JPS62174320A - Nitrogen atmosphere furnace - Google Patents

Nitrogen atmosphere furnace

Info

Publication number
JPS62174320A
JPS62174320A JP1655586A JP1655586A JPS62174320A JP S62174320 A JPS62174320 A JP S62174320A JP 1655586 A JP1655586 A JP 1655586A JP 1655586 A JP1655586 A JP 1655586A JP S62174320 A JPS62174320 A JP S62174320A
Authority
JP
Japan
Prior art keywords
furnace body
oxygen
furnace
steel products
treating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1655586A
Other languages
Japanese (ja)
Inventor
Masahiro Matsumoto
松本 正博
Kenji Kawate
賢治 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1655586A priority Critical patent/JPS62174320A/en
Publication of JPS62174320A publication Critical patent/JPS62174320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To remove the residual oxygen in an atmosphere gas without using a large- scale removing device by providing a treating material which reacts more strongly with oxygen as compared to iron and carbon and does not generate gaseous CO, CO2, steam and H2 by reacting with the oxygen in a furnace body. CONSTITUTION:The atmosphere gas (N2) heated by upper and lower radiant tubes 2, 3 provided in the furnace body 1 of a heat treatment furnace is stirred by stirring fans 4 pivotally supported on the ceiling surface of the furnace body 1. Steel products 9 are imposed on trays 8 and are conveyee through the inlet 1A of the furnace body in the longitudinal direction of the furnace body 1 along conveying rollers 5 above tubes 3 in the body 1 until the steel products are ejected through the outlet 1B of the furnace body B onto an ejection table 7. The treating material 10 is fixed to one end of, for example, each tray 8 in this embodiment. A material such as, for example, Zn, Cr or Mn, which has the higher reactivity with O2 than Fe of the steel products and does not generate CO, CO2 H2O and H2 by reacting with O2 is used for the treating material 10. The treating material 10 and O2 are thereby made to react with each other before the steel products 9 react with O2, by which the decarburization of the steel products 9 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素を炉内雰囲気ガスとして用いて、金属材料
の脱炭を防止し乍ら熱処理を施す様に設けられる窒素雰
囲気炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nitrogen atmosphere furnace that is installed to perform heat treatment while preventing decarburization of metal materials by using nitrogen as the furnace atmosphere gas.

〔従来の技術〕[Conventional technology]

一般に、金属材料にはその材質を調質すべく熱処理炉に
て焼鈍、焼入れ等の熱処理が施されるのであるが、酸素
による同金屈材料の酸化及び脱炭を防止するために窒素
等の雰囲気ガス中にて行なわれることが多い。しかしな
がら、雰囲気ガスの純度が低くてその中に残存酸素を含
有していると、下記の様に鋼材(炭素鋼)の熱処理時に
おいて脱炭を生ずるという問題がある。即ち、 ■ 鋼材に酸素ガスが作用して脱炭する場合F e :
+ C+ 1 / 20.−)3Fe+CO■ 鋼材の
表層にスケールが生成し、スケールの酸素で脱炭する場
合 F e + 1 / 2oz−+Fe○F e3C十F
 e O−+GO+4 F e上記の様にco(−酸化
炭素)ガスを発生することにより、次の様な新たな不具
合を将来することとなる。
Generally, metal materials are subjected to heat treatments such as annealing and quenching in a heat treatment furnace in order to refine their quality, but in order to prevent oxidation and decarburization of metal materials due to oxygen, an atmosphere such as nitrogen is used. It is often carried out in gas. However, if the purity of the atmospheric gas is low and it contains residual oxygen, there is a problem that decarburization occurs during heat treatment of steel materials (carbon steel) as described below. That is, ■ When oxygen gas acts on the steel material to decarburize it F e :
+C+ 1/20. -)3Fe+CO■ When scale is generated on the surface layer of steel and decarburized by the oxygen in the scale, Fe + 1/2oz-+Fe○F e3C10F
e O-+GO+4 Fe By generating co (-carbon oxide) gas as described above, the following new problems will occur in the future.

■ COガスが更にC02(二酸化炭素)ガスとなって
脱炭を起こす Fe、C+CO2−+3Fe+2CO H,O(水蒸気)によっても同様である。
(2) The same applies to Fe, C+CO2-+3Fe+2CO H,O (water vapor), in which CO gas further becomes CO2 (carbon dioxide) gas and causes decarburization.

Fs、C+H,○→3Fe+C○+H2■ 水性ガス反
応よりCo/Co2制御が必要となる PC○XPH,0 そして、窒素のみを雰囲気ガスとして用いる熱処理炉(
Nz o n l y炉)においては、残存酸素の量が
炉内必要条件として10−”ppm以下であるのに対し
て、市販の窒素ガスの純度が1〜10ppmであるため
、上記の様な脱炭等の不具合を防止すべく残存酸素の除
去が行なわれる。更に具体的には、炉体外に酸素(02
)と水素(N2)を反応させるための反応器を設け、同
反応器には雰囲気ガスを加熱させるためのヒータと、反
応を促進させるための触媒を内蔵させると共に、同反応
器内に水素ガス(N2)  を供給して雰囲気ガス中の
酸素(02) と反応させる一方、その反応により生ず
る水分(N20)  をドライヤーによって取り除いた
後、窒素ガス(N2)  をブロワ−を介して炉体内に
送り込むことにより、雰囲気ガスを循環させながら残存
酸素の除去を行なう方法が用いられる。
Fs, C+H, ○→3Fe+C○+H2■ PC○XPH,0 which requires Co/Co2 control from water gas reaction and heat treatment furnace using only nitrogen as atmospheric gas (
In a nitrogen furnace (Nzoonly furnace), the amount of residual oxygen is 10 ppm or less as a necessary condition in the furnace, but the purity of commercially available nitrogen gas is 1 to 10 ppm, so the above-mentioned Remaining oxygen is removed to prevent problems such as decarburization.More specifically, oxygen (02
) and hydrogen (N2), and the reactor is equipped with a heater to heat the atmospheric gas and a catalyst to accelerate the reaction. (N2) is supplied to react with oxygen (02) in the atmospheric gas, while the moisture (N20) produced by the reaction is removed by a dryer, and nitrogen gas (N2) is sent into the furnace via a blower. Accordingly, a method is used in which residual oxygen is removed while circulating the atmospheric gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかして、上記の様な雰囲気ガス中の残存酸素を除去す
る方法にあっては、大掛かりな残存酸素の除去装置を必
要とするということに加えて、雰囲気ガスをヒートアッ
プしたり、別途水素ガスを供給したりする必要があると
いう不具合を生ずる点に問題点を有する。
However, in the method of removing residual oxygen in the atmospheric gas as described above, in addition to requiring a large-scale residual oxygen removal device, it is also necessary to heat up the atmospheric gas or use a separate hydrogen gas. The problem is that it causes the inconvenience that it is necessary to supply

本発明は、上記の様な問題点を解決すべくその改善を試
みたものである。即ち、本発明は酸素との反応において
物質により強弱があることに着目して、鋼材よりも酸素
との反応が早い物質と、雰  −囲気ガス中の残存酸素
とを反応させることにより、残存酸素を除去する様にし
たことを特徴とするものであって、その具体的な手段は
次の通りである。
The present invention attempts to improve the above-mentioned problems in order to solve them. That is, the present invention focuses on the fact that different substances have different strengths and weaknesses when it comes to reacting with oxygen, and by making the residual oxygen in the atmosphere react with a substance that reacts faster with oxygen than steel, the residual oxygen can be reduced. The method is characterized in that it removes the following.

〔問題点を解決するための手段〕[Means for solving problems]

鋼材(F e)を構成する鉄(F)及び炭素(C)元素
よりも酸素(02)との反応が強い処理材を。
A treated material that reacts more strongly with oxygen (02) than with the iron (F) and carbon (C) elements that make up the steel material (F e).

炉体内に設ける。但し、同処理材には前記の様な不具合
を防止するために酸素(o2)と反応して一酸化炭素(
Co)、二酸化炭素(c O2)、水蒸気(HZ○)、
水素ガス(N2)を発生しないものを用いる。
Installed inside the furnace body. However, in order to prevent the above-mentioned problems, the treated material contains carbon monoxide (carbon monoxide) that reacts with oxygen (O2).
Co), carbon dioxide (c O2), water vapor (HZ○),
Use one that does not generate hydrogen gas (N2).

〔実施例〕〔Example〕

以下に本発明の具体的な実施例を例示の図面について説
明する。
Specific embodiments of the present invention will be described below with reference to illustrative drawings.

第1図は第1の実施例を表わす図面であって、1は熱処
理炉の炉体を示す。同炉体1は炉壁と同炉壁内面に設け
た断熱材より構成される。
FIG. 1 is a drawing showing a first embodiment, and 1 indicates a furnace body of a heat treatment furnace. The furnace body 1 is composed of a furnace wall and a heat insulating material provided on the inner surface of the furnace wall.

2.3は略U時型状に形成するラジアントチューブであ
って、同ラジアントチューブ2,3は上記炉体1の側壁
より炉体1内に水平方向に向けて突出させて設けられる
。更に具体的には、炉体1の天井面近傍位置には同炉体
1の長手方向に沿って上段側のラジアントチューブ2が
一定間隔毎に取付けられる一方、同炉体1の底面近傍位
置にはその長手方向に沿って下段側のラジアントチュー
ブ3が上記取付は位置とは食違い状に一定間隔毎に取付
けられる。そして、炉体1の天井面には同ラジアントチ
ューブ2,3により加熱された雰囲気ガス(N2)  
を攪拌するための攪拌用4が一定間隔毎に回転自在に軸
支される。
2.3 is a radiant tube formed in a substantially U-shaped shape, and the radiant tubes 2 and 3 are provided to protrude horizontally into the furnace body 1 from the side wall of the furnace body 1. More specifically, upper radiant tubes 2 are installed at regular intervals along the longitudinal direction of the furnace body 1 near the ceiling surface of the furnace body 1, while upper radiant tubes 2 are installed near the bottom surface of the furnace body 1. The radiant tubes 3 on the lower stage side are attached at regular intervals along the longitudinal direction in a staggered manner from the above-mentioned attachment position. Atmospheric gas (N2) heated by the same radiant tubes 2 and 3 is placed on the ceiling of the furnace body 1.
A stirring device 4 for stirring is rotatably supported at regular intervals.

5は上記下段側ラジアントチューブ3の上方位置に炉体
1の両幅方向に亘って回動自在に横架させた搬送ローラ
であって、同搬送ローラ5は同炉体1の長手方向に沿っ
て一定間隔毎に配列させて設けられる。又、炉体1の長
手方向両端部には同搬送ローラ5と対応させて炉体入口
IAと炉体出口IBが開口されると共に、同炉体入口I
Aと炉体出口IBには図示省略しであるが夫々炉体入口
扉と炉体出口扉が設けられる。モして又、炉体1外には
上記炉体入口IAと対応させて装入テーブル6が配設さ
れる一方、炉体出ロIBと対応させて抽出テーブル7が
配設される。
Reference numeral 5 denotes a conveyance roller that is rotatably suspended above the lower radiant tube 3 in both width directions of the furnace body 1. They are arranged at regular intervals. Further, a furnace body inlet IA and a furnace body outlet IB are opened at both ends in the longitudinal direction of the furnace body 1 in correspondence with the conveyance roller 5, and a furnace body inlet IA and a furnace body outlet IB are opened.
A and the furnace outlet IB are provided with a furnace inlet door and a furnace outlet door, respectively, although not shown. Further, outside the furnace body 1, a charging table 6 is arranged in correspondence with the furnace body inlet IA, and an extraction table 7 is arranged in correspondence with the furnace body outlet IB.

8は上記搬送ローラ5に沿って移動自在に設けたトレイ
であって、同トレイ8上にはワーク(鋼材)9が載置さ
れる。
A tray 8 is provided movably along the conveyance roller 5, and a workpiece (steel material) 9 is placed on the tray 8.

10は上記トレイ8の一端に固着させた処理材であって
、同処理材10により炉体1内の雰囲気ガス(N2)中
に残存する酸素(02) を除去することが出来る様に
設けられる。更に詳しくは、同処理材1oには熱処理す
べき鋼材(Fe)よりも酸素(0□)との反応が強く、
しかも酸素(o2)と反応して一酸化炭素(C○)、二
酸化炭素(Co2)、水蒸気(N20)、水素ガス(N
2)を発生しない例えば亜鉛(Zn)、クロム(Cr)
、マンガン(Mn)等の物質が用いられる。この様にワ
ーク(鋼材)9よりも酸素との反応が速い処理材10を
用いることにより、ワーク9が酸素と反応してしまう前
に処理材10と酸素とを反応させることが出来、これに
より酸素の除去をすることが出来る。そしてこの様に雰
囲気ガスより残存酸素を除去することにより、ワーク9
の脱炭を防止することが出来る。又、酸素と反応して一
酸化炭素、二酸化炭素、水蒸気、水素ガスを発生しない
処理材10を用いることにより、前記の様な新たな脱炭
等の不具合を防止することが出来る。
Reference numeral 10 denotes a treatment material fixed to one end of the tray 8, and is provided so that oxygen (02) remaining in the atmospheric gas (N2) in the furnace body 1 can be removed by the treatment material 10. . More specifically, the treated material 1o has a stronger reaction with oxygen (0□) than the steel material (Fe) to be heat treated,
Moreover, it reacts with oxygen (O2) to produce carbon monoxide (C○), carbon dioxide (Co2), water vapor (N20), and hydrogen gas (N20).
2) For example, zinc (Zn), chromium (Cr) that does not generate
, manganese (Mn), and the like are used. In this way, by using the treatment material 10 that reacts faster with oxygen than the workpiece (steel material) 9, it is possible to cause the treatment material 10 to react with oxygen before the workpiece 9 reacts with oxygen. It can remove oxygen. By removing residual oxygen from the atmospheric gas in this way, the workpiece 9
decarburization can be prevented. In addition, by using the treatment material 10 that does not react with oxygen to generate carbon monoxide, carbon dioxide, water vapor, or hydrogen gas, new problems such as decarburization as described above can be prevented.

第2図は第2の実施例を表わす図面であって、上記処理
材10が炉体1の内壁面に設けられる。
FIG. 2 is a drawing showing a second embodiment, in which the treatment material 10 is provided on the inner wall surface of the furnace body 1. In FIG.

更に具体的には、同処理材1oは炉体1内の側壁に同炉
体1の両幅方向に相対向させて固着される。
More specifically, the treated material 1o is fixed to a side wall inside the furnace body 1 so as to face each other in both width directions of the furnace body 1.

上記処理材10は第3図より求められる。即ち、第3図
は各種物質について、炉体1内の温度(℃)に対する雰
囲気ガスの平衡酸素分圧Po、(atm)を02センサ
 (mV)を介して測定したグラフであって、例えば炉
温900℃において鉄よりも平衡酸素分圧の低い炭素が
酸素と反応して二酸化炭素となる(C+0□= CO,
)場合の平衡酸素分圧は10”−”atmであり、その
時o2センサは10102Oを示す。そして、同図より
鉄、炭素よりも平衡酸素分圧が低い物質(鉄、炭素より
も酸素と反応しやすい物質)は、例えば亜鉛(Zn)、
クロム(Cr)、マンガン(Mn)、ケイ素(Si)、
チタン(Ti)、アルミニウム(Al)、マグネシウム
(Mg)、カルシウム(Ca)であることが判る。
The processing material 10 described above can be found from FIG. That is, FIG. 3 is a graph of the equilibrium oxygen partial pressure Po, (atm) of the atmospheric gas measured with respect to the temperature (°C) inside the furnace body 1 using an 02 sensor (mV) for various substances. At a temperature of 900°C, carbon, which has a lower equilibrium oxygen partial pressure than iron, reacts with oxygen to form carbon dioxide (C+0□=CO,
), the equilibrium oxygen partial pressure is 10''-''atm, then the O2 sensor indicates 10102O. From the same figure, substances with a lower equilibrium oxygen partial pressure than iron and carbon (substances that react more easily with oxygen than iron and carbon) are, for example, zinc (Zn),
Chromium (Cr), manganese (Mn), silicon (Si),
It can be seen that they are titanium (Ti), aluminum (Al), magnesium (Mg), and calcium (Ca).

第4図及び第5図はクロムモリブデン鋼(scM)を処
理材10のサンプルとして用いた試験結果を表わすグラ
フであって、第4図は炉温を時間経過と共に徐々に昇温
させた場合の経過時間(Hour)に対する炉温(’C
)の上昇状態を表わす。
4 and 5 are graphs showing the test results using chromium molybdenum steel (scM) as a sample of the treated material 10, and FIG. 4 shows the results when the furnace temperature was gradually raised over time. Furnace temperature ('C) versus elapsed time (Hour)
) represents a rising state.

又、第5図はその時の経過時間(Hour)に対する平
衡酸素分圧Po、(atm)の変化を表わす。第5図に
おいて平衡酸素分圧は3.5時間経過後急激に低下し、
6時間経過後には略安定状態となることが判る。第4図
より同時間に対応する炉温は450〜650℃であって
、同温度域にて処理材10が雰囲気ガス中の残存酸素と
反応して雰囲気ガスより酸素を除去することを示す。そ
してこの様に処理材10によって450〜650℃にて
残存′NI素の除去が行なわれることにより、それより
も高温のワーク9の熱処理温度では残存酸素が既に除去
された状態にて熱処理を行なうことが出来る。即ち、残
存酸素によりワーク9の表層に脱炭を起こすという不具
合を生ずることがないのである。
Further, FIG. 5 shows the change in the equilibrium oxygen partial pressure Po, (atm) with respect to the elapsed time (Hour) at that time. In Figure 5, the equilibrium oxygen partial pressure drops rapidly after 3.5 hours,
It can be seen that the state becomes approximately stable after 6 hours have elapsed. FIG. 4 shows that the furnace temperature corresponding to the same time is 450 to 650°C, and that the processing material 10 reacts with residual oxygen in the atmospheric gas to remove oxygen from the atmospheric gas in the same temperature range. In this way, the residual NI element is removed by the treatment material 10 at 450 to 650°C, so that the heat treatment is performed at a higher temperature than that for the workpiece 9 in which the residual oxygen has already been removed. I can do it. That is, the problem of decarburization of the surface layer of the workpiece 9 due to residual oxygen does not occur.

尚1本実施例においては処理材10としてクロム等の物
質を例にとって説明したが、これに限定されるものでは
なく前記条件を満足するものであれば使用可能である。
In this embodiment, a substance such as chromium is used as the treatment material 10, but the material is not limited to this, and any material that satisfies the above conditions can be used.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるものであって、上記の様
に炭素、鉄よりも酸素との反応が強い処理材を炉体内に
設ける様にしたことにより、雰囲気ガス中に含有する微
量の残存酸素を、特別な装置を使用することもなく、効
率良く除去することが出来るに至った。そしてこの様に
処理材によって残存酸素を除去する様にしたことにより
、残存酸素によるワークの脱炭を容易に防止することが
出来るに至った。
The present invention is constructed as described above, and by providing a treatment material that reacts more strongly with oxygen than carbon and iron in the furnace body, it is possible to reduce the amount of traces contained in the atmospheric gas. It has now become possible to efficiently remove residual oxygen without using any special equipment. By removing residual oxygen using the treatment material in this way, it has become possible to easily prevent decarburization of the workpiece due to residual oxygen.

又、本発明にあっては上記の様に酸素と反応して一酸化
炭素、二酸化炭素、水蒸気、水素ガスを発生しない処理
材を用いる様にしたことにより。
Further, in the present invention, as described above, a processing material that does not react with oxygen to generate carbon monoxide, carbon dioxide, water vapor, or hydrogen gas is used.

それらのガスによって脱炭を起こしたり、水性ガス反応
を生じたりするということもなく、残存酸素の除去を行
なうことが出来るに至った。
It has now become possible to remove residual oxygen without causing decarburization or water gas reactions due to these gases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例を表わす図面であって、本発明に
係る熱処理炉の断面図、第2図は第2の実施例を表わす
図面であって、同熱処理炉の側断面図、第3図は各種物
質の酸素反応度合いを表わすグラフ、第4図及び第5図
は処理材の試験結果を表わすグラフである。 1・・・炉体、IA・・・炉体入口、IB・・・炉体出
口、2.3・・・ラジアントチューブ、4・・・攪拌層
、5・・・搬送ローラ、6・・・装入テーブル、7・・
・抽出テーブル、8・・・トレイ、9・・・ワーク、1
0・・・処理材。
FIG. 1 is a drawing showing a first embodiment, and is a sectional view of a heat treatment furnace according to the present invention, and FIG. 2 is a drawing showing a second embodiment, a side sectional view of the heat treatment furnace, FIG. 3 is a graph showing the degree of oxygen reaction of various substances, and FIGS. 4 and 5 are graphs showing test results of treated materials. 1... Furnace body, IA... Furnace body inlet, IB... Furnace body outlet, 2.3... Radiant tube, 4... Stirring layer, 5... Conveyance roller, 6... Charging table, 7...
・Extraction table, 8...Tray, 9...Work, 1
0...Treatment material.

Claims (3)

【特許請求の範囲】[Claims] (1)窒素を雰囲気ガスとして用いる熱処理炉において
、炭素、鉄よりも酸素との反応が強く、且つ酸素と反応
して一酸化炭素、二酸化炭素、水蒸気、水素ガスを発生
しない処理材を、炉体内に設けて成る窒素雰囲気炉。
(1) In a heat treatment furnace that uses nitrogen as the atmospheric gas, a treatment material that reacts more strongly with oxygen than carbon or iron and does not generate carbon monoxide, carbon dioxide, water vapor, or hydrogen gas by reacting with oxygen is used in the furnace. A nitrogen atmosphere furnace installed inside the body.
(2)上記処理材を炉体内を搬送されるトレイ上に設け
たことを特徴とする特許請求の範囲第一項に記載の窒素
雰囲気炉。
(2) The nitrogen atmosphere furnace according to claim 1, wherein the processing material is provided on a tray that is transported inside the furnace body.
(3)上記処理材を炉体の内壁面に設けたことを特徴と
する特許請求の範囲第一項に記載の窒素雰囲気炉。
(3) The nitrogen atmosphere furnace according to claim 1, wherein the treatment material is provided on the inner wall surface of the furnace body.
JP1655586A 1986-01-28 1986-01-28 Nitrogen atmosphere furnace Pending JPS62174320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1655586A JPS62174320A (en) 1986-01-28 1986-01-28 Nitrogen atmosphere furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1655586A JPS62174320A (en) 1986-01-28 1986-01-28 Nitrogen atmosphere furnace

Publications (1)

Publication Number Publication Date
JPS62174320A true JPS62174320A (en) 1987-07-31

Family

ID=11919522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1655586A Pending JPS62174320A (en) 1986-01-28 1986-01-28 Nitrogen atmosphere furnace

Country Status (1)

Country Link
JP (1) JPS62174320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522444A2 (en) * 1991-07-08 1993-01-13 Air Products And Chemicals, Inc. In-situ generation of heat treating atmospheres using non-cryogenically produced nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522444A2 (en) * 1991-07-08 1993-01-13 Air Products And Chemicals, Inc. In-situ generation of heat treating atmospheres using non-cryogenically produced nitrogen

Similar Documents

Publication Publication Date Title
EP0427853A4 (en) Metal oxidation apparatus and method
JPS624465B2 (en)
WO2004029320A1 (en) Method of nitriding metal ring and apparatus therefor
JP5428031B2 (en) Carburizing method and apparatus
DE3361023D1 (en) Method of heat treating metallic parts by carburization
JPH06172960A (en) Vacuum carburization method
JPS62174320A (en) Nitrogen atmosphere furnace
US2998303A (en) Method for purifying hydrogen contaminated with methane
JPH06317380A (en) Gas atmospheric heat treatment furnace for metal component
JP2929068B2 (en) Heat treatment method for steel
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JPS6127964Y2 (en)
US5785773A (en) Process for avoiding stickers in the annealing of cold strip
JPH08260059A (en) Continuous annealing furnace excellent in atmosphere control ability
JPS6237692B2 (en)
JPH0345946Y2 (en)
Kaplanov et al. A New Non-Decarburizing Annealing Practice for the Treatment of Rolled Products
JPS5816033A (en) Heat treatment for wire rod
JP2530580Y2 (en) Heat treatment atmosphere furnace
Nakagawa et al. Method of continuously carburizing metal strip
JP3509405B2 (en) Improvement of furnace atmosphere in continuous heat treatment furnace for steel strip
JPH0741827A (en) Method for vacuum-refining molten steel
JPS6160820A (en) Method for subjecting treated steel article to nondecarburization annealing
JPS5741318A (en) Circulating and supplying device for gaseous atmosphere of heat treatment furnace
US353094A (en) Process of annealing metals