JPS62174339A - Production of alloy by plasma - Google Patents

Production of alloy by plasma

Info

Publication number
JPS62174339A
JPS62174339A JP1350686A JP1350686A JPS62174339A JP S62174339 A JPS62174339 A JP S62174339A JP 1350686 A JP1350686 A JP 1350686A JP 1350686 A JP1350686 A JP 1350686A JP S62174339 A JPS62174339 A JP S62174339A
Authority
JP
Japan
Prior art keywords
alloy
plasma
alloy layer
thermally sprayed
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1350686A
Other languages
Japanese (ja)
Inventor
Itsuo Arima
有馬 逸男
Hirokazu Tokoro
博和 野老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1350686A priority Critical patent/JPS62174339A/en
Publication of JPS62174339A publication Critical patent/JPS62174339A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy which permits easy and exact control of compsn. and concn. by spraying a particulate metal which consists of >=2 kinds of molten raw material metals and is supplied into plasma flow to an object to be thermally sprayed to form an alloy layer then separating said alloy layer therefrom. CONSTITUTION:The plasma flow is formed by an ordinary plasma generator in a nonoxidizing atmosphere consisting of a rare gas such as He having preferably a low pressure lower than the atmospheric pressure. The particulate metal formed by supplying and melting at least two kinds of the raw material metals, for example, prescribed ratios of Ni powder and Ti powder into the plasma flow is sprayed to the object to be thermally sprayed to form the alloy layer. A metal such as, for example, Al, Zn or Mg is used for the above-mentioned object to be thermally sprayed. The above-mentioned alloy layer is separated from the object to be thermally sprayed, by which the intended alloy is obtd. Since the alloy is supplied to the plasma flow of a high temp. the metals are instantaneously heated and melted. The oxidation of the metals is thus prevented and the fluctuation of the compsn. during the production process is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は合金の製造法に関し、より詳細には合金の組
成および濃度を容易かつ正顎に制御できる製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an alloy, and more particularly to a method for producing an alloy that allows easy and precise control of the composition and concentration of the alloy.

〔従来技術およびその問題点〕[Prior art and its problems]

従来、合金は、所定idの合金原料金属を溶解炉等で加
熱、溶融、および混合して製造されている。
Conventionally, alloys are manufactured by heating, melting, and mixing alloy raw material metals with a predetermined ID in a melting furnace or the like.

特に合金の組成および濃度が厳密に定められている合金
を製造する場合などは、真空中でまたは非酸化性雰囲気
中で、正確に秤5iされた原料3属を、貞空溶解炉を用
いて加熱・溶融・合金化し、次いで冷却しC製造されで
いる。例えば、形状記↑j合金であるCu−14,5A
N−4,4Ni合金を製造するJW合、この合金と同じ
組成を↑体として持つfil!銅、純アルミニウム、紳
ニッケルを各々秤v11シ、真空?8解炉で加熱・溶n
!・混合してこれを冷IJ1シ、合金を製箔している。
Particularly when manufacturing alloys whose composition and concentration are strictly defined, accurately weighed three groups of raw materials are used in a vacuum melting furnace in a vacuum or in a non-oxidizing atmosphere. C is manufactured by heating, melting, alloying, and then cooling. For example, Cu-14,5A, which is an alloy with shape ↑j
JW Co., Ltd., which manufactures N-4,4Ni alloy, has the same composition as this alloy as ↑ body! Copper, pure aluminum, and nickel weighing v11 each, vacuum? 8 Heating and melting in a melting furnace
!・Mix and use cold IJ1 to make alloy into foil.

しかし4^から、従来の合金gA造法では、加熱・溶y
A時に溶融表面に酸化皮膜を形成し、さらにそのスラグ
中へ合金成分が溶は込んで、また、合金成分が蒸発して
、出発原料の組成と17られた合金の組成とが相違して
いた。したがって、従来の合金製造法では製造工程中で
の合金成分の1員失を考慮して出光原料の配合量を決め
る必要があった。
However, from 4^, in the conventional alloy gA manufacturing method, heating and melting
At the time of A, an oxide film was formed on the molten surface, and the alloy components melted into the slag, and the alloy components evaporated, resulting in a difference between the composition of the starting material and the composition of the prepared alloy. . Therefore, in the conventional alloy manufacturing method, it was necessary to determine the blending amount of Idemitsu raw materials in consideration of the loss of one member of the alloy component during the manufacturing process.

また、合金成分の種類によっては成分間の反応性を考慮
して溶融順序を決定するなど非常な煩雑な工程とを必要
としていた。
Furthermore, depending on the type of alloy components, extremely complicated steps are required, such as determining the melting order in consideration of the reactivity between the components.

この発明は上述の事情に名みなされたものであり、その
目的とするところは煩′jg1<>操作・手順を必要と
けず合金の組成および濃度を容易かつ正確(、制御する
ことのできる合”金の製造法を提供することである。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to easily and accurately control the composition and concentration of an alloy without the need for complicated operations and procedures. ``Providing a method for producing gold.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記の目的のために種々の試験・研究を行
なった結果、金属の加熱・溶融をプラズマ流のなかで行
なえば、その発明の目的のヱ成の有効であることを見出
し、この発明を完成するに至った。
As a result of conducting various tests and research for the above-mentioned purpose, the present inventor found that the object of the invention can be effectively formed by heating and melting metal in a plasma flow. This invention was completed.

すなわち、この発明の合金の製造法は、プラズマ流中に
少なくとも2種の原γ31金属を供給しC溶融し、溶融
した微粒金属をm溶射体に吹き付けて合金層を形成し、
次いで得られた合金層を被溶射体から分離して合金を′
lIJ造づることを含むしのである。
That is, the method for producing the alloy of the present invention involves supplying at least two types of raw γ31 metals into a plasma stream, melting them, and spraying the molten fine metal particles onto a sprayed body to form an alloy layer.
Next, the obtained alloy layer is separated from the object to be thermally sprayed to remove the alloy.
This is a book that includes making lIJ.

この発明の好ましい態様として、低圧の非酸化性雰囲気
中で原料金属を溶かして吹き付けることができる。
In a preferred embodiment of this invention, the raw metal can be melted and sprayed in a low-pressure non-oxidizing atmosphere.

別の態様として、プラズマ流に供給する原料金属の組成
を変化させて、1qられる合金層に85度勾配を設りる
ことができる。
Alternatively, the composition of the source metal supplied to the plasma stream can be varied to create an 85 degree gradient in the 1q alloy layer.

以下、この発明の製造法をより詳細に説明する。The manufacturing method of this invention will be explained in more detail below.

この発明に適用できる合金の種類に特に制限はない。し
かし、この発明によって合金の組成および濃度を容易か
つ正確に制御できるので、合金組成により大幅に変態温
度が変わる形状記憶合金など極めて狭い許容範囲の組成
を持つ合金を製造するのに、この発明の合金製造法を適
用することができる。
There are no particular limitations on the type of alloy that can be applied to this invention. However, because the composition and concentration of the alloy can be easily and accurately controlled by the present invention, it can be used to produce alloys with extremely narrow composition tolerances, such as shape memory alloys, where the transformation temperature varies significantly depending on the alloy composition. Alloy manufacturing methods can be applied.

この発明に用いられるプラズマは、通常のプラズマ発生
装置から得られるプラズマ流でよい。例えば、アノード
とカソード間に、直流の電圧を印荷し電気アークを発生
さVる。ここへArガスを注入すると、アークにより加
熱され熱電離が生じ、Ar→Ar+十〇−の反応により
遊11iff電子を生じ、高い電気伝導性を示す様にな
る。これに反して水冷されたアノード壁に近い所を通過
するガスは冷却されてAr4−Ar++e−の反応が進
み、電気抵抗が高くる。このため電気抵抗の低い中心部
に電流が集中し、電流密度が1胃する事により3000
0にという超高温が発生し、ガスは膨張して激しいジェ
ットとなりノズルから噴出する。
The plasma used in this invention may be a plasma stream obtained from a conventional plasma generator. For example, a direct current voltage is applied between an anode and a cathode to generate an electric arc. When Ar gas is injected here, it is heated by the arc and thermal ionization occurs, and free 11iff electrons are generated by the reaction of Ar→Ar+10−, resulting in high electrical conductivity. On the other hand, gas passing near the water-cooled anode wall is cooled and the Ar4-Ar++e- reaction progresses, resulting in a high electrical resistance. For this reason, the current is concentrated in the center with low electrical resistance, and the current density is reduced to 3000.
Extremely high temperatures, down to zero, are generated, and the gas expands into a violent jet that is ejected from the nozzle.

プラズマ溶射を行なうの雰囲気は、好ましくは低圧、大
気圧より低い圧力の非酸化性雰囲気である。その雰囲気
の具体例どしては、ヘリウム、アルゴンなどの希ガス、
水素、窒素などがある。
The atmosphere in which plasma spraying is carried out is preferably a low pressure, non-oxidizing atmosphere at a pressure lower than atmospheric pressure. Specific examples of such atmospheres include rare gases such as helium and argon,
Hydrogen, nitrogen, etc.

プラズマ流の中で加熱・溶融された金属は微粒となって
被溶射体の表面に衝突し、そこに付着して蓄積すると共
に冷却固化する。この発明で用いられる被溶射体は、得
られた合金から支障なく分離できるものであれば材質・
形状などは問わない。
The metal heated and melted in the plasma stream becomes fine particles that collide with the surface of the object to be thermally sprayed, where they adhere and accumulate, and are cooled and solidified. The material to be thermally sprayed used in this invention can be made of any material that can be separated from the obtained alloy without any trouble.
The shape doesn't matter.

その形状としては単なる平板、マンドレルの他に、種々
の凹凸を表面に持つ型板などがある。被溶射体の材質と
しては、酸またはアルカリに容易に溶解するアルミニウ
ム、亜鉛、マグネシウムなどの金属、水などに容易にF
J解する塩化ナトリウム、塩化カリウム、5A酸ナトリ
ウムなどの無機物、耐熱性プラスデック、セラミックス
などがあり、上記の物質と他の物質との複合材であって
らよい。
Its shape includes a simple flat plate, a mandrel, and a template with various irregularities on its surface. The materials to be thermally sprayed include metals such as aluminum, zinc, and magnesium that easily dissolve in acids or alkalis, and metals that easily dissolve in water, etc.
Examples include inorganic substances such as sodium chloride, potassium chloride, and sodium 5A acid, heat-resistant Plus Deck, and ceramics, and may be composite materials of the above substances and other substances.

次いで、添付図面を参照してこの発明の合金製造法を説
明する。第1図は、この発明の合金製造法に用いること
のできる低圧プラズマ溶oA装置である。このプラズマ
溶射装置1は、プラズマ流を発生させる溶射ガン2、プ
ラズマ流が吹き込まれる溶射室3、溶射室3内にあって
プラズマ流が衝突する試料台4から主になる。溶射ガン
2には、溶用電澱5とプラズマアークガス供給源6とが
接続または連通している。溶射ガン2から発生ずるプラ
ズマ流に原料金属を供給づるために、溶q1ガン2近傍
に原料金属粉末の供給口が設けられ、その供給口に粉末
供給装置7が連通している。また、溶射?δ3の内部を
低圧するためにIJF’気装胃8が設(プられ、圧力検
知装置9を介して溶射至3と連通している。溶射至3の
内部の雰囲気を非酸化性にするために、雰囲気ガス源1
0がバルブ11を介して溶射至3に連通してる。
Next, the alloy manufacturing method of the present invention will be explained with reference to the accompanying drawings. FIG. 1 shows a low-pressure plasma melting apparatus that can be used in the alloy manufacturing method of the present invention. This plasma spraying apparatus 1 mainly includes a thermal spraying gun 2 that generates a plasma stream, a thermal spraying chamber 3 into which the plasma stream is blown, and a sample stage 4 located inside the thermal spraying chamber 3 and on which the plasma stream collides. The thermal spray gun 2 is connected or communicated with a melting electrolyte 5 and a plasma arc gas supply source 6 . In order to supply raw metal powder to the plasma flow generated from the thermal spray gun 2, a raw metal powder supply port is provided near the melting Q1 gun 2, and a powder supply device 7 communicates with the supply port. Also, thermal spraying? An IJF' pneumatic gas chamber 8 is installed to maintain a low pressure inside the δ3, and communicates with the thermal spraying chamber 3 via a pressure sensing device 9.In order to make the atmosphere inside the thermal spraying chamber 3 non-oxidizing. , atmospheric gas source 1
0 communicates with the thermal spraying port 3 via a valve 11.

上記のプラズマ溶射装置を用いて、この発明の合金製造
法を実施する。まず、被溶射体12を、XYZ軸方向に
移動および回転可能な試料台4の上に耐重し、排気装置
8を用いて溶射至3内部をQ、1TOrr以下の低圧状
態にして次いで雰囲気ガス源10から、例えばアルゴン
ガスを♂射室3内に導入し、例えば10〜5 Q Q 
Torr稈度の圧力に設定する。溶射電源5、およびプ
ラズマアークガス源6からエネルギーおよびガスを供給
して溶射ガン2でプラズマ流を吐出させる。プラズマ流
13は溶射字3内部に吹き込まれる。原11金属の粉末
は供給装置7から溶射ガン近傍のプラズマ流中に供給さ
れる。高温のプラズマによって金属は加熱・溶融されて
、微粒の溶融金属となってプラズマ流と共に試料台4上
の被溶射体12の表面に衝突してそこに付着し、冷却固
化して合金層を形成する。
The alloy manufacturing method of the present invention is carried out using the plasma spraying apparatus described above. First, the object to be thermally sprayed 12 is placed on a sample stage 4 that can be moved and rotated in the XYZ axis directions, and the interior of the thermal spraying chamber 3 is brought to a low pressure of Q, 1 TOrr or less using the exhaust device 8, and then the atmospheric gas source is For example, argon gas is introduced into the firing chamber 3 from 10 to 5 Q Q
Set the pressure to Torr culm. Energy and gas are supplied from a thermal spray power supply 5 and a plasma arc gas source 6 to cause the thermal spray gun 2 to discharge a plasma stream. The plasma stream 13 is blown into the sprayed character 3. The raw metal powder 11 is supplied from a supply device 7 into a plasma stream near the thermal spray gun. The metal is heated and melted by the high-temperature plasma, becoming fine particles of molten metal, which collide with the plasma flow and adhere to the surface of the object to be sprayed 12 on the sample stage 4, and are cooled and solidified to form an alloy layer. do.

第2図は、平板状の被溶射体21に合金層22が形成さ
れた状態を示す斜面図であり。第3図は合金層22が形
成されて、マンドレルの被溶用体21の所面図である。
FIG. 2 is a perspective view showing a state in which an alloy layer 22 is formed on a flat plate-shaped object 21 to be thermally sprayed. FIG. 3 is a top view of the workpiece 21 of the mandrel on which the alloy layer 22 has been formed.

このように合金層が形成された被溶射体は、例えば、そ
の材質がアルミニウムなどの金属である場合酸またはア
ルカリで溶解され、水溶性のMQ物であるとき水中に浸
漬されて溶解され、合金層が被溶射体から分離される。
For example, if the material is a metal such as aluminum, the material to be thermally sprayed with an alloy layer formed thereon is dissolved in acid or alkali, and if the material is a water-soluble MQ material, it is immersed in water and dissolved. The layer is separated from the sprayed object.

第4図は第2図で示した金属層22が被FIm体21か
ら分離された合金を示す。また′;XS5図は、第3図
で示した合金層22が被’f8射体21から分離された
合金を示す。
FIG. 4 shows an alloy in which the metal layer 22 shown in FIG. 2 has been separated from the FIm body 21. In FIG. Furthermore, the XS5 diagram shows an alloy in which the alloy layer 22 shown in FIG. 3 is separated from the f8 projectile 21.

被溶射体から分離された合金は、そのままの形状で使用
に供しても、また圧延などの機械加工または熱処理を行
なってもよい。
The alloy separated from the object to be thermally sprayed may be used as is or may be subjected to mechanical processing such as rolling or heat treatment.

〔実施例〕〔Example〕

この発明を、以下の例を示して具体的に説明する。 This invention will be specifically explained with reference to the following examples.

X溝目丸ユ 平均粒径10〜44μ面のニッケル粉末およびチタン粉
末を原子%で50 : 50 (Iffi%で55.1
0:44.90)の割合で混合し、機械的にけl拌して
原料金属を調整した。また、塩化す1−リウムを直径2
0#長さ100mの円柱状に圧1tif成形して被溶射
体を準備した。
Nickel powder and titanium powder with an average grain size of 10 to 44μ are mixed in an atomic% ratio of 50:50 (Iffi% is 55.1
0:44.90) and mechanically stirred to prepare raw metals. In addition, 1-lium chloride with a diameter of 2
A material to be thermally sprayed was prepared by molding the material into a cylindrical shape with a length of 100 m under 1tif pressure.

上記の原料金属おにび被溶射体を、プラズマ溶射装置に
装入して、プラズマ流によって合金を製造した。この例
において用いられたプラズマ溶鋼% F面の仕様tよ次
のとおりである。
The above-mentioned raw metal rice and the object to be thermally sprayed were loaded into a plasma spraying apparatus, and an alloy was manufactured by plasma flow. The specifications of the plasma molten steel % F surface used in this example are as follows.

電  K!             60〜70 〔
kv〕プラズマアークガス  アルゴン プラズマ温度     15000 (℃)溶CD窄雰
囲気     アルゴン 圧  力                   1 
5 0  (torr)1 mm厚の合金層は、水中に
浸iδし′CIH化す1〜リウムの被溶射体を溶解さけ
て分離した。IIノられた円in状のニッケルーヂタン
合金の化学組成を測定したその結果と第1表に示す。
Electric K! 60-70 [
kv] Plasma arc gas Argon plasma temperature 15000 (℃) Molten CD confined atmosphere Argon pressure 1
The alloy layer with a thickness of 50 (torr) 1 mm was separated by immersing it in water iδ to avoid melting the 1 to 1-lium material to be subjected to CIH. The chemical composition of the circular in-shaped nickel-ditane alloy was measured and the results are shown in Table 1.

L狡斑ユ 電解ニッケルおよびスポンジチタンを、原子%で50 
: 50 (歪ら1%で55.10:44.90>の割
合で真空溶解炉に装入して合金塊を1!′7た。このニ
ッケル〜チタン合金塊を熱間圧延してnざ1mtaの合
金板を1!7た。この合金板の化学組成を測定した。こ
の結果を第1表に示す。
L-electrolytic nickel and sponge titanium at atomic% of 50
The alloy ingot was charged into a vacuum melting furnace at a ratio of 55.10:44.90 (at a strain of 1%) to form an alloy ingot of 1!'7. This nickel-titanium alloy ingot was hot rolled and A 1.7 mta alloy plate was prepared.The chemical composition of this alloy plate was measured.The results are shown in Table 1.

この表かられかるようにこの発明の方法による合金(実
施例1ンは、出発組成〈目標組成)から殆んど変化して
いないのに対して、従来の只7溶解では人さく組成変動
が起っている。
As can be seen from this table, the alloy produced by the method of the present invention (Example 1) shows almost no change from the starting composition (target composition), whereas the conventional melting process causes significant compositional fluctuations. It's happening.

第1表 実施例3 被溶用体とにアルミニウムを用いた以外、実施例1と同
様に厚さ1 mmの合金層を液溶q4体表面上に形成し
た。この被溶04体を0.3Nの苛性ソーダ溶液中での
浸iδによって溶解して、円筒状のニッケルーチタン合
金を19だ。この合金の化学組成は実施例1と同じ測定
値を示した。
Table 1 Example 3 An alloy layer with a thickness of 1 mm was formed on the surface of the liquid q4 body in the same manner as in Example 1 except that aluminum was used for the body to be melted. This melted body 04 was melted by immersion iδ in a 0.3N caustic soda solution to form a cylindrical nickel-titanium alloy 19. The chemical composition of this alloy showed the same measured values as in Example 1.

実施例4 被溶射体の一端の位置で、平均粒径10〜4471Hの
ニッケルおよびチタン粉末を原子%で50 : 50の
割合でプラズマ流に供給し、被溶射体の位置を移動する
と共に組成比を変化させ、被溶射体の他端の位置で、ニ
ッケルとチタンの割合が51:49になるようにした以
外、実施例10同様に合金層を形成した。この合金層を
被溶射体から分離して、所望の合金を得た。この合金の
化学組成を測定すると、合金の位置によってニッケルと
チタンの組成比が連続的に変化していることがわかった
Example 4 At one end of the object to be thermally sprayed, nickel and titanium powders with an average particle size of 10 to 4471H were supplied to the plasma stream at a ratio of 50:50 at %, and the composition ratio was changed while moving the position of the object to be thermally sprayed. An alloy layer was formed in the same manner as in Example 10, except that the ratio of nickel and titanium was changed to 51:49 at the other end of the object to be thermally sprayed. This alloy layer was separated from the object to be thermally sprayed to obtain a desired alloy. When the chemical composition of this alloy was measured, it was found that the composition ratio of nickel and titanium changes continuously depending on the position of the alloy.

〔作用おJ:び発明の効果] この発明の合金製造法では、原ri金屈は15000’
に以上のプラズマ流に供給されるので、金属の加熱・溶
融は瞬間的に行なわれ、しかも高速のプラズマ流に流さ
れ(直ちに被溶Q(体表面に衝突して付着し、冷却・固
化される。したがって、金属の酸化を防止することがで
き、製造工程中での組成変動を少なくすることができる
[Function and effect of the invention] In the alloy manufacturing method of this invention, the original RI is 15,000'
The metal is heated and melted instantaneously because the metal is heated and melted instantaneously.Moreover, the metal is heated and melted instantaneously. Therefore, oxidation of the metal can be prevented, and compositional fluctuations during the manufacturing process can be reduced.

プラズマ流に供給する原料金属の組成比を変えることに
よって、従来の溶解炉による合金製造法で全く無理であ
った濃度勾配をもつ合金を極めて容易に製造することが
できる。
By changing the composition ratio of the raw metals supplied to the plasma stream, it is possible to extremely easily manufacture an alloy with a concentration gradient, which was completely impossible with the conventional alloy manufacturing method using a melting furnace.

この発明においてプラズマ流の中で加熱・溶融するので
、従来の合金製造法で不可能であった比重差の大きな金
属間の合金も容易に調整することができる。
In the present invention, since the metal is heated and melted in a plasma stream, it is possible to easily prepare alloys between metals with a large difference in specific gravity, which was impossible with conventional alloy manufacturing methods.

出発組成と実質的に同一の組成を有する合金が冑られる
ので、組成によって大幅に変態温度が変わり、極めて狭
い許容範囲の組成をもつ合金の製造に適している。
Because the alloy is produced with a composition substantially the same as the starting composition, the transformation temperature varies considerably with composition, making it suitable for producing alloys with compositions within very narrow tolerances.

液溶Q=j体の表面に所望の凹凸を設けて型とすること
にJ:って、合金層の形成と成形加工を同■5に行なう
ことができる。
By forming desired irregularities on the surface of the liquid solution Q=j and forming a mold, the formation and molding process of the alloy layer can be performed in the same manner as in (5).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法に使用できるブラズ7溶oA装
首例を示ず概略図、第2図および第3図は合金層が形成
された被溶射体を示す図、第4図a3よび第5図は被溶
用体から分離された合金層を示づ図である。 1・・・プラズマ溶用装置、2・・・溶射ガン、3・・
・溶Q(’l、4・・・試料台、5・・・電源、6・・
・プラズマアークガス、7・・・原料供給装置d、8・
・・排気装置、9・・・圧力検知器、10・・・雰囲気
ガス源、11・・・弁、12・・・被溶用体、13・・
・プラズマ流、21・・・被溶射体、22・・・合金層
。 出願人代理人  佐  詮  −〃t ′$1図
Fig. 1 is a schematic diagram showing an example of a Blaz 7 melt OA neck that can be used in the method of the present invention, Figs. 2 and 3 are views showing an object to be thermally sprayed on which an alloy layer is formed, and Fig. 4 a3 and FIG. 5 is a diagram showing the alloy layer separated from the object to be melted. 1... Plasma melting device, 2... Thermal spray gun, 3...
・Solution Q('l, 4...sample stage, 5...power supply, 6...
・Plasma arc gas, 7... Raw material supply device d, 8.
... Exhaust device, 9... Pressure detector, 10... Atmospheric gas source, 11... Valve, 12... Body to be melted, 13...
- Plasma flow, 21... object to be thermally sprayed, 22... alloy layer. Applicant's agent: Akira Sa -〃t'$1 Figure

Claims (1)

【特許請求の範囲】 1、プラズマ流中に少なくとも2種の原料金属を供給し
て溶融し、溶融した微粒金属を被溶射体に吹き付けて合
金層を形成し、次いで得られた合金層を被溶射体から分
離して合金を製造することを特徴とする合金製造法。 2、低圧の非酸化性雰囲気中で原料金属を溶かして吹き
付ける、特許請求の範囲第1項記載の合金製造法。 3、プラズマ流に供給する原料金属の組成を変化させて
、合金層に濃度勾配を生じさせる、特許請求の範囲第1
項または第2項記載の合金製造法。
[Claims] 1. At least two kinds of raw material metals are supplied into a plasma stream and melted, the molten fine metal particles are sprayed onto the object to be thermally sprayed to form an alloy layer, and then the obtained alloy layer is covered. An alloy manufacturing method characterized by manufacturing the alloy separately from the thermal sprayed body. 2. The alloy manufacturing method according to claim 1, wherein the raw metal is melted and sprayed in a low-pressure non-oxidizing atmosphere. 3.Claim 1 in which a concentration gradient is created in the alloy layer by changing the composition of the raw metal supplied to the plasma stream.
The method for producing the alloy according to item 1 or 2.
JP1350686A 1986-01-24 1986-01-24 Production of alloy by plasma Pending JPS62174339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1350686A JPS62174339A (en) 1986-01-24 1986-01-24 Production of alloy by plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1350686A JPS62174339A (en) 1986-01-24 1986-01-24 Production of alloy by plasma

Publications (1)

Publication Number Publication Date
JPS62174339A true JPS62174339A (en) 1987-07-31

Family

ID=11835022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1350686A Pending JPS62174339A (en) 1986-01-24 1986-01-24 Production of alloy by plasma

Country Status (1)

Country Link
JP (1) JPS62174339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208868A1 (en) * 2002-03-01 2003-09-18 Mtu Aero Engines Gmbh Vibration damping component and/or its coating is produced by plasma spraying or rapid solidification processing deposition of a metal alloy or intermetallic compound
KR100485257B1 (en) * 2002-07-11 2005-04-25 한국기계연구원 A method for manufacturing aluminium based alloy using plasma

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208868A1 (en) * 2002-03-01 2003-09-18 Mtu Aero Engines Gmbh Vibration damping component and/or its coating is produced by plasma spraying or rapid solidification processing deposition of a metal alloy or intermetallic compound
DE10208868B4 (en) * 2002-03-01 2008-11-13 Mtu Aero Engines Gmbh Method for producing a component and / or a layer of a vibration-damping alloy or intermetallic compound and component produced by this method
KR100485257B1 (en) * 2002-07-11 2005-04-25 한국기계연구원 A method for manufacturing aluminium based alloy using plasma

Similar Documents

Publication Publication Date Title
TWI403598B (en) Coating process for manufacture or reprocessing of sputter targets or x-ray anodes
Heidloff et al. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing
JP7311633B2 (en) Nickel-base alloy for powder and method for producing powder
Entezarian et al. Plasma atomization: A new process for the production of fine, spherical powders
JP2009527640A (en) High density molybdenum metal powder and method for producing the same
JP4465662B2 (en) Method for producing metal powder and method for producing target material
KR20200131906A (en) ODS alloy powder, its manufacturing method by plasma treatment, and its use
JPWO2003037553A1 (en) Method and apparatus for producing metal powder
JPS59208006A (en) Production of alloy fines
US6454994B1 (en) Solids comprising tantalum, strontium and silicon
US4818283A (en) Dispersion hardened copper alloys and production process therefore
JP4137643B2 (en) Method and apparatus for producing metal powder
US4933241A (en) Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
JPS62174339A (en) Production of alloy by plasma
JP4895561B2 (en) Metal glass spray coating and method for forming the same
JP2699316B2 (en) Electrode material, method for manufacturing electrode material, and method for manufacturing electrode
JP5099287B2 (en) Method for producing spherical molybdenum metal particles
Moss et al. The role of arc-plasma in metallurgy
CN114855050A (en) High-strength light-weight refractory high-entropy alloy and preparation method thereof
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JP2007084901A (en) Metal glass thin film laminated body
JPH05453B2 (en)
JPH05195107A (en) Production of grain-dispersed amorphous alloy
US3786854A (en) Method of making brazing alloy
JPH03100157A (en) Production of shape memory alloy