view of the tip of the combine showing how the cutting height sensor S2 is installed, and shows the cutting culm 1, cutting body 2, reaping part 3, grain culm conveying device 4, and inverted grain culm raising. The arm 52 that includes and supports the lifting device 51 and the like having a movable protrusion is rotatably supported at its upper end, and includes a bearing 53 near the lower end of the arm 52 and a bearing fixed to the main body. 54
A support arm 57 is stretched between the rotary shafts 55 and 56, and the rod 5 of the hydraulic cylinder 58
When the arm 9 expands and contracts, the arm 52 also rotates as the support arm 57 rotates, so that the entire tip moves up and down as shown by the arrow.

したがつて、油圧シリンダ58の駆動により刈
取り部3も上下し、これによつて穀稈60に対す
る刈取り高さが調節され、軸56は支持アーム5
7へ固定されているため、その回動角度を刈高さ
センサS2により電気信号へ変換すれば、刈高さを
検出することができる。なお、刈高さセンサS2
しては、上述の供給調節センサS1と同様なものが
好適である。
Therefore, the reaping unit 3 also moves up and down by the drive of the hydraulic cylinder 58, thereby adjusting the reaping height relative to the grain culm 60, and the shaft 56 is connected to the support arm 5.
7, the cutting height can be detected by converting the rotation angle into an electrical signal using the cutting height sensor S2 . Note that, as the cutting height sensor S2 , a sensor similar to the above-mentioned supply adjustment sensor S1 is suitable.

第6図は、前述の供給調節センサS1および刈高
さセンサS2の検出々力に基づく本発明の制御動作
を示すフローチヤートであり、あらかじめ、同図
に示す動作を指示する命令が第4図の第1メモリ
ROMへ格納されており、これにしたがつてプロ
セツサCPUが演算および制御動作を行なうもの
となつている。
FIG. 6 is a flowchart showing the control operation of the present invention based on the detected forces of the above-mentioned supply adjustment sensor S 1 and cutting height sensor S 2 . 1st memory in Figure 4
The data is stored in the ROM, and the processor CPU performs arithmetic and control operations accordingly.

第5図のとおり、コンバインの前進に伴ない穀
稈の刈取りが“開始”されると、穀稈センサ
SFFがオンとなり、“SFF ON”を前提に一定距
離または一定時間等の“一定区間刈取”が行なわ
れ、上述の制御動作にしたがつて扱ぎ深さの自動
制御がなされると共に、“一定区間終了”までの
間に、供給調節センサS1からの検出々力d1〜do
および刈高さセンサS2からの検出々力h1〜ho
逐次第2メモリRAMへ格納される。
As shown in Figure 5, when the harvesting of the grain culm begins as the combine moves forward, the grain culm sensor
The SFF is turned on, and with SFF ON, ``certain area cutting'' is performed for a certain distance or a certain period of time, and the cutting depth is automatically controlled according to the control operation described above. Until the end of the section, the detection force d 1 to d o from the supply adjustment sensor S 1
The detected forces h 1 to ho from the cutting height sensor S 2 are sequentially stored in the second memory RAM.

“一定区間終了”に伴ないプロセツサCPUは
“d1+d2…do=D0”および“h1+h2+…ho
H0”の加算を行ない、“n回加算したか”の判断
がYESとなれば、第2メモリRAMにおける所定
アドレス“MS=0”すなわち、その内容がクリ
ヤされていることを前提として“(D0+H0)/n
=m0”の演算を行ない、検出々力d1〜doとh1
oとの和の平均値m0を求めたうえ、“m0 or m1
→MS”により平均値m0を所定アドレスMSへ格
納する。
Upon “end of a certain period”, the processor CPU calculates “d 1 + d 2 …d o = D 0 ” and “h 1 + h 2 + … h o =
H0 '' is added, and if the judgment as to whether it has been added n times is YES, then the predetermined address in the second memory RAM is M S =0, that is, assuming that its contents have been cleared. (D 0 +H 0 )/n
= m 0 ”, and the detection power d 1 ~d o and h 1 ~
After finding the average value m 0 of the sum with h o , “m 0 or m 1
→M S ”, the average value m 0 is stored at a predetermined address M S .

すなわち、以上により“一定区間刈取”の前進
中における扱ぎ深さと刈高さとの和の平均値が
m0として求められたことになる。
In other words, as a result of the above, the average value of the sum of the cutting depth and cutting height during the forward movement of "fixed section cutting" is
It was found as m 0 .

ついで、穀稈センサ“SFF ON”および所定
アドレス“MS≠0”すなわち内容として平均値
m0が格納されていることをチエツクのうえ、所
定アドレス“MSの内容すなわちm0を中心とし、
かつ、一定区間前進以降における刈高さセンサS2
からの検出々力ho+1を制御範囲の許容値として
“MSの内容±hh+1により扱ぎ深さ制御”が行な
われる。
Next, the grain culm sensor "SFF ON" and the predetermined address "M S ≠ 0", that is, the average value as the content.
After checking that m 0 is stored, the content of the predetermined address “M S , that is, m 0 is the center,
And the cutting height sensor S 2 after a certain section of forward movement
``Depth control based on the contents of M S ±h h+ 1'' is performed by using the detected force h o+ 1 from h o+1 as the allowable value of the control range.

以上の制御動作により、不必要な範囲までの扱
ぎ深さ制御が排除されると共に、穂先センサ
SFS、穂元センサSFDの検出ミスによる誤制御も
刈高さを基準とした許容値内へ止められ、穀稈の
刈取り高さに応じた穀稈長にしたがつた扱ぎ深さ
制御がなされ、扱ぎ残しの発生が完全に阻止され
る。たゞし、第6図のとおり、平均値の更新機能
を付加すれば、より確実なものとなる。
The above control operation eliminates handling depth control to an unnecessary extent, and also
Erroneous control due to detection errors of the SFS and head sensor SFD is also stopped within the permissible value based on the cutting height, and the handling depth is controlled according to the grain culm length according to the cutting height of the grain culm. The occurrence of unhandled items is completely prevented. However, as shown in FIG. 6, if a function for updating the average value is added, it becomes more reliable.

すなわち、同図において、“MS=0”がNOす
なわちすでに平均値m0が所定アドレスMSへ格納
されているときは、“一定区間終了”以降の前進
における供給調節センサS1の検出々力do+1およ
び刈高さセンサS2の検出々力ho+1をD0+do+1
D1、H0+ho+1=H1”により加算し、これを
“(D1+H1)/(n+1)=m1”において新らたな
平均値m1として求めたうえ、“m0 or m1→MS
により所定アドレスMSの内容を更新し、今度は
新らたな平均値m1を格納した所定アドレス“MS
の内容を中心として扱ぎ深さ制御”を±ho+1
範囲内で行なう。
That is, in the same figure, when "M S = 0" is NO, that is, when the average value m 0 has already been stored in the predetermined address M S , the detections of the supply adjustment sensor S 1 in the forward movement after "end of certain section" The force d o+1 and the detected force h o+1 of the cutting height sensor S 2 are expressed as D 0 +d o+1 =
D 1 , H 0 +ho +1 = H 1 ”, this is calculated as a new average value m 1 at “(D 1 + H 1 )/(n+1) = m 1 ”, and “m 0 or m 1MS
The contents of the predetermined address M S are updated, and the predetermined address “M S
The processing depth control is performed within the range of ±h o+1 , focusing on the contents of .

なお、“n回加算したか”の結果がNOであり、
“SFF ON”もNOであれば、穀稈が刈取られてい
ないことであり、最初からの動作を反復するが、
“SFF ON”がYESであれば、n回の加算が未了
のため“d1+d2+…do=D0、h1+h2+…ho
H0”へ戻り、n回の加算が終了するまでこれを
反復する。
Note that the result of “Did it add n times?” is NO,
If “SFF ON” is also NO, it means that the grain culm has not been harvested, and the operation from the beginning is repeated, but
If "SFF ON" is YES, n additions have not been completed, so "d 1 + d 2 +...d o = D 0 , h 1 + h 2 +... h o =
H 0 ” and repeat this until n additions are completed.

また、“m0 or m1→MSのつぎの“SFF ON”
がNOのときは穀稈の刈取りが中断したことであ
り、“d1+d2+…do=D0、h1+h2+…ho=H0
へ戻り、平均値m0またはm1の演算が再度やり直
しされる。
Also, “m 0 or m 1 → “SFF ON” after M S
When is NO, it means that the reaping of the grain culm has been interrupted, and "d 1 + d 2 +...d o = D 0 , h 1 + h 2 +... h o = H 0 "
The calculation of the average value m 0 or m 1 is performed again.

したがつて、平均値の更新によれば、穀稈の成
育状況、圃場の凹凸等によつて変化する穀稈長に
応じ、扱ぎ深さ制御の中心値が円滑に更新される
ため、実情に即した扱ぎ深さ制御が確実に行なわ
れる。
Therefore, by updating the average value, the central value for handling depth control is updated smoothly in accordance with the grain culm growth condition, the unevenness of the field, etc. This ensures that the processing depth is properly controlled.

このほか、第4図に示す制御部CNTとしては
プロセツサCPUを用いず、各種論理回路の組み
合せにより専用の制御回路を構成のうえ用いても
よく、供給調節センサS1および刈高さセンサS2
しても種々のものが用いられる等、本発明の構成
は条件に応じ任意の変形が可能である。
In addition, as the control unit CNT shown in FIG. 4, a dedicated control circuit may be configured and used by combining various logic circuits without using the processor CPU, and the supply adjustment sensor S 1 and the cutting height sensor S 2 may be used. The configuration of the present invention can be arbitrarily modified depending on the conditions, such as using various types.

以上の説明により明らかなとおり本発明によれ
ば、刈取り高さおよび刈取つた穀稈長の平均値を
中心として扱ぎ深さ制御がなされ、その制御範囲
が刈高さにより制約されるため、扱ぎ深さの大幅
な変動がなくなり、扱ぎ残しの発生を完全に阻止
することができる。したがつて、各種穀稈の刈取
りおよび脱穀を自動的におこなうコンバインにお
いて脱穀率の向上等多大の効果を得ることができ
る。
As is clear from the above explanation, according to the present invention, the handling depth is controlled based on the average value of the reaping height and the reaped grain culm length, and the control range is restricted by the reaping height. There is no significant variation in depth, and the occurrence of untreated material can be completely prevented. Therefore, in a combine harvester that automatically reaps and threshes various grain culms, great effects such as an improvement in the threshing rate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコンバインの概略平面図、第2図は穀
稈搬送装置と供給調節部との詳細を示し、Aは平
面図、Bは側面図、第3図は供給調節部の動作を
示す側面図、第4図は制御部のブロツク図、第5
図は刈高さセンサの取付状況を示す図、第6図は
制御動作を示すフローチヤートである。 CNT…制御部、CPU…プロセツサ、ROM…第
1メモリ、RAM…第2メモリ、S1…供給調節セ
ンサ、S2…刈高さセンサ、MV1,MV2…電磁弁、
3…刈取り部、6…脱穀部、8…供給調節部、2
2…チエーン、25,26…プーリ、29…挾持
稈、30…支持台、31,55,56…軸、3
2,53,54…軸受、33,58…油圧シリン
ダ、34,59…ロツド、52…アーム、57…
支持アーム。
Fig. 1 is a schematic plan view of the combine harvester, Fig. 2 shows details of the grain culm conveying device and the feed adjustment section, A is a plan view, B is a side view, and Fig. 3 is a side view showing the operation of the feed adjustment section. Figure 4 is a block diagram of the control section, and Figure 5 is a block diagram of the control section.
The figure shows how the cutting height sensor is installed, and FIG. 6 is a flowchart showing the control operation. CNT...Control unit, CPU...Processor, ROM...First memory, RAM...Second memory, S1 ...Supply adjustment sensor, S2 ...Mowing height sensor, MV1 , MV2 ...Solenoid valve,
3... Reaping section, 6... Threshing section, 8... Supply adjustment section, 2
2... Chain, 25, 26... Pulley, 29... Clamping culm, 30... Support stand, 31, 55, 56... Shaft, 3
2,53,54...Bearing, 33,58...Hydraulic cylinder, 34,59...Rod, 52...Arm, 57...
support arm.

Claims (1)

【特許請求の範囲】[Claims] 1 前進に伴ない穀稈の刈取りおよび脱穀を自動
的に行なうコンバインにおいて、刈取つた穀稈を
脱穀部へ供給する際に扱ぎ深さの調節を行なう供
給調節部の調節状況を検出する供給調節センサ
と、前記刈取りを行なう際の刈高さを検出する刈
高さセンサと、該刈高さセンサおよび前記供給調
節センサの検出々力を演算し前記供給調節部を制
御する制御出力を生ずる制御部とを設け、一定区
間の前進中における前記刈高さセンサおよび供給
調節センサの検出々力から前記扱ぎ深さの平均値
を求め、該平均値を前記扱ぎ深さ制御の中心と
し、かつ、前記一定区間以降は、前記刈高さセン
サの検出々力に基づき前記扱ぎ深さ制御の中心に
対する制御範囲の許容値を定めることを特徴とす
るコンバインの扱ぎ深さ制御方式。
1. In a combine harvester that automatically reaps and threshes grain culms as it moves forward, a feed adjustment system that detects the adjustment status of the supply adjustment section that adjusts the handling depth when feeding the harvested grain culms to the threshing section. a sensor, a cutting height sensor that detects the cutting height during the cutting, and a control that calculates the detected forces of the cutting height sensor and the supply adjustment sensor and generates a control output that controls the supply adjustment section. and determining an average value of the handling depth from the detected forces of the cutting height sensor and the supply adjustment sensor during forward movement in a certain section, and using the average value as the center of the handling depth control, In addition, after the certain period, an allowable value of a control range with respect to the center of the handling depth control is determined based on the detected force of the cutting height sensor.
JP2075679A 1979-02-26 1979-02-26 Threshing depth control system of combined harvester Granted JPS55114220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075679A JPS55114220A (en) 1979-02-26 1979-02-26 Threshing depth control system of combined harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075679A JPS55114220A (en) 1979-02-26 1979-02-26 Threshing depth control system of combined harvester

Publications (2)

Publication Number Publication Date
JPS55114220A JPS55114220A (en) 1980-09-03
JPS6217483B2 true JPS6217483B2 (en) 1987-04-17

Family

ID=12036025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075679A Granted JPS55114220A (en) 1979-02-26 1979-02-26 Threshing depth control system of combined harvester

Country Status (1)

Country Link
JP (1) JPS55114220A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432917Y2 (en) * 1985-04-04 1992-08-07
JPS62164736U (en) * 1986-04-11 1987-10-20
JPH0510578Y2 (en) * 1986-07-29 1993-03-16

Also Published As

Publication number Publication date
JPS55114220A (en) 1980-09-03

Similar Documents

Publication Publication Date Title
JPS6217483B2 (en)
JPH10262437A (en) Threshing depth adjusting device of combine or the like
JPS6239968B2 (en)
JPS5851725B2 (en) reaping harvester
JP3053054B2 (en) Combine depth adjustment structure
JPS6219149Y2 (en)
JP3457713B2 (en) Combine
JP3516605B2 (en) Combine
JPS6227082Y2 (en)
JPS598506Y2 (en) combine
JPH114618A (en) Combine harvester provided with high level cutting control
JP2904658B2 (en) Control device for mobile agricultural machine
JPH02117303A (en) Control device of pretreating device of reaping in combine
JP3707193B2 (en) Combine
JPS6115606A (en) Steering controller of moving harvester
JPS6349160Y2 (en)
JPS6242564B2 (en)
JPH0247Y2 (en)
JP3674237B2 (en) Combine control device
JP3332778B2 (en) Pre-processing unit structure of combine
JP3356954B2 (en) Pre-processing unit structure of combine
JPH0434668Y2 (en)
JPS5844329B2 (en) Automatic handling depth control device for combine harvesters
JPH10150831A (en) Automatic threshing depth controller for combine
JP2001251922A (en) Combine harvester