JPS6194002A - Production of fiber reinforced plastic mirror - Google Patents

Production of fiber reinforced plastic mirror

Info

Publication number
JPS6194002A
JPS6194002A JP21538284A JP21538284A JPS6194002A JP S6194002 A JPS6194002 A JP S6194002A JP 21538284 A JP21538284 A JP 21538284A JP 21538284 A JP21538284 A JP 21538284A JP S6194002 A JPS6194002 A JP S6194002A
Authority
JP
Japan
Prior art keywords
layer
aluminum
frp
evaporation
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21538284A
Other languages
Japanese (ja)
Inventor
Kenzo Kadotani
門谷 建蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP21538284A priority Critical patent/JPS6194002A/en
Publication of JPS6194002A publication Critical patent/JPS6194002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To decrease the waving of a specular face by depositing preliminarily aluminum by evaporation on a polished surface, plating preliminarily nickel to the surface of an FRP laminate and adhering the aluminum layer deposited by evaporation and the nickel plating layer then releasing the polished surface from the aluminum layer deposited by evaporation and transferring the aluminum specular face. CONSTITUTION:A silica layer 5 deposited by evaporation and the aluminum layer 4 deposited by evaporation are preliminarily formed on the surface of a glass mold 6 in (b). On the other hand, the nickel plating layer 2 is preliminarily formed by an electroplating or chemical plating method on an FRP substrate 1. Both layers are adhered by an adhesive agent 3 and are then stripped, by which the layer 5 is released from the mold 6 and the aluminum layer specular face which is deposited by evaporation and is protected by the transparent layer 5 on the surface is transferred to the FRP and the FRP mirror (a) is manufactured. The effect of decreasing the waving is low when the thickness of the nickel plating layer is <20mum, and when the thickness exceeds 80mum, there is the possibility of stripping according to a heat cycle and therefore the thickness is kept within a 20-80mum range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に温度変化の激しい環境での使用に適する
繊維強化プラスチック(FRP)製のミラーの製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a mirror made of fiber reinforced plastic (FRP), which is particularly suitable for use in environments with severe temperature changes.

(従来技術) 従来からミラーといえば、ガラス、ステンレス鋼、アル
ミ等が一般的であった。ガラスに銀鏡メッキ、あるいは
金属蒸着したミラーは、極めて表面あらさの小さい、光
反射率の高い鏡面を有している。これに対して、ステン
レス鋼やアルミ等の金属を研摩した鏡面は、ガラスミラ
ーはどの平滑さが得られず、光反射率がいくぶん低い。
(Prior Art) Conventionally, mirrors have generally been made of glass, stainless steel, aluminum, etc. A mirror made of glass plated with silver or metal vapor-deposited has a mirror surface with extremely small surface roughness and high light reflectance. On the other hand, mirror surfaces made of polished metals such as stainless steel or aluminum do not have the same level of smoothness as glass mirrors, and their light reflectance is somewhat low.

ところで最近では、宇宙環境あるいは地上において宇宙
環境を模擬する実験室(スペースチャンバー)内に置か
れ、平行光を集めるパラボラミラー、焦点光を平行光に
するコリメータミラー(以上は凹面ミラー)や、カメラ
の視野を拡大するための平面あるいは凸面ミラーが必敦
となっている。
By the way, recently, parabolic mirrors that collect parallel light, collimator mirrors (concave mirrors) that convert focused light into parallel light, and cameras that are placed in the space environment or in laboratories (space chambers) that simulate the space environment on the ground are being used. A flat or convex mirror is required to expand the field of view.

これらのミラーは、照光時(昼)には100℃近くに達
し、暗黒時(夜)には−180℃近くまで温度が低下す
るヒートサイクルを、−日に何度も受ける。
These mirrors undergo a heat cycle many times a day, in which the temperature reaches nearly 100° C. when illuminated (daytime) and drops to nearly -180° C. during darkness (night).

ガラスミラーはこのようなヒートサイクルによって割れ
る恐れがある。また宇宙衛星に搭載するミラーやスペー
スチャンバーの天井から吊下げるミラーでは、軽量であ
ることが望ましい。FRPは一般に比重が、ガラスやア
ルミの1/2程度であり、ステンレス鋼よりもはるかに
小さく、マたヒートナイクルで割れる恐れはほとんどな
いので。
Glass mirrors may break due to such heat cycles. Furthermore, it is desirable that mirrors mounted on space satellites and mirrors suspended from the ceiling of space chambers be lightweight. The specific gravity of FRP is generally about 1/2 that of glass or aluminum, which is much lower than that of stainless steel, so there is little risk of it breaking under heat.

ミラーの基板としては極めて好ましい。しかし鏡面の形
成において、FRPの表面に直接アルミを蒸着しても、
あるいはPRPに樹脂コートないし金属メッキをしてか
らアルミ蒸着しても9表面あらさが小さく反射率の高い
鏡面にはならないことが判った。これはFRPを構成す
る強化繊維の直径が6〜9μmであり、これが一部露出
していると、樹脂コートや金属メッキしても、その凹凸
をカバーできず、数μmオーダーの表面あらさが残り、
全体が白っぽくなり反射率の低い鏡面に々る。
It is extremely preferable as a mirror substrate. However, when forming a mirror surface, even if aluminum is deposited directly on the FRP surface,
Alternatively, it has been found that even if PRP is coated with resin or metal plated and then aluminum is vapor deposited, a mirror surface with small surface roughness and high reflectivity cannot be obtained. This is because the reinforcing fibers that make up FRP have a diameter of 6 to 9 μm, and if some of these are exposed, even with resin coating or metal plating, the unevenness cannot be covered, leaving a surface roughness on the order of several μm. ,
The entire image becomes whitish and reflects on a mirror surface with low reflectivity.

これに対して1発明者は先に「転写法」を開発して9反
射率の筒い鏡面をFRP基板にもうけることに成功した
。これはまずガラス型あるいは研摩した金属型の表面に
、鏡面とするアルミを蒸着しておく。次には、およそこ
れらの型(平面、凹面、凸面)の形状に合わせて1表面
を成型あるいは機械加工したFRP板を用意する。FR
P板面またはアルミ蒸着面に無溶剤形の接着剤(エポキ
シ樹脂組成物、不飽和ポリエステル樹脂組成物など)を
塗布し、ガラス型(あるいは金属型)のアルミ蒸着層に
接着する。次に両者を離型させると。
In response, one inventor developed a "transfer method" and succeeded in creating a cylindrical mirror surface with a reflectance of 9 on an FRP substrate. First, aluminum is vapor-deposited onto the surface of a glass mold or polished metal mold to create a mirror surface. Next, prepare an FRP board whose one surface is molded or machined approximately in accordance with the shapes of these molds (flat, concave, convex). F.R.
A solvent-free adhesive (such as an epoxy resin composition or an unsaturated polyester resin composition) is applied to the P plate surface or the aluminum vapor-deposited surface, and it is adhered to the glass-type (or metal-type) aluminum vapor-deposited layer. Next, let them both be released from the mold.

アルミ蒸着層はP R,P板に転写され、鏡面となるの
である。この方法は型の表面形状を十分に精度よくl〜
ておけば、Fll、P面の精度はあまり良くなくても2
間隙は接着剤がつまるので、鏡面の精度は十分にでる利
点がある。
The aluminum vapor deposited layer is transferred to the PR, P plate and becomes a mirror surface. This method allows the surface shape of the mold to be determined with sufficient precision.
Even if the accuracy of Fll and P surfaces is not very good,
Since the gap is filled with adhesive, the mirror surface has the advantage of being sufficiently accurate.

この鏡面は、ガラス型(あるいは金属型)に接して形成
されたアルミ蒸着面が表面にでるので。
This mirror surface is due to the aluminum vapor deposited surface formed in contact with the glass mold (or metal mold) appearing on the surface.

非常に緻密で反射率の高い鏡面となる。アルミ蒸着層の
転写にあたり、ガラス型(あるいは金属型)との離型を
容易にするため、まずガラス型(あるいは金属型)の表
面に、シリコーン離型材を塗布したり、シリカ(ふつう
は−酸化硅素5in)を蒸着しておいてから、アルミ蒸
着するとよい。
The result is a mirror surface that is extremely dense and highly reflective. When transferring the aluminum evaporated layer, in order to facilitate release from the glass mold (or metal mold), first apply a silicone mold release agent to the surface of the glass mold (or metal mold) or apply silica (usually -oxidized) to the surface of the glass mold (or metal mold). It is advisable to vapor-deposit silicon (5 inches) before vapor-depositing aluminum.

接着剤は、接着層にボイドが残ると、鏡面のアルミ蒸着
層がその部分ではくすしたり凹みができ  ・たりする
ので、無溶剤形の接着剤が用いられる。
A solvent-free adhesive is used because if voids remain in the adhesive layer, the mirror-like aluminum vapor deposited layer will become dull or dented in those areas.

また、使用温度の上限(約100℃)においても十分に
安定であることが必要なため、一般には加熱硬化形のエ
ポキシ樹脂組成物が好ましい。この場合は、接着剤の硬
化温度(ふつうは80℃〜150℃)において、つまり
は転写する温度において、鏡面は平坦であるが、室温あ
るいは低温にすると1表皮部のF RPの基材の織目に
対応した表面の凹凸(「うねり」と称する)が発生する
ことが見出された。
Further, since it is necessary to be sufficiently stable even at the upper limit of the operating temperature (approximately 100° C.), a heat-curable epoxy resin composition is generally preferred. In this case, the mirror surface is flat at the curing temperature of the adhesive (usually 80°C to 150°C), that is, at the transfer temperature, but when the temperature is at room temperature or low temperature, the texture of the FRP base material in one skin part changes. It has been found that surface irregularities (referred to as "undulations") corresponding to the eyes occur.

(発明の目的) 本発明は、さらに鏡面のうねりを低減したFRP層品の
表面にニラクルを厚さ20μm〜80μmにメッキして
おき、アルミ蒸着層とニッケルメッキ層を無溶剤形の接
着剤で接着したのち、研摩面とアルミ蒸着層の間を離型
させて、FRP積層品にアルミ鏡面を転写させるFRP
製ミラーの製造法に関する。
(Purpose of the invention) The present invention further comprises plating Niracle to a thickness of 20 μm to 80 μm on the surface of an FRP layered product with reduced mirror waviness, and then bonding the aluminum vapor deposited layer and the nickel plating layer with a solvent-free adhesive. After bonding, the polished surface and the aluminum evaporated layer are released from the mold to transfer the aluminum mirror surface to the FRP laminate.
This invention relates to a method for manufacturing mirrors.

ミラー面は平面、凹面、凸面のいずれでもよい。The mirror surface may be flat, concave, or convex.

研摩面の材料としては、ガラスあるいはクロム。The material for the polished surface is glass or chrome.

チタン等の金属などを研摩したものが用いられる。Polished metal such as titanium is used.

研摩法には特に制限はない。There are no particular restrictions on the polishing method.

FRPとしては、ガラス繊維強化プラスチック(GFR
P )、カーボン繊維強化プラスチック(CFRP)、
アラミツド繊維強化プラスチック(KFRP)、あるい
はこれらを複合したハイブリツ)FRPなどが用いられ
る。
FRP is glass fiber reinforced plastic (GFR).
P), carbon fiber reinforced plastic (CFRP),
Aramid fiber-reinforced plastic (KFRP) or hybrid FRP (a composite of these) is used.

一般にFRP積層品は強化繊維基材(クロス。Generally, FRP laminates are made of reinforced fiber base material (cross).

マットなど)を積層し、熱硬化性樹脂組成物を含浸して
板状(積層板)に成型される。この強化繊維クロスのた
て糸とよと糸が同種でも異種でもよい。また樹脂として
は、エポキシ樹脂、不飽和ポリエステル樹脂、フェノー
ル樹脂、ポリイミド樹脂、その他通常のP R,Pに用
いられている樹脂なら、とくに制限はない。
mats, etc.) are laminated and impregnated with a thermosetting resin composition to form a plate (laminate). The warp and weft yarns of this reinforced fiber cloth may be of the same type or different types. Further, the resin is not particularly limited as long as it is an epoxy resin, unsaturated polyester resin, phenol resin, polyimide resin, or any other resin used in ordinary PR and P.

すなわち9本発明は通常の各種FRP積層品の表面に光
反射性の良い鏡面を形成させて、FRP製のミラーとし
たものであり、基板となるFRP積層品の構成について
は特に制約はない。
In other words, the present invention is an FRP mirror made by forming a mirror surface with good light reflectivity on the surface of various ordinary FRP laminates, and there are no particular restrictions on the structure of the FRP laminate that serves as the substrate.

第1図は本発明の製造法によって得られるFRP6一 製ミラーの一例を示す縦断面図である。ここでは平面ミ
ラーを示すが、凹面あるいは凸面ミラーの場合も全く同
様の構成となる。第1図で1は基板となるFRP板で、
2はニッケルメッキ層、3は接着剤層で、4が鏡面とな
るアルミ蒸着層である。
FIG. 1 is a longitudinal sectional view showing an example of a mirror made of FRP6 obtained by the manufacturing method of the present invention. Although a plane mirror is shown here, a concave or convex mirror has exactly the same configuration. In Figure 1, 1 is an FRP board that serves as a substrate.
2 is a nickel plating layer, 3 is an adhesive layer, and 4 is an aluminum vapor deposited layer with a mirror surface.

5はシリカ蒸着層であり、ガラス型(あるいは金属型)
からアルミ蒸着層を離型しやすくする作用と、鏡面の耐
擦傷性を増す効果がある。
5 is a silica vapor deposited layer, which is glass type (or metal type)
It has the effect of making it easier to release the aluminum vapor deposited layer from the mold and increasing the scratch resistance of the mirror surface.

第2図は1本発明のFRP製ミラーの製造法の一例を示
す縦断面図である。6はガラス型であり。
FIG. 2 is a longitudinal cross-sectional view showing an example of a method for manufacturing an FRP mirror according to the present invention. 6 is a glass type.

この表面にシリカ蒸着層5とアルミ蒸着層4を形成して
おく。これらの蒸着層は通常、10〜10Torrの高
真空中で、抵抗加熱法により、−酸化硅素と純アルミを
それぞれ蒸発させてガラス型に付着させる。一方でFR
P基板lには電気メツキ法あるいは化学メッキ法により
ニッケルメッキ層2を形成しておく。次に両者を接着剤
3によって接着したのち、ひきはがすと、シリカ蒸着層
5とガラス型6の間で離型して1表面を透明々シリカ蒸
着層5で保護されたアルミ蒸着層(鏡面)がFRPに転
写され、第1図のp RP ミラーができる。
A silica vapor deposition layer 5 and an aluminum vapor deposition layer 4 are formed on this surface. These vapor-deposited layers are usually deposited on a glass mold by vaporizing silicon oxide and pure aluminum, respectively, by a resistance heating method in a high vacuum of 10 to 10 Torr. On the other hand, FR
A nickel plating layer 2 is formed on the P substrate l by electroplating or chemical plating. Next, after bonding the two with adhesive 3, when peeled off, the mold is released between the silica vapor deposited layer 5 and the glass mold 6, leaving one surface transparent (mirror surface) of the aluminum vapor deposited layer protected by the silica vapor deposited layer 5. is transferred to FRP, creating the p RP mirror shown in FIG.

ニッケルメッキ層の厚さI″i20μmi208m未満
ねり低減の効果が少なく、80μmをこえると、ヒート
サイクルによってはくすする恐れがあるので、20μm
〜80μmの範囲とされる。
Thickness of the nickel plating layer I''i 20μmi Less than 208m The effect of reducing bending is small, and if it exceeds 80μm, there is a risk of fading due to heat cycles, so 20μm
The range is 80 μm.

(実施例) 本発明の詳細な説明する。部とあるのは重量部である。(Example) The present invention will be described in detail. Parts are by weight.

まず、大きさ30cm角で厚さ3■のガラス板の片面に
、−酸化硅素(大阪チタン製、200メツシュ)を2 
X 10−5Torr室温ふん囲気中で、約20 oX
/秒の速さで約2μm厚さに蒸着し、引つづき純アルミ
(真空材料製、99.99%)を同じふん囲気で、約1
00X/秒の速さで約1μm厚さに蒸着した。
First, on one side of a glass plate 30 cm square and 3 cm thick, 2 silicon oxides (made by Osaka Titanium, 200 mesh) were applied.
Approximately 20 oX in a room temperature atmosphere of 10-5 Torr
/second to a thickness of approximately 2μm, and then pure aluminum (made of vacuum material, 99.99%) was deposited in the same atmosphere to a thickness of approximately 2μm.
It was deposited to a thickness of about 1 μm at a rate of 00×/sec.

P R,P板としては、平織カーボンクロス(東し。P R, P plates are plain woven carbon cloth (east side).

トレカφ634:Nを4.5枚/ mmの密度で積層し
Trading cards φ634:N are laminated at a density of 4.5 sheets/mm.

脂環式エポキシ樹脂組成物(IJ−CC社製の脂環式エ
ポキシ樹脂ERL4221,100部、ヘキサハイドロ
無水フタル酸90部、ベンジルジメチルアミン 減圧含浸したのち.大気圧下で120℃,3時間。
A cycloaliphatic epoxy resin composition (100 parts of cycloaliphatic epoxy resin ERL4221 manufactured by IJ-CC), 90 parts of hexahydrophthalic anhydride, and benzyldimethylamine were impregnated under reduced pressure at 120° C. for 3 hours under atmospheric pressure.

さらに160°C,5時間かけて硬化して得た,大きさ
約250[+,角で厚さ10wのCFRP板を用いた。
Further, a CFRP plate having a size of approximately 250 mm and a thickness of 10 W at the corners, which was obtained by curing at 160° C. for 5 hours, was used.

このCFRP板の片面を≠150のサンドペー71ーで
荒らし,化学ニッケルメッキ法により,厚さIQμm,
20μm,40μm,60μm,80μm 。
One side of this CFRP board was roughened with ≠150 sandpaper 71, and chemically nickel plated to a thickness of IQ μm.
20μm, 40μm, 60μm, 80μm.

100μmの6種類のニッケルメッキ層をもうけた。ほ
かに比較例として,ニッケルメッキ層のないCFRP板
を供試した。
Six types of 100 μm nickel plating layers were formed. In addition, as a comparative example, a CFRP board without a nickel plating layer was used.

これらのCF)’LP板に前述と同じ脂環式エポキシ樹
脂組成物を塗布して,先のガラス板と合わせて。
The same alicyclic epoxy resin composition as mentioned above was applied to these CF)'LP plates and combined with the glass plates.

120℃,24時間かけて接着させたのちに離型し,ア
ルミ蒸着層とシリカ蒸着層をCFRP板に転写した。次
にこれらのCFRPミラーに,+100℃と一196°
C(液体窒素中浸漬)のヒートサイクルを加えたところ
,ニッケルメッキ層の厚さが80μmをこえるものは,
10回以内に, CFR,Pとニッケルメッキ層がはく
すした。しかしニッケルメッキ層の厚さが80μIn以
下のものは50回加えてもはくすしなかった。このよう
に、温度変化の激しい環境で使用することを考慮すると
,ニッケルメッキ層の厚さは80μm以下とされる。
After adhering at 120° C. for 24 hours, the mold was released, and the aluminum vapor deposited layer and silica vapor deposited layer were transferred to a CFRP board. Next, these CFRP mirrors were heated to +100°C and -196°.
When a heat cycle of C (immersion in liquid nitrogen) was applied, the thickness of the nickel plating layer exceeded 80 μm.
Within 10 times, the CFR, P and nickel plating layer were removed. However, when the thickness of the nickel plating layer was 80 μIn or less, it did not fade even after 50 times of application. Considering that the device is used in an environment with severe temperature changes, the thickness of the nickel plating layer is set to be 80 μm or less.

次にCFRPミラーの表面の凹凸を,触針式の表面粗さ
測定器(東京精密社製のSIJRFCOM)で測定した
ところ,ピッチの小さい凹凸(いわゆる表面あらさ)は
なく、カーボンクロスの織目と対応したうねりがみられ
た。このうねりは室温で測定した。
Next, when we measured the unevenness on the surface of the CFRP mirror using a stylus-type surface roughness measuring device (SIJRFCOM manufactured by Tokyo Seimitsu), we found that there were no unevenness with a small pitch (so-called surface roughness), which was similar to the texture of the carbon cloth. A corresponding undulation was observed. This waviness was measured at room temperature.

第3図は,CFRPの表皮層のカーボンクロスの織目と
,鏡面のうねりの測定結果の対応を示す図である。第3
図でC F l’L Pの表皮層を形成するカーボンク
ロス7の,8はたて糸で9はよこ糸である。
FIG. 3 is a diagram showing the correspondence between the texture of the carbon cloth in the skin layer of CFRP and the measurement results of the waviness of the mirror surface. Third
In the figure, 8 is the warp thread and 9 is the weft thread of the carbon cloth 7 forming the skin layer of C F I'L P.

鏡面のうねりは測定線10に沿って測定した。結果Aは
ニッケルメッキ層がない場合であり.たて糸とよこ糸の
交差する部分が凸に,他の部分は凹になり,規則的なう
ねりがみられる。その高さは約0.7μmであった。結
果Bは厚さ20μmのニッケルメッキ層がある場合で,
うねりの高さは約0.2μmである。この程度以下のう
ねりならば。
The waviness of the mirror surface was measured along the measurement line 10. Result A is the case where there is no nickel plating layer. The area where the warp and weft intersect is convex, and the other areas are concave, creating regular undulations. Its height was about 0.7 μm. Result B is when there is a 20 μm thick nickel plating layer.
The height of the undulations is approximately 0.2 μm. If the swell is below this level.

鏡面としての反射率にほとんど影響を与えない。It has almost no effect on the reflectance as a mirror surface.

また厚さ10μmではうねりの高さ約0.5μmであり
、鏡面として不満足である。なおニッケルメッキ層の厚
さが40μm以上では、うねりは0.1μm以下の高さ
になる。以上の結果から、ニッケルメッキ層の厚さは2
0μm以上、80μm以下の範囲にすべきである。
Further, when the thickness is 10 μm, the height of the waviness is about 0.5 μm, which is unsatisfactory as a mirror surface. Note that when the thickness of the nickel plating layer is 40 μm or more, the waviness becomes 0.1 μm or less in height. From the above results, the thickness of the nickel plating layer is 2
It should be in the range of 0 μm or more and 80 μm or less.

(発明の効果) 本発明によって鏡面のうねりの低減されたFRP製ミラ
ーが提供される。
(Effects of the Invention) The present invention provides an FRP mirror with reduced mirror surface waviness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法によって得られるFrLP製ミ
ラーの一例を示す縦断面図、第2図はその製造法の一例
を示す縦断面図、第3図はPRP表面の強化繊維クロス
の織目と、鏡面のうねりの測定結果の対応を示す図であ
る。 符号の説明 1・・・PRP板     2・・・ニッケルメッキ層
3・・接着剤      4・・・アルミ蒸着層(鏡面
)5・・・シリカ蒸着層   6・・・ガラス型7・・
・カーボンクロス  8・・・たて糸901.よこ糸 
    1o・・・うねりの測定線竿1 口 $2の ! 第 3 口 1071ηt
Fig. 1 is a longitudinal cross-sectional view showing an example of a FrLP mirror obtained by the manufacturing method of the present invention, Fig. 2 is a longitudinal cross-sectional view showing an example of the manufacturing method, and Fig. 3 is a weave of reinforcing fiber cloth on the PRP surface. FIG. 6 is a diagram showing the correspondence between the eye and the measurement results of the waviness of the mirror surface. Explanation of symbols 1... PRP board 2... Nickel plating layer 3... Adhesive 4... Aluminum vapor deposited layer (mirror surface) 5... Silica vapor deposited layer 6... Glass mold 7...
・Carbon cloth 8...Warp thread 901. weft
1o... Swell measurement line rod 1 mouth $2! 3rd mouth 1071ηt

Claims (1)

【特許請求の範囲】[Claims] 1、研摩面にアルミを蒸着し、繊維強化プラスチック積
層品の表面にニッケルを厚さ20μm〜80μmにメッ
キしておき、アルミ蒸着層とニッケルメッキ層を無溶剤
形の接着剤で接着したのち、研摩面とアルミ蒸着層の間
を離型させて、繊維強化プラスチック積層品にアルミ鏡
面を転写させることを特徴とする繊維強化プラスチック
製ミラーの製造法。
1. Deposit aluminum on the polished surface, plate the surface of the fiber-reinforced plastic laminate with nickel to a thickness of 20 μm to 80 μm, and bond the aluminum deposited layer and nickel plating layer with a solvent-free adhesive. A method for manufacturing a fiber-reinforced plastic mirror, characterized by releasing the polished surface and the aluminum vapor-deposited layer to transfer an aluminum mirror surface onto the fiber-reinforced plastic laminate.
JP21538284A 1984-10-15 1984-10-15 Production of fiber reinforced plastic mirror Pending JPS6194002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21538284A JPS6194002A (en) 1984-10-15 1984-10-15 Production of fiber reinforced plastic mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21538284A JPS6194002A (en) 1984-10-15 1984-10-15 Production of fiber reinforced plastic mirror

Publications (1)

Publication Number Publication Date
JPS6194002A true JPS6194002A (en) 1986-05-12

Family

ID=16671371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21538284A Pending JPS6194002A (en) 1984-10-15 1984-10-15 Production of fiber reinforced plastic mirror

Country Status (1)

Country Link
JP (1) JPS6194002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131728A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Layered sheet
JPWO2019131728A1 (en) * 2017-12-28 2019-12-26 積水化学工業株式会社 Laminated sheet

Similar Documents

Publication Publication Date Title
US4915494A (en) Carbon-carbon mirror for space applications
US4451119A (en) Composite mirror and method of construction
US4256378A (en) Graphite-glass composite laser mirror
MXPA97002059A (en) Preimpregnado material unidirectionally oriented of thin thread and laminar unit for printed wiring board prepared from mi
US20120162772A1 (en) Mirror And A Method Of Manufacturing Thereof
EP0309520A1 (en) Lightweight silicon carbide mirror.
US5178709A (en) Method of manufacturing a reflector of fiber reinforced plastic material
US3497377A (en) Mirror configurations
JPH04320201A (en) Reflection mirror
EP0276617B1 (en) Ultra-light mirror and its manufacturing process
US4666264A (en) Mirror using transparent synthetic resin plate
US5744252A (en) Flexible ceramic-metal insulation composite and method of making
JPS6194002A (en) Production of fiber reinforced plastic mirror
US4357286A (en) Method of making a graphite-glass composite laser mirror
US4451118A (en) Composite laser mirror
JPS6046504A (en) Polygon mirror
JPS6114603A (en) Carbon fiber-reinforced plastic mirror
US5895720A (en) High precision replication system
JPS6127503A (en) Production of carbon fiber reinforced plastic mirror
JPS62174701A (en) Production of carbon fiber reinforced plastic mirror
US3671306A (en) Boron carbide film product
CN105137512A (en) Manufacturing method of ultra-light reflector
JPS6127504A (en) Production of carbon fiber reinforced plastic mirror
JP6889897B2 (en) Manufacturing method of FRP mirror structure
JP4024596B2 (en) Reflector for optical equipment and method for manufacturing the same