JPS62174701A - Production of carbon fiber reinforced plastic mirror - Google Patents

Production of carbon fiber reinforced plastic mirror

Info

Publication number
JPS62174701A
JPS62174701A JP61217479A JP21747986A JPS62174701A JP S62174701 A JPS62174701 A JP S62174701A JP 61217479 A JP61217479 A JP 61217479A JP 21747986 A JP21747986 A JP 21747986A JP S62174701 A JPS62174701 A JP S62174701A
Authority
JP
Japan
Prior art keywords
deposited
mirror
cfrp
laminate
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217479A
Other languages
Japanese (ja)
Inventor
Keiji Kimura
木村 奎二
Kenzo Kadotani
門谷 建蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPS62174701A publication Critical patent/JPS62174701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a mirror having good shape accuracy, small surface roughness of a specular surface and high reflectivity by depositing an inorg. material by evaporation on a mold having a polished surface and adhering a vapor- deposited surface and CFRP laminate by an adhesive agent of a non-solvent type then stripping the polished surface and the vapor-deposited surface and depositing a metal by evaporation on the smoothed surface thereby forming the specular surface. CONSTITUTION:The inorg. material such as silicon oxide is deposited by evaporation on a projecting mold 4 which is precisely polished to provide the smooth vapor-deposited inorg. material surface 3. A release agent is preferably and preliminarily coated on the projecting mold 4. The adhesive agent 5 of the non-solvent type such as epoxy resin comspn. is coated on the surface of the surface 3 and the CFRP (carbon fiber reinforced plastic) laminate 2 having a recessed surface is placed thereon and the adhesive agent 5 is cured. The surface 3 is transferred to the laminate and the CFRP laminate 7 having the smoothed surface is obtd. when the CFRP laminate 2 is stripped from the mold 4. A CFRP mirror 1 is obtd. when a metal 6 is deposited by evaporation on the laminate 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大型スペースチャ/バーのコリメータミラー、
人工衛生の集光用ミラー等に適した。カーボン繊維強化
プラスチック(以下、CFRPとも称する)ミラーの製
造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a collimator mirror for a large space chamber/bar;
Suitable for artificial hygiene condensing mirrors, etc. The present invention relates to a method of manufacturing a carbon fiber reinforced plastic (hereinafter also referred to as CFRP) mirror.

(従来の技術) 宇宙環境あるいは地上において宇宙環境を模擬する実験
室(スペースチャンバー]内で、平行光を集成するパラ
ボラミラーや逆に焦点光を平行光にするコリメータミラ
ーが使われる。またテレビカメラの視界を広げるのに、
平面ミラーや凸面ミラーが使われる。宇宙環境では昼と
夜の温度差が大きく、照光時(昼)にはミラーは100
℃近くに達し、暗黒時(夜)には−60℃近くまで温度
が低下する。
(Prior technology) Parabolic mirrors that collect parallel light and collimator mirrors that convert focused light into parallel light are used in the space environment or in a laboratory (space chamber) that simulates the space environment on the ground. To widen the field of view,
Flat mirrors and convex mirrors are used. In the space environment, there is a large temperature difference between day and night, and the mirror has a temperature of 100% during illumination (daytime).
℃, and during darkness (night) the temperature drops to nearly -60℃.

ミラーの材質は、一般に軽金R(例えばアルミ合金)や
繊維強化プラスチック(FRP、例えばCPRP)が考
えられ、いずれもミラーの鏡面は金属(例えばアルミ)
を蒸着して形成する。ミラーの材質は軽くて剛性が大き
いのがよい。一般に弾性率と比重の比を比弾性率と称し
、これが大きいほど、薄くてたわみが少なく、かつ人工
衛生のミラーでは打上げ費用の安い、またスペースチャ
ンバーのミラーではミラーの吊金具を軽量化できるミラ
ーができる。
The material of the mirror is generally light metal (e.g. aluminum alloy) or fiber reinforced plastic (FRP, e.g. CPRP), and in both cases the mirror surface is metal (e.g. aluminum).
Formed by vapor deposition. It is preferable that the material of the mirror is light and has high rigidity. Generally, the ratio of the elastic modulus to the specific gravity is called the specific elastic modulus, and the larger the ratio, the thinner it is, the less it bends, and the lower the launch cost for artificial sanitary mirrors, and the lighter the hanging hardware for space chamber mirrors. I can do it.

この比弾性率は、金属のアルミ合金、高張力鋼。This specific modulus is the same for metals such as aluminum alloys and high-strength steels.

チタン合金などが約3000に9/−であるのに対し、
CFRPでは約5000kg/I!ll11mでめシ、
CF几Pのほうが有利である。また温度変化に応じてミ
ラーに熱膨張・収縮があると、ミラーの曲率半径あるい
は焦点距離が変化して2機能を十分に発揮できないこと
になる。一般に金属の熱膨張係数は。
While titanium alloys etc. have a ratio of about 9/- to 3000,
Approximately 5000kg/I for CFRP! It's 11m,
CF 几P is more advantageous. Furthermore, if the mirror undergoes thermal expansion or contraction in response to temperature changes, the radius of curvature or focal length of the mirror will change, making it impossible to fully perform the two functions. In general, the coefficient of thermal expansion of metals is.

1、2 X 10−’ m/mo”c (高張力鋼) 
〜l 5 X 10−’m/mm℃(アルミ合金)のオ
ーダーでアシ、宇宙環境の温度範囲でミラーとしての機
能を十分にはたせない。一方でCFRP・の熱膨張係数
は0.03x 10−5m+n/mm℃程度と非常に小
さいため、温度変化の影響は#1とんどない。
1,2 X 10-'m/mo"c (high tensile strength steel)
~l 5 × 10-'m/mm°C (aluminum alloy), it cannot fully function as a mirror in the temperature range of the space environment. On the other hand, the coefficient of thermal expansion of CFRP is very small, about 0.03 x 10-5 m+n/mm°C, so the influence of temperature changes #1 is negligible.

上記の理由により、宇宙機器用ミラーの材質としては、
金属よりもCFRPのほうが適している。
For the above reasons, the materials for mirrors for space equipment are:
CFRP is more suitable than metal.

しかしミラーの鏡面を形成するのに工夫がいる。However, creating a mirror surface requires some ingenuity.

CF几P凹面ミラーは、CFRP積層品と鏡面からなる
。鏡面は一般に光の反射率が高い金属(例えばアルミ)
を蒸着して形成する。
CF 几P concave mirror consists of a CFRP laminate and a mirror surface. The mirror surface is generally a metal with high light reflectance (e.g. aluminum)
Formed by vapor deposition.

またCFRP積層品は、一般にカーボンクロスに熱硬化
性樹脂組成物(例えばエポキシ樹脂組成物)を含浸して
、加熱プレス成型して得られるが。
Furthermore, CFRP laminates are generally obtained by impregnating carbon cloth with a thermosetting resin composition (for example, an epoxy resin composition) and hot press molding the impregnated carbon cloth.

少なくとも片側が凹面状のCF几P積層品にするには、
平板をつぐって機械加工で凹面を出すのと。
To make a CF-P laminate with at least one side concave,
By passing a flat plate and machining it to create a concave surface.

あらかじめ凹面にマツチした凸面をもつ金型を用いる場
合がある。後者の場合でも、金型の形状精度が不十分で
あったシワ高温硬化時の金型の熱膨張があるため、最終
の鏡面精度を成型によって出すことは困難である。熱膨
張率が小さいガラスを精度よく凸面に研磨したガラス凸
面型を用いればよいが、高価であるうえに損傷しやすい
。特に加熱プレス時に10kg/c♂程度の面圧を加え
るが。
A mold with a convex surface matched with a concave surface in advance may be used. Even in the latter case, it is difficult to achieve the final mirror-like precision by molding because of the thermal expansion of the mold during high-temperature curing of the wrinkles, where the shape precision of the mold was insufficient. A glass convex type made of glass with a small coefficient of thermal expansion polished into a convex surface with high accuracy may be used, but it is expensive and easily damaged. In particular, a surface pressure of about 10 kg/c♂ is applied during hot pressing.

そのかかり方に不均一があると、ガラス型が割れること
もあろう。そのため凸面金型が用いられるが、その場合
にも上述の理由によって、jit終形状を出すには機械
加工が必要である。一般にCFRPの基材であるカーボ
ンクロスのカーボン繊維は。
If the coating is uneven, the glass mold may break. Therefore, a convex mold is used, but even in that case, machining is required to obtain the final jit shape for the reasons mentioned above. Generally, the carbon fiber of carbon cloth is the base material of CFRP.

直径が約7μmである。CFRPの機械加工においては
2表面からカーボン繊維と樹脂をむしり取るようなかた
ちになり、研磨面一でもミクロにみると数μmの凹凸が
ある。この面に金属蒸着しても光沢のある反射率の高い
鏡面は得られない。
The diameter is approximately 7 μm. When machining CFRP, the carbon fibers and resin are removed from the two surfaces, and even the polished surface has irregularities of several micrometers in size. Even if metal is deposited on this surface, a shiny mirror surface with high reflectance cannot be obtained.

そこで研磨したCFRP面に樹脂をコートして。Then we coated the polished CFRP surface with resin.

カーボン繊維の直径相当の凹凸を消すことを試みたが、
繊維が出ている部分はコートする樹脂をはじく性質があ
シ、厚さ100μm程度までの樹脂コー゛トでは表面の
凹凸が増すばかυで、これを低減することはできなかっ
た。また厚さ1圓程度に厚くコートした場合は、凹面ミ
ラーの中央部と周辺部に厚みのむらができて、全体の形
状精度が不合格となった。そこで研磨紙で精密研磨した
が。
I tried to erase the unevenness equivalent to the diameter of carbon fiber, but
The part where the fibers are exposed has a property of repelling the coating resin, and with a resin coat up to a thickness of about 100 μm, the surface unevenness increases, and this cannot be reduced. In addition, when the coating was applied as thick as about 1 circle, the thickness was uneven in the center and periphery of the concave mirror, and the overall shape accuracy was rejected. So I used abrasive paper to precisely polish it.

摩擦熱により瞬間的1局部的に高い熱が発生し。Frictional heat momentarily generates high heat locally.

深い傷が生じた。A deep wound occurred.

また、研磨面とCI+1几P積層品とを無溶剤の接着剤
で接着したのち離型させ、CFRP積層品を平滑処理し
た面に金属を蒸着するのは、研磨面から離型するのに離
型剤の塗布が必要であり。
In addition, bonding the polished surface and the CI+1P laminate with a solvent-free adhesive and then releasing the mold, and then vapor depositing metal on the smoothed surface of the CFRP laminate, is a good way to release the metal from the polished surface. It is necessary to apply a molding agent.

CPRP積層品の平滑処理し丸面に離型剤が付着し残留
するので、この平滑処理した面に金属を蒸着してもきれ
いな鏡面にならなかった。
Since the mold release agent adhered and remained on the smoothed round surface of the CPRP laminate, even if metal was deposited on the smoothed surface, a clean mirror surface could not be obtained.

t7’?、研磨面に蒸着された金属面とCFRP積層品
とを無溶剤の接着剤で接着したのち、研磨面と金属蒸着
面との間を離型させてCFRP積層品に鏡面を転写させ
るCFRPミラーの製造法(特願昭59−148284
号)があり、この製造法によれば、形状精度がよく、か
つ鏡面の表面あらさが小さく1反射率の高い0FFLP
ミラーを簡便に得ることができる。
t7'? , a CFRP mirror in which the metal surface deposited on the polished surface and the CFRP laminate are bonded with a solvent-free adhesive, and then the polished surface and the metal-deposited surface are released from the mold to transfer the mirror surface to the CFRP laminate. Manufacturing method (Patent application 1984-148284)
According to this manufacturing method, 0FFLP with good shape accuracy, small mirror surface roughness, and high reflectance.
Mirrors can be easily obtained.

しかし、この製造法では金属を蒸着した鏡面を一体に形
成するので、実際に使用するまで雰囲気からの汚染を防
止する必要がある。
However, since this manufacturing method integrally forms a mirror surface with metal vapor deposited on it, it is necessary to prevent contamination from the atmosphere until it is actually used.

(発明が解決しようとする問題点) 本発明の目的は、形状精度が極めてよく、かつ鏡面の表
面あらさが小さく、シかも反射率の高いC’F’lLP
ミラーを汚染の少ない環境で容易に得ることにある。
(Problems to be Solved by the Invention) The object of the present invention is to produce a C'F'lLP that has extremely good shape accuracy, small mirror surface roughness, and high reflectance.
The object of the present invention is to easily obtain mirrors in a less polluted environment.

(問題点を解決するための手段) 本発明は、CFR,PfJi層品を平滑処理した面に金
属を蒸着させて鏡面を形成するCFRPミラ−の製造法
において、研磨面を有する型に無機物を蒸着し、得られ
た無機物蒸着面とCFR,P積層品とを無溶剤形の接着
剤で接着したのち、研磨面と無機物蒸着面との間を離型
させ、無機物蒸着面をCF RP積層品に転写後、この
平滑処理面に金属を蒸着させて鏡面を形成するCFRP
ミラーの製造法に関する。
(Means for Solving the Problems) The present invention is a method for manufacturing a CFRP mirror in which a mirror surface is formed by depositing metal on the smoothed surface of a CFR or PfJi layered product. After bonding the resulting inorganic-deposited surface and the CFR, P laminate with a solvent-free adhesive, the polished surface and the inorganic-deposited surface are released from the mold, and the inorganic-deposited surface is bonded to the CF RP laminate. After transferring to CFRP, metal is deposited on this smoothed surface to form a mirror surface.
Concerning the manufacturing method of mirrors.

本発明の製造法は、M面が平面、凹面および凸面のミラ
ーのいずれにも適用される。
The manufacturing method of the present invention is applicable to any of mirrors in which the M-plane is flat, concave, or convex.

本発明の研磨面の材料としては、ガラスあるいはクロム
、チタン等の金属などを研磨したものが用いられる。
As the material for the polished surface of the present invention, glass or polished metal such as chromium or titanium is used.

無機物蒸着面をCF几P積層品に転写する際に研磨面の
材料として、ガラスを用い、ガラスを上側にして、ガラ
スを通して接着剤の分布を観察し。
When transferring the inorganic vapor-deposited surface to the CF-P laminate, glass was used as the material for the polished surface, and the distribution of the adhesive was observed through the glass with the glass facing upward.

その分布を制御して転写を行えば、接着剤の分布の不均
一に起因するボイドの発生を防ぐことができるので好ま
しい。
It is preferable to perform the transfer while controlling the distribution of the adhesive, since it is possible to prevent the generation of voids due to non-uniform distribution of the adhesive.

研磨法には、特に制限はないが研磨はできるだけ精密に
することが好ましい。
There are no particular restrictions on the polishing method, but it is preferable that the polishing be as precise as possible.

研磨面に無機物が蒸着されるが、蒸着は公知の方法9条
件等によって行われ、蒸着方法2条件等には特に制限は
ない。無機物としては、接着剤および金属と接着性がよ
いものが好ましく、この例としては酸化ケイ素などがあ
る。
An inorganic substance is vapor-deposited on the polished surface, and the vapor-deposition is performed using nine known methods and conditions, and there are no particular limitations on the two vapor-deposition conditions. The inorganic material is preferably one that has good adhesion to adhesives and metals, such as silicon oxide.

本発明においては、気泡の発生を防ぐために無溶剤形の
接着剤が用いられ、この例としては、エポキシ樹脂系接
着剤、不飽和ポリエステル系接着剤などがある。
In the present invention, a solvent-free adhesive is used to prevent the generation of bubbles, examples of which include epoxy resin adhesives and unsaturated polyester adhesives.

CFRP積層品は、カーボンクロス等のカーボン繊維基
材を積層し、金型に入れてプレスした状態でエポキシ樹
脂組成物等の熱硬化性樹脂組成物を減圧含浸し加熱硬化
したもの、あるいはあらかじめカーボンクロス等のカー
ボン繊維基材にエポキシ樹脂組成物等の熱硬化性樹脂組
成物を含浸して半硬化状にしたプリプレグシートを積層
して。
CFRP laminates are made by laminating carbon fiber base materials such as carbon cloth, pressing them in a mold, impregnating them with a thermosetting resin composition such as an epoxy resin composition under reduced pressure, and curing them by heating, or by pre-heating and impregnating them with a thermosetting resin composition such as an epoxy resin composition. A semi-cured prepreg sheet is laminated onto a carbon fiber base material such as cloth, impregnated with a thermosetting resin composition such as an epoxy resin composition.

金型で加熱プレス成型したものなどが用いられる。Those that are hot press molded in a mold are used.

第1図は9本発明の製造法の一例を示す縦断正面図であ
る。図において、精密に研磨した凸面型4に無機物を蒸
着して平滑な無機物蒸着面3を設けた。本発明において
、CFR,Pミラーの鏡面と力るのは、凸面型4に接し
ているほうの蒸着面である。鏡面の形状精度ならびに表
面あらさは、凸面型4の凹面のそれが写しとられるので
、この凸面型はガラスを研磨してつくるのが望ましいが
FIG. 1 is a longitudinal sectional front view showing an example of the manufacturing method of the present invention. In the figure, an inorganic material was deposited on a precisely polished convex mold 4 to provide a smooth inorganic material deposition surface 3. In the present invention, the vapor deposition surface in contact with the convex mold 4 is in contact with the mirror surface of the CFR, P mirror. Since the shape accuracy and surface roughness of the mirror surface mirror those of the concave surface of the convex mold 4, it is desirable to make this convex mold by polishing the glass.

金属であってもよい。無機物蒸着面を凸面型4からはが
れやすくするために、凸面型に薄く離型剤(例えばシリ
コーン系、ふっ素糸)を塗布してから金属を蒸着するこ
とが望ましい。
It may be metal. In order to make it easier for the inorganic material-deposited surface to peel off from the convex mold 4, it is desirable to apply a thin layer of a release agent (for example, silicone-based, fluorine thread) to the convex mold before vapor-depositing the metal.

次に、無機物を蒸着した面3の表面に接着剤5を塗布し
て、これに凹面状のCFRP積層品2をのせて、接着剤
5を硬化させる。その後KCFRP積層品2を凸面型4
よシ引離すと、無機物を蒸着した面3はCPRP積層品
2に転写され、平滑処理した面を有するC P RP積
層品7が得られる(第2図参照)。この平滑処理した面
を有するCF几P積層品7に金属6を蒸着するとCFR
Pミラー1が得られる。ここで接着剤は内部に気泡がで
きると、鏡面に気泡のあとがでるので、無溶剤形の接着
剤が用いられる。ま九CF几P凹面の表面あらさけ、そ
の凹みには接着剤がうまるので。
Next, an adhesive 5 is applied to the surface of the surface 3 on which the inorganic substance has been vapor-deposited, a concave CFRP laminate 2 is placed thereon, and the adhesive 5 is cured. After that, the KCFRP laminate product 2 was molded into a convex shape 4.
When pulled apart, the inorganically deposited surface 3 is transferred to the CPRP laminate 2, resulting in a CPRP laminate 7 with a smoothed surface (see FIG. 2). When the metal 6 is deposited on the CF laminate 7 having the smoothed surface, the CFR
P mirror 1 is obtained. If bubbles form inside the adhesive, they will leave traces on the mirror surface, so a solvent-free adhesive is used. The concave surface of Maku CF 几P is rough, and the adhesive will get stuck in the dents.

加工したままの状態でよく、むしろ接着剤5との接着を
よくするには、サンドベーパー(例えばす600)であ
らしたほうがよい。さらKCFRP凹面の形状精度とし
ては、精密凸型との形状不整を接着剤の厚さでカバーで
きるので、多少の誤差は許容される。
It may be left in the processed state, but in order to improve adhesion with the adhesive 5, it is better to sand it with sand vapor (for example, Su 600). Furthermore, regarding the shape accuracy of the KCFRP concave surface, some errors are allowed because irregularities in shape compared to the precision convex surface can be covered by the thickness of the adhesive.

CF’RP積層品の平滑処理した面に蒸着される金属は
9反射率が最も高いアルミが望ましく、クロム、ニッケ
ル、銀などでもよい。いずれも表面となる蒸着面は、緻
密にできて9表面あらさが極めて小さく、逆KCF’几
P積層品のほうの面は無機物との接着がよくなるように
、多孔質で凹凸があるほうがよい。このような蒸着面は
1例えばアルミをかなりの高速(20〜100X/秒程
度)で厚く(1〜3μm程度)蒸着すると得られる。
The metal deposited on the smoothed surface of the CF'RP laminate is preferably aluminum, which has the highest reflectance, but may also be chromium, nickel, silver, or the like. In both cases, the vapor-deposited surface is dense and has extremely small surface roughness, and the surface of the reverse KCF'P laminate is preferably porous and uneven to improve adhesion with inorganic materials. Such a evaporation surface can be obtained by depositing aluminum, for example, thickly (about 1 to 3 μm) at a fairly high speed (about 20 to 100×/sec).

本発明において金属蒸着面に塗布される無溶剤形の接着
剤の硬化は室温付近で行うのが望ましい。
In the present invention, it is desirable that the solvent-free adhesive applied to the metal-deposited surface be cured at around room temperature.

また接着剤には粒径の小さい無機質粉(例えば。In addition, adhesives include inorganic powder with small particle size (for example).

酸化チタン、酸化鉄9石英、アルミナ)を充填して、硬
化物の熱膨張係数を小さくすることが好ましい。無機質
粉は、鏡面の反射率の点から平均直径が0.5μm以下
のものが好ましい。
It is preferable to fill the cured product with titanium oxide, iron oxide 9 quartz, alumina) to reduce the coefficient of thermal expansion of the cured product. The inorganic powder preferably has an average diameter of 0.5 μm or less from the viewpoint of mirror reflectance.

本発明の製造法において、研磨面に対してCFRP面の
形状精度が悪い場合には9部分的に接着剤が厚くなる。
In the manufacturing method of the present invention, if the shape accuracy of the CFRP surface is poor with respect to the polished surface, the adhesive becomes thick in 9 parts.

この場合には、接着剤単独で用いるのでなく、無機繊維
(例えばガラス繊維)もしくは有機繊維(例えばポリエ
ステル)の織布もしくは不織布またはマイカの微小片を
抄造した集成マイカシートに含浸して挿入してもよい。
In this case, instead of using an adhesive alone, a woven or non-woven fabric made of inorganic fibers (e.g. glass fiber) or organic fibers (e.g. polyester) or a laminated mica sheet made of fine mica particles is impregnated and inserted. Good too.

(実施例) 本発明の詳細な説明する。部とあるのは重量部である。(Example) The present invention will be described in detail. Parts are by weight.

実施例1 次のようにして平滑処理面をガラス凸面レンズからCF
RPに転写、さらに、金属蒸着して本発明のCFRPミ
ラーを得た。
Example 1 The smoothed surface was transferred from a glass convex lens to a CF in the following manner.
The CFRP mirror of the present invention was obtained by transferring to RP and then metal vapor deposition.

直径30an、焦点距離7m、厚さ約1.5cmのガラ
ス凸面レンズを用い、凸面にはシリコーン系離型剤(チ
パ社製QZ−133を塗布し、ふきとり跡がほとんどみ
えなくなるまで、布でふきとった。
A glass convex lens with a diameter of 30 an, focal length of 7 m, and thickness of approximately 1.5 cm was used. The convex surface was coated with silicone mold release agent (QZ-133 manufactured by Chipa Corporation) and wiped with a cloth until almost no traces of wiping were visible. Ta.

この面に一酸化ケイ素を2. OX 10−’ Tor
rの真空中、室温で1.0μm厚さに蒸着した。蒸着速
度は約20X/秒とした。
2. Apply silicon monoxide to this side. OX 10-' Tor
It was deposited to a thickness of 1.0 μm at room temperature in a vacuum of r. The deposition rate was approximately 20X/sec.

CF’RP積層品は、平織カーボンクロス(東し。CF'RP laminated products are plain weave carbon cloth (east side).

トレカナ6343)を4.5枚/柵の密度で積層し。Toraykana 6343) is laminated at a density of 4.5 sheets/fence.

脂環式エポキシ樹脂組成物(UCC社製の脂環式エポキ
シ樹脂ERL4221 100部、ヘキサハイドロ無水
フタル酸 90部、ベンジルジメチルアミン 1部を配
合)を、70℃、 0. OI Torrで減圧含浸し
たのち、大気圧下で120℃、3時間、さらに160℃
、5時間かけて硬化して得た。
An alicyclic epoxy resin composition (blended with 100 parts of alicyclic epoxy resin ERL4221 manufactured by UCC, 90 parts of hexahydrophthalic anhydride, and 1 part of benzyldimethylamine) was heated at 70°C for 0. After vacuum impregnation at OI Torr, 120℃ under atmospheric pressure for 3 hours, and then 160℃
, which was obtained by curing for 5 hours.

片側は凸面金型を当て、もう片側には平板金型を当てて
1面圧約10kg/am”を加えて、中央部の厚さが約
10anoになるように、上記のカーボンクロスは45
枚を積層した。凸面金型とガラス凸面レンズの形状公差
は最大0.10 mであった。
Apply a convex mold to one side and a flat plate mold to the other side and apply a surface pressure of approximately 10 kg/am.
The sheets were stacked. The maximum shape tolerance between the convex mold and the glass convex lens was 0.10 m.

CFRPの凹面はす600のサンドペーパーで。Sand the concave surface of CFRP with 600 grit sandpaper.

成型面の光沢がみえなくなる程度に軽く研磨した。The molded surface was lightly polished to the extent that the gloss was no longer visible.

このCFRP凹面を130℃にしておき、その中央部に
直径が約20cmとなる量で接着剤のエポキシ樹脂組成
物(チバ社製のビスフェノール形エポキシ樹脂CY2O
5100部、酸無水物硬化剤HY−904100部、ア
ミン系硬化促進剤DY−0632部を配合)を流し込み
、この上から130℃に予熱したガラス凸面レンズを、
鏡面を下にしてのせ、レンズの上に5に9の重#)ヲか
けて、中央部のエポキシ樹脂を広げて押出し、そのまま
130℃で12時間おいて硬化した。硬化後に室温にし
て離型させたところ、蒸着面はCFRPに転写され、平
滑処理した面が得られた。この面に純アルミを2. O
X 10−’ Torrの真空中、室温で1.0μm厚
さに蒸着した。蒸着速度は、厚さ0.5 μmtテハ約
80A/秒C,以後ハ約2 oX/秒とした。
This CFRP concave surface was heated to 130°C, and an adhesive epoxy resin composition (bisphenol type epoxy resin CY2O manufactured by Ciba Corporation) was applied to the center of the concave surface in an amount of about 20 cm in diameter.
5100 parts of the acid anhydride curing agent HY-904 and 100 parts of the amine curing accelerator DY-0632) were poured onto the glass convex lens preheated to 130°C.
The lens was placed with the mirror surface facing down, and 5 to 9 weights were applied on top of the lens, the epoxy resin in the center was spread and extruded, and the lens was left to harden at 130° C. for 12 hours. After curing, the mold was released at room temperature, and the vapor-deposited surface was transferred to CFRP, resulting in a smoothed surface. 2. Pure aluminum on this side. O
It was deposited to a thickness of 1.0 μm at room temperature in a vacuum of X 10 −' Torr. The deposition rate was approximately 80 A/sec for a thickness of 0.5 μm, and approximately 2 oX/sec for a thickness of 0.5 μm.

このようにして得られた鏡面の反射は極めてよく9表面
あらさは十分に小さいことを確認できたが、カーボンク
ロスの織目に対応する太きなうねシが目視された。そこ
で触針式の表面粗さ測定器(東京精密社製のSURFC
OM)で、うねりを測定した。第3図にCFRP表面の
カーボンクロスの織目と、鏡面のうねりの測定結果の対
応を示す。
Although it was confirmed that the reflection of the mirror surface thus obtained was extremely good and the surface roughness of 9 was sufficiently small, thick ridges corresponding to the texture of the carbon cloth were visually observed. Therefore, we used a stylus-type surface roughness measuring device (SURFC manufactured by Tokyo Seimitsu Co., Ltd.).
OM), the waviness was measured. Figure 3 shows the correspondence between the texture of the carbon cloth on the CFRP surface and the measurement results of the waviness of the mirror surface.

カーボンクロスは、使用糸が3000本のカーボン繊維
からな9.平織の糸密度は、たて糸、よこ糸ともに10
柵轟たり5本である。第3図で、カーボンクロス8は、
たて糸9とよこ糸10からなる。うねりは、たて、よこ
ともに同様にでているが、ここでは、うねりの測定M1
1に沿って測定した。
9. Carbon cloth uses 3000 carbon fiber threads. The thread density of plain weave is 10 for both warp and weft.
There are five fences. In Figure 3, carbon cloth 8 is
It consists of warp yarns 9 and weft yarns 10. The undulations appear in the vertical and horizontal directions as well, but here, the undulation measurement M1
Measured along 1.

第3図のAIは室温におけるうねりの測定結果を示すも
のである。うねりのピッチは、たて糸9のピッチと同じ
であり、糸の中心が最も凸で、糸と糸の間が最も凹であ
る。その高さは約1.5μInである。次に、このもの
を高温にすると、目視観測したうねりが次第に小さくな
り、接着剤の硬化温度である130℃では、はとんどう
ねりがなくなることを見出した。
AI in FIG. 3 shows the measurement results of waviness at room temperature. The pitch of the undulations is the same as the pitch of the warp yarns 9, with the center of the yarn being the most convex and the space between the yarns being the most concave. Its height is approximately 1.5 μIn. Next, it was discovered that when this material was heated to a high temperature, the visually observed waviness gradually became smaller, and at 130° C., which is the curing temperature of the adhesive, there was no waviness at all.

宇宙環境におかれるCFRPミラーは約100℃〜−6
0℃の温度範囲で使われ、この中間の温度は20℃、つ
まりほぼ室温である。そこで接着剤の硬化を室温付近で
行えば、使用温度において。
CFRP mirrors placed in the space environment have temperatures of approximately 100℃ to -6
It is used in a temperature range of 0°C, with the intermediate temperature being 20°C, or approximately room temperature. Therefore, if the adhesive is cured at around room temperature, it will be at the operating temperature.

うねシがほぼ0となり、それからの温度変化は比較的幅
が狭いので、うねりも生じにくいと考えられる。
Since the ridge becomes almost 0 and the temperature change thereafter is relatively narrow, it is thought that undulation is unlikely to occur.

実施例2 実施例1において、接着剤のみを室温硬化形のエポキシ
樹脂組成物(シェル社製のビスフェノール形エポキシ樹
脂BP−807100部に、旭電化製の変性ジアミノジ
フェニルメタンEH−55150部を配合)に変え、他
は同様にして実施した。ガラス凸面レンズとCFRPは
50℃に予熱しておき、7kgの重シをのせて接着剤を
広げて押出したのち、30℃で12時間おいて硬化した
。このようにして形成したCFRPミラーの鏡面のうね
シを実施例1と同様にして測定したのが第3図のBl、
B2.B3である。B1は30℃で測定したもので、う
ねシは0である。B2は一60℃において、またB3は
100℃で測定したもので、凹凸の高さは、いずれも約
0.7μmであり、前述の130℃硬化の場合の室温に
おける値よりも小さくなっている。B2とB3では凹凸
の位置が逆になっている。
Example 2 In Example 1, only the adhesive was added to a room temperature curable epoxy resin composition (100 parts of bisphenol epoxy resin BP-807 manufactured by Shell Co., Ltd. was mixed with 150 parts of modified diaminodiphenylmethane EH-55 manufactured by Asahi Denka Co., Ltd.). The procedure was carried out in the same manner with the following changes. The glass convex lens and CFRP were preheated to 50°C, a 7 kg weight was placed on them, the adhesive was spread and extruded, and then cured at 30°C for 12 hours. The ridges on the mirror surface of the CFRP mirror formed in this way were measured in the same manner as in Example 1.
B2. It is B3. B1 was measured at 30° C. and has 0 ridges. B2 was measured at -60°C, and B3 was measured at 100°C, and the height of the unevenness is approximately 0.7 μm in both cases, which is smaller than the value at room temperature in the case of curing at 130°C mentioned above. . The positions of the concave and convex portions of B2 and B3 are reversed.

実施例3 直径30cm、焦点距離3m、厚さ約1.5 cmのガ
ラス凸面レンズを用い、凸面にはシリコーン系離型剤(
チバ社製QZ−13)を塗布し、ふきとシ跡がほとんど
みえなくなるまで、布でふきとった。
Example 3 A glass convex lens with a diameter of 30 cm, a focal length of 3 m, and a thickness of approximately 1.5 cm was used, and the convex surface was coated with a silicone mold release agent (
QZ-13) manufactured by Ciba Corporation was applied and wiped off with a cloth until almost no scratches were visible.

この面に一酸化ケイ素を2. OX 10” Torr
の真空中、室温で1.0μm厚さに蒸着した。蒸着速度
は約20A/秒とした。
2. Apply silicon monoxide to this side. OX 10” Torr
The film was deposited to a thickness of 1.0 μm in a vacuum at room temperature. The deposition rate was about 20 A/sec.

実施例1と同様に成形したCFRPの凹面はす600の
サンドペーパーで、成型面の光沢がみえなくなる程度に
軽く研磨した。このCF RP凹面の中央部に直径が2
0cmとなる量で接着剤のエポキシ樹脂(チバ社製エポ
キシ樹脂CY225100部、変性酸無水物硬化剤HY
225 80部を配合)を流し込み、この上にガラス凸
面レンズを一酸化ケイ素蒸着面を下側にして載せ中央部
の接着剤を広げガラス凸面レンズを通して、接着剤界面
を目視しながら接着剤界面に空気を巻き込まないよう注
意した。次に、130℃で12時間おいて硬化した。硬
化後室温にして離型させたところ、蒸着面はCFRPに
転写され、平滑な面が得られ、気泡の巻き込みはなかっ
た。この面に純アルミを2. OX 10−’ Tor
rの真空中、室温で1.0μm厚さに蒸着した。蒸着速
度は、厚さ0.5μmまでは約80^/秒で、以後は約
20^/秒とした。
The concave surface of CFRP molded in the same manner as in Example 1 was lightly polished with 600-grade sandpaper to the extent that the gloss of the molded surface was no longer visible. There is a diameter of 2 in the center of this CF RP concave surface.
Adhesive epoxy resin (epoxy resin CY225 manufactured by Ciba Co., Ltd. 100 parts, modified acid anhydride curing agent HY
225 (mixed with 80 parts) and placed a glass convex lens on top of this with the silicon monoxide deposited side facing down, spread the adhesive in the center and pass it through the glass convex lens to the adhesive interface while visually observing the adhesive interface. Care was taken not to entrap air. Next, it was cured at 130° C. for 12 hours. After curing, the mold was released at room temperature, and the vapor-deposited surface was transferred to the CFRP, resulting in a smooth surface with no air bubbles. 2. Pure aluminum on this side. OX 10-' Tor
It was deposited to a thickness of 1.0 μm at room temperature in a vacuum of r. The deposition rate was approximately 80^/sec up to a thickness of 0.5 μm, and thereafter was approximately 20^/sec.

このようにして得られた鏡面の反射は極めてよく2表面
あらさは十分に小さいことを確認できたが、カーボンク
ロスの織目に対応するうねりの状態は実施例1と同じで
あった。
Although it was confirmed that the reflection of the mirror surface thus obtained was extremely good and the surface roughness was sufficiently small, the state of the undulations corresponding to the texture of the carbon cloth was the same as in Example 1.

比較例1 実施例1において一酸化ケイ素の蒸着のみを行わず、他
は同様に実施した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that silicon monoxide was not deposited.

接着剤が硬化後に室温にして離型させたところ。After the adhesive has cured, it is allowed to cool to room temperature and released from the mold.

蒸着面はCFRPにはきれいに転写されず、離型剤のく
もシが不均一に見られた。この面に純アルミを蒸着させ
たがその蒸着表面はきれいでなく離型剤のくもり模様が
そのまま浮き出し、光沢のある反射率の高い鏡面は得ら
れなかった。
The vapor-deposited surface was not transferred to the CFRP neatly, and clouds of the mold release agent were observed unevenly. Pure aluminum was vapor-deposited on this surface, but the vapor-deposited surface was not clean and the cloudy pattern of the mold release agent stood out, making it impossible to obtain a glossy mirror surface with high reflectance.

(発明の効果) 本発明によれば、形状精度が良好で、鏡面の表面粗さが
小さく、かつ反射率の高いCFRPミラーを汚染されに
くい環境で製造することができる。
(Effects of the Invention) According to the present invention, a CFRP mirror with good shape accuracy, small mirror surface roughness, and high reflectance can be manufactured in an environment that is unlikely to be contaminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は9本発明に用いられるC P R,P積層品の
平滑処理を表わす断面略図、第2図は2本発明のCFF
LPミラーを表わす断面略図、第3図は。 CFRP表面のカーボンクロスの織目とこれに対応する
鏡面のうねりの測定結果を示す略図である。 符号の説明 l・・・CFRP凹面ミラー2・・・CF’RP積層品
3・・・無機物蒸着した面  4・・・凸面型5・・・
接着面       6・・・金属蒸着した鏡面7・・
・平滑処理した面を有するCFR,P積層品8・・・カ
ーボンクロス   9・・・タテ糸10・・・よこ糸 
     11・・・うねシの測定機++\ 代理人 弁理士 若 林 邦 彦   ・1/θ索喫 、ffJB  図
Figure 1 is a schematic cross-sectional view showing the smoothing treatment of the CPR,P laminate used in the present invention, and Figure 2 is the CFF of the present invention.
FIG. 3 is a schematic cross-sectional view showing the LP mirror. It is a schematic diagram showing the measurement results of the texture of carbon cloth on the surface of CFRP and the corresponding waviness of the mirror surface. Explanation of symbols 1... CFRP concave mirror 2... CF'RP laminate product 3... Inorganic material deposited surface 4... Convex type 5...
Adhesive surface 6...Metal-deposited mirror surface 7...
・CFR, P laminate product with smoothed surface 8...Carbon cloth 9...Warp thread 10...Weft thread
11... Ridge measuring device ++\ Agent: Kunihiko Wakabayashi, patent attorney ・1/θ search cut, ffJB figure

Claims (1)

【特許請求の範囲】[Claims] 1、カーボン繊維強化プラスチツク積層品を平滑処理し
た面に金属を蒸着させて鏡面を形成するカーボン繊維強
化プラスチツクミラーの製造法において、研磨面を有す
る型に無機物を蒸着し、得られた無機物蒸着面とカーボ
ン繊維強化プラスチツク積層品とを無溶剤形の接着剤で
接着したのち、研磨面と無機物蒸着面との間を離型させ
、無機物蒸着面をカーボン繊維強化プラスチツク積層品
に転写後、この平滑処理面に金属を蒸着させて鏡面を形
成することを特徴とするカーボン繊維強化プラスチツク
ミラーの製造法。
1. In the manufacturing method of a carbon fiber reinforced plastic mirror, in which a mirror surface is formed by vapor depositing metal on the smoothed surface of a carbon fiber reinforced plastic laminate, an inorganic substance is vapor deposited on a mold having a polished surface, and the obtained inorganic substance vapor deposited surface and a carbon fiber-reinforced plastic laminate with a solvent-free adhesive, the polished surface and the inorganic-deposited surface are released from the mold, and the inorganic-deposited surface is transferred to the carbon-fiber-reinforced plastic laminate. A method for producing a carbon fiber-reinforced plastic mirror, which is characterized by forming a mirror surface by vapor-depositing metal on the treated surface.
JP61217479A 1985-10-07 1986-09-16 Production of carbon fiber reinforced plastic mirror Pending JPS62174701A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22332585 1985-10-07
JP60-223325 1985-10-07

Publications (1)

Publication Number Publication Date
JPS62174701A true JPS62174701A (en) 1987-07-31

Family

ID=16796381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217479A Pending JPS62174701A (en) 1985-10-07 1986-09-16 Production of carbon fiber reinforced plastic mirror

Country Status (1)

Country Link
JP (1) JPS62174701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000665A (en) * 2009-06-17 2011-01-06 Mitsubishi Plastics Inc Main roller for wire saw, roller body, and manufacturing method
CN110997311A (en) * 2017-08-09 2020-04-10 积水化学工业株式会社 Laminate sheet, coated fiber bundle, and fiber-reinforced plastic
EP3756881A4 (en) * 2018-02-22 2021-12-29 Sekisui Chemical Co., Ltd. Laminate sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000665A (en) * 2009-06-17 2011-01-06 Mitsubishi Plastics Inc Main roller for wire saw, roller body, and manufacturing method
CN110997311A (en) * 2017-08-09 2020-04-10 积水化学工业株式会社 Laminate sheet, coated fiber bundle, and fiber-reinforced plastic
EP3756881A4 (en) * 2018-02-22 2021-12-29 Sekisui Chemical Co., Ltd. Laminate sheet
US11613102B2 (en) 2018-02-22 2023-03-28 Sekisui Chemical Co., Ltd. Laminate sheet

Similar Documents

Publication Publication Date Title
US3779851A (en) Method of fabricating thin graphite reinforced composites of uniform thickness
US8439511B2 (en) Mirror and a method of manufacturing thereof
JPH03501957A (en) Textile reinforcement for composite materials and its manufacturing method
EP3285935B1 (en) Method of producing thermally protected composite
US5496639A (en) Poly(arylene ether imidazole) surfacing films for flat and parabolic structures
JP3954665B2 (en) Method for producing decorative board using precoated paper
JPS62174701A (en) Production of carbon fiber reinforced plastic mirror
JPS6114603A (en) Carbon fiber-reinforced plastic mirror
Druffel et al. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter
CN105137512A (en) Manufacturing method of ultra-light reflector
JPS6127503A (en) Production of carbon fiber reinforced plastic mirror
JP6889897B2 (en) Manufacturing method of FRP mirror structure
EP0775281A1 (en) Layered reflector for light radiation, its manufacture and its use
JPS6194002A (en) Production of fiber reinforced plastic mirror
JPS6127504A (en) Production of carbon fiber reinforced plastic mirror
JPS6193404A (en) Carbon fiber reinforced plastic mirror
US5024710A (en) Process of applying a specular surface finish to a carbon-carbon substrate
JPS58180837A (en) Multi-layer sliding material and manufacture thereof
JPS61102601A (en) Preparation of fiber reinforced plastic mirror
KR19980071237A (en) Process for Film Transfer Metallization
JP3636214B2 (en) Method for manufacturing composite optical element
JPS6193405A (en) Carbon fiber reinforced plastic mirror
US20220152984A1 (en) Smooth surface hybrid composites
JP2022064716A (en) Glass paper prepreg and method for producing the same
JP2017159608A (en) Melamine resin decorative sheet