JPS62174708A - Optical waveguide and its production - Google Patents

Optical waveguide and its production

Info

Publication number
JPS62174708A
JPS62174708A JP1575686A JP1575686A JPS62174708A JP S62174708 A JPS62174708 A JP S62174708A JP 1575686 A JP1575686 A JP 1575686A JP 1575686 A JP1575686 A JP 1575686A JP S62174708 A JPS62174708 A JP S62174708A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
waveguide
light propagation
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1575686A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1575686A priority Critical patent/JPS62174708A/en
Publication of JPS62174708A publication Critical patent/JPS62174708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide of a low loss by having projecting parts to limit a light propagation region on a substrate and providing a core layer and clad layer to the upper part thereof. CONSTITUTION:The substrate 1' having a flat surface is prepd. and the waveguide part is covered by, for example, a photoresist 5. The part except the waveguide part is etched and thereafter, the resist is removed to form the substrate 1 having the projecting parts which are the optical waveguide part. The clad layer 2, core layer 3 and clad layer 4 are successively deposited on such substrate 1 and the substrate is cut out by which the optical waveguide is obtd. A quartz or silicon substrate is used for the substrate 1. The projecting parts which are the light propagation region are formed on the substrate 1 by cutting the part except the light propagation region to a groove shape by etching or the like. Known methods such as, for example, thermal CVD method and flame hydrolysis deposition method are used as the method for successively depositing the clad layers and core layers on the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信システム、光情報処理システム等におい
て有用な光学部品、特に平面光導波路の簡単で量産性の
点でも有利な製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a manufacturing method for optical components useful in optical communication systems, optical information processing systems, etc., particularly planar optical waveguides, which is simple and advantageous in terms of mass production. It is.

〔従来の技術〕[Conventional technology]

従来の光部品は、プリズム、レンズ等の微小光学部品か
らなり、光軸合せ、組立が困燻であった。これらの繁雑
さを解決するために平面上に導波路を作成し、光の合、
分波、変調素子を要素とする種々の導波路が提案されて
きた。光導波路に用いられる材料には、例えば半導体、
誘電体、ガラス、高分子材料等がある。これらの材料に
より光導波路を作成するには、通常第4図に模式的に示
すようなプロセスによる。すなわち、表面平担な基板1
′上にクラツド?tJ2、コア層5を順次堆積する〔第
4図の(a)及び(b)工程〕。次にエツチングにより
コア層のパターン化を行う〔第4図の(C)工程〕。さ
らにクラッド層4を堆積する〔第4図の(d)工程〕。
Conventional optical components consist of microscopic optical components such as prisms and lenses, and alignment and assembly of optical axes are difficult. In order to solve these complications, we created a waveguide on a plane and combined the light,
Various waveguides including demultiplexing and modulation elements have been proposed. Materials used for optical waveguides include, for example, semiconductors,
There are dielectric materials, glass, polymer materials, etc. In order to create an optical waveguide using these materials, a process as schematically shown in FIG. 4 is generally used. That is, a substrate 1 with a flat surface
'Clad on top? tJ2, the core layer 5 is sequentially deposited [steps (a) and (b) in FIG. 4]. Next, the core layer is patterned by etching [step (C) in FIG. 4]. Furthermore, a cladding layer 4 is deposited [step (d) in FIG. 4].

以上によシ、平面導波路が作成される。Through the above steps, a planar waveguide is created.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したように従来法では、堆積→エツチング→堆積と
いった手順をふむために、工程が多く、基板の汚染によ
り、堆積した膜がはがれるトカ、エツチングの際のサイ
ドエツチングによりパターン幅の制御が難しいという問
題があった。
As mentioned above, the conventional method requires many steps as it involves the steps of deposition → etching → deposition, which causes problems such as the deposited film peeling off due to contamination of the substrate, and difficulty in controlling the pattern width due to side etching during etching. was there.

そこで、本発明の目的は、このような問題点を解消し、
簡単かつ量産性に富む光導波路およびその製造方法を提
供することにある。
Therefore, the purpose of the present invention is to solve such problems,
An object of the present invention is to provide an optical waveguide that is simple and easy to mass-produce, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はまず基板上に所望の導波パターンを凸型に残す
ようにエツチングにより形成した後、クラッド層、コア
層、クラッド層を連続して堆積することにより、上記し
た目的を達成するものである。
The present invention achieves the above object by first forming a desired waveguide pattern on a substrate by etching so as to leave it in a convex shape, and then successively depositing a cladding layer, a core layer, and a cladding layer. be.

すなわち本発明は基板に光伝搬領域を限定する凸部を有
し、その上部にコア層、クラッド層を有してなる光導波
路および、基板に光伝搬領域たる凸部を形成した後、コ
ア層、クラッド層を連続的に形成することを特徴とする
光導波路の製造方法に関する。
That is, the present invention provides an optical waveguide having a convex portion on a substrate that defines a light propagation region, and a core layer and a cladding layer on top of the convex portion, and after forming a convex portion serving as a light propagation region on the substrate, , relates to a method of manufacturing an optical waveguide characterized by continuously forming a cladding layer.

本発明の先導波路の1例を第1図に示す。光伝搬領域を
限定する凸部を有する基板1の上に、クラッド層2、コ
ア層3、クラッド層4が順次積層されたものである。
An example of the leading waveguide of the present invention is shown in FIG. A cladding layer 2, a core layer 3, and a cladding layer 4 are sequentially laminated on a substrate 1 having a convex portion that defines a light propagation region.

第1図のような構成の本発明の光導波路を形成する方法
の1例を、第2図に模式的に示す。
FIG. 2 schematically shows an example of a method for forming the optical waveguide of the present invention having the structure shown in FIG.

まず表面が平板状の基板1′を用意し〔第2図(a)工
程〕、例えばフォトレジスト5によシ光導波路部分をカ
バーし〔第2図(b)工程〕、光導波路部分以外の部分
をエツチングし、その後レジストを除去する等の手段で
光導波部分たる凸部を有する基板1を形成する〔第2図
(C)工程〕。次に該基板1上に、順次クラッド層2、
コア層3、クラッド層4を堆積し〔第2図(d)〜(f
)工程〕、これを切出すことにより、第1図の光導波路
を得る。
First, a substrate 1' having a flat surface is prepared [step (a) in FIG. 2], and the optical waveguide portion is covered with, for example, photoresist 5 [step (b) in FIG. 2]. A substrate 1 having a convex portion serving as an optical waveguide portion is formed by etching the portion and then removing the resist (Step (C) in FIG. 2). Next, on the substrate 1, a cladding layer 2,
A core layer 3 and a cladding layer 4 are deposited [Fig. 2(d) to (f)
) step], by cutting out this, the optical waveguide shown in FIG. 1 is obtained.

本発明において用いる基板としては、通常の石英又はシ
リコン基板でよく、特に制限されるところはない。
The substrate used in the present invention may be an ordinary quartz or silicon substrate, and is not particularly limited.

基板上に光伝搬領域となる凸部を形成するには、上述の
ように光伝搬領域以外を溝状に削除すればよく、エツチ
ング例えば反応性イオンエツチング、イオンビームエツ
チング等のドライエツチングやウェットエツチング、レ
ーザ加工、超音波加工等によればよい。
In order to form a convex portion that becomes a light propagation region on a substrate, it is sufficient to remove the area other than the light propagation region in the form of a groove as described above, and etching such as dry etching such as reactive ion etching or ion beam etching or wet etching , laser processing, ultrasonic processing, etc. may be used.

また該凸部を有する基板上に順次クラッド層、コア層を
堆積する方法としては、例えば熱CVD法、火炎加水分
解堆積法、プラズマCVD法等の化学気相堆噴法、スパ
ッタ法、蒸着法等の公知の手段を用いることができる。
Methods for sequentially depositing the cladding layer and the core layer on the substrate having the convex portion include, for example, a chemical vapor deposition method such as a thermal CVD method, a flame hydrolysis deposition method, a plasma CVD method, a sputtering method, and an evaporation method. Well-known means such as the following can be used.

第2図の工程(′b)〜(C)で例えばIF/NH,F
を用いたウェットエツチングを行うと、基板の断面は第
3図に示すようになるが、この場合にも第2図(c)に
示した断面の基板と同様の結果を得られる。
In steps ('b) to (C) in Figure 2, for example, IF/NH, F
When wet etching is performed using a substrate, the cross section of the substrate becomes as shown in FIG. 3, and in this case, the same result as the substrate with the cross section shown in FIG. 2(c) can be obtained.

(作用) 導波路作成工程の簡略化により従来のような基板汚染に
よるハクリ等を防止でき、幅制御も容易で量産性が可能
になる。本発明ではまず、基板に所望の導波パターンを
凸形に残るように形成した後に、クラッド層、コア層、
クラッド層を一連の連続した工程で実施でき、添加剤の
種類の変更あるいはその供給量を変化させるだけで屈折
率を変化させることができるので、平面導波路を簡単に
形成することができる。またパターン幅制御が容易であ
る。
(Function) By simplifying the waveguide production process, it is possible to prevent peeling and the like caused by substrate contamination as in the conventional method, and the width can be easily controlled, making mass production possible. In the present invention, first, after forming a desired waveguide pattern so as to remain in a convex shape on a substrate, a cladding layer, a core layer,
Since the cladding layer can be formed in a series of continuous steps and the refractive index can be changed simply by changing the type of additive or the amount supplied, a planar waveguide can be easily formed. Furthermore, pattern width control is easy.

〔実施例〕〔Example〕

以下実施例により本発明の光導波路およびその製造方法
を更に具体的に説明する。ただし本発明の範囲は以下の
実施例により何等制限されるものではない。
The optical waveguide of the present invention and its manufacturing method will be explained in more detail below using Examples. However, the scope of the present invention is not limited in any way by the following examples.

まず平担な石英基板を用意して、導波路パターンをフォ
トレジスト(AZ−1350,T)ICより形成した。
First, a flat quartz substrate was prepared, and a waveguide pattern was formed using photoresist (AZ-1350, T) IC.

この時レジストは導波路部分となる基板をおおっている
。Co’) 参照。
At this time, the resist covers the substrate that will become the waveguide portion. Co') Reference.

次に反応性イオンエツチング装置にCF4(10scc
m) + H2(2sccm )を混合して導入しRF
パワー200W、真空度10−” torrの条件で基
板を50μmエツチングし、レジストをハクリした後、
基板を有機洗浄した。これによシ導波路部分が凸状に残
った基板が形成された。この基板上に熱CVD装置を用
いて、クラッド、コア、クラッド層を連続的に形成して
いくために、まず基板を1000℃に加熱し、s i 
c t4および0□の混合ガスを夫々500.1000
 cc/分なる流量で導入し、クラッド層として510
2を5μm基板上に堆積させた。
Next, CF4 (10scc
m) + H2 (2sccm) was mixed and introduced and RF
After etching the substrate by 50 μm under the conditions of power 200W and vacuum level 10” torr, and peeling off the resist,
The substrate was organically cleaned. As a result, a substrate was formed in which the waveguide portion remained in a convex shape. In order to successively form the cladding, core, and cladding layers on this substrate using a thermal CVD device, the substrate is first heated to 1000°C and Si
c 500.1000 each of the mixed gases of t4 and 0□
It was introduced at a flow rate of cc/min, and the cladding layer was 510 cc/min.
2 was deposited on a 5 μm substrate.

次K コア層として5iCL4 ;TiC4,02O混
合ガスを夫々500.30.1000 cc/分なる流
量で導入し、T1を含有するSiO□層を50μm堆積
した。
As a next K core layer, a 5iCL4;TiC4,02O mixed gas was introduced at flow rates of 500, 30, and 1000 cc/min, respectively, and a 50 μm thick SiO□ layer containing T1 was deposited.

さらにクラッド層として8 i C14、o2の混合ガ
スを夫々500.1000 cc/分なる流量で導入し
8102 層を20μm厚さに堆積した。
Furthermore, a mixed gas of 8 i C14 and o 2 was introduced as a cladding layer at a flow rate of 500.1000 cc/min, and an 8102 layer was deposited to a thickness of 20 μm.

これを切り出すことによシ第1図に示したような構造の
光導波路が容易に得られた。
By cutting out this, an optical waveguide having the structure shown in FIG. 1 was easily obtained.

かくして得られた導波路は分岐導波路として使用した場
合に1=1に分岐し伝搬損失は、0、25 dB と極
めて良好なものであった。(実施例1) またHF(1):NF4F(7)を用いてウエットエチ
ングを行い、第3図の構造の基板について上記と同様に
光導波路を作成し、分岐導波路として用いたところ、上
記と同様の結果を得た。(実施例2) 〔発明の効果〕 本発明の先導波路および製造方法は、まず化学気相堆積
法を利用してクラッド層、コア層、クラッド層を形成し
て極めて低損失の光導波路を得ることができ、また、凸
構造により光伝搬領域を限定することによシ、作成プロ
セスが簡略化され、光導波路を小型化することができる
When the waveguide thus obtained was used as a branching waveguide, it branched 1=1 and the propagation loss was extremely good at 0.25 dB. (Example 1) In addition, wet etching was performed using HF(1):NF4F(7), and an optical waveguide was created in the same manner as above on the substrate having the structure shown in FIG. 3, and was used as a branching waveguide. Results similar to those above were obtained. (Example 2) [Effects of the Invention] The guiding waveguide and manufacturing method of the present invention first form a cladding layer, a core layer, and a cladding layer using a chemical vapor deposition method to obtain an optical waveguide with extremely low loss. Furthermore, by limiting the light propagation region with the convex structure, the manufacturing process can be simplified and the optical waveguide can be miniaturized.

従って、本発明は光通信システム、光情報処理システム
等の各種光応用機器において有用な各種形状の、また各
種パターンを有する、光導波路及びその有利な製造方法
であるので本発明は光応用分野において極めて有用な技
術である。
Therefore, the present invention is an optical waveguide having various shapes and patterns that are useful in various optical application equipment such as optical communication systems and optical information processing systems, and an advantageous manufacturing method thereof. This is an extremely useful technique.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光導波路の実施態様を説明する図、第
2図は本発明の光導波路の製造方法を工程順に説明する
図、第3図は本発明の別の実施態様を説明する図、第4
図は従来品の製造方法を工程順に説明する図である。
FIG. 1 is a diagram explaining an embodiment of the optical waveguide of the present invention, FIG. 2 is a diagram explaining the manufacturing method of the optical waveguide of the present invention in order of steps, and FIG. 3 is a diagram explaining another embodiment of the present invention. Figure, 4th
The figure is a diagram explaining the manufacturing method of the conventional product step by step.

Claims (4)

【特許請求の範囲】[Claims] (1)基板に光伝搬領域を限定する凸部を有し、その上
部にコア層、クラツド層を有してなる光導波路。
(1) An optical waveguide having a convex portion on a substrate that defines a light propagation region, and a core layer and a cladding layer on top of the convex portion.
(2)基板に光伝搬領域たる凸部を形成した後、コア層
、クラツド層を連続的に形成することを特徴とする光導
波路の製造方法。
(2) A method for manufacturing an optical waveguide, which comprises forming a convex portion serving as a light propagation region on a substrate, and then continuously forming a core layer and a cladding layer.
(3)コア層、クラツド層形成を化学気相堆積法で行う
特許請求の範囲第(1)項に記載される光導波路の製造
方法。
(3) A method for manufacturing an optical waveguide according to claim (1), in which the core layer and cladding layer are formed by chemical vapor deposition.
(4)コア層、クラツド層がガラス形成用原料ガスと添
加剤との混合ガスの化学気相反応により形成される特許
請求の範囲第(3)項に記載される光導波路の製造方法
(4) The method for manufacturing an optical waveguide according to claim (3), wherein the core layer and the cladding layer are formed by a chemical vapor phase reaction of a mixed gas of a glass-forming raw material gas and an additive.
JP1575686A 1986-01-29 1986-01-29 Optical waveguide and its production Pending JPS62174708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1575686A JPS62174708A (en) 1986-01-29 1986-01-29 Optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1575686A JPS62174708A (en) 1986-01-29 1986-01-29 Optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPS62174708A true JPS62174708A (en) 1987-07-31

Family

ID=11897622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1575686A Pending JPS62174708A (en) 1986-01-29 1986-01-29 Optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPS62174708A (en)

Similar Documents

Publication Publication Date Title
EP1576399B1 (en) Process for fabrication of optical waveguides
EP0625269B1 (en) Method of fabricating a silica waveguide structure
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
US7289712B2 (en) Planar optical waveguide and method of fabricating the same
US20020168166A1 (en) Silica-based optical waveguide circuit and fabrication method thereof
CN1175291C (en) Manufacture of ion exchange based ridge optical waveguide device
JPH0527132A (en) Production of waveguide type optical parts
JPS62174708A (en) Optical waveguide and its production
US6483964B1 (en) Method of fabricating an optical component
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JPS62143004A (en) Optical wavelength and its manufacture
JPH0720336A (en) Structure of optical waveguide and its production
JP2738121B2 (en) Method for manufacturing silica-based optical waveguide
JP3943149B2 (en) Optical waveguide and method for manufacturing the same
JP2003344685A (en) Optical switching element and method for manufacturing the same
JP2001235646A (en) Fine pattern forming method, method for manufacturing optical element, optical element and optical transmission device
JPH0233106A (en) Production of light guide
JP2001201647A (en) Optical waveguide circuit and its manufacturing method
JPWO2003067293A1 (en) Manufacturing method of optical waveguide
Ou Engineering sidewall angles of silica-on-silicon waveguides
JPH09258050A (en) Manufacture of optical waveguide
JPH0632621A (en) Oxide film and production of optical waveguide using this oxide film
GB2191304A (en) Integrated optical channel waveguide
JPH05224040A (en) Optical integrated circuit and its production
JPS6296909A (en) Multilayered optical circuit and its production