JPS6217370B2 - - Google Patents

Info

Publication number
JPS6217370B2
JPS6217370B2 JP1395279A JP1395279A JPS6217370B2 JP S6217370 B2 JPS6217370 B2 JP S6217370B2 JP 1395279 A JP1395279 A JP 1395279A JP 1395279 A JP1395279 A JP 1395279A JP S6217370 B2 JPS6217370 B2 JP S6217370B2
Authority
JP
Japan
Prior art keywords
gas
substrate
growth
scavenging
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1395279A
Other languages
Japanese (ja)
Other versions
JPS55107227A (en
Inventor
Jun Ishii
Kazuhisa Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1395279A priority Critical patent/JPS55107227A/en
Publication of JPS55107227A publication Critical patent/JPS55107227A/en
Publication of JPS6217370B2 publication Critical patent/JPS6217370B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体結晶を気相法で基板上に成長さ
せる半導体気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor vapor phase growth apparatus for growing semiconductor crystals on a substrate by a vapor phase method.

半導体結晶を基板上に成長させる方法としては
気相法、液相法、分子線法などがある。その中で
気相法はSiを母体とする分野で一般によく用いら
れている。従来のSi気相エピタキシヤル成長装置
の一断面例を模式的に第1図に示す。第1図に於
て、Si基板1は傾斜させた基板設定板2上におか
れ、高純度石英管3内に設定されている。結晶を
成長させるために高周波を用いて基板設定板2を
昇温し、基板1を所望温度に制御する。図には説
明に必要な部分のみを記しており、すなわち4は
基板設定板2を加熱するコイルであり、高周波電
源などは省かれている。図示していないが、成長
用原料ガス、例えばSiCl4或いはSiH4は高純度水
素をキヤリヤガスとして第1図の左側(矢印5)
からSi基板1上に供給される。Si基板1は所望温
度に加熱されているので、Si基板1上にSiが析出
する。成長層の電気伝導度やその伝導形を制御す
るためには、予め所定濃度の不純物ガス例えば
PH3やB2H6などをSiCl4或いはSiH4などに混合し
ておいてから、その混合ガスをSi基板1上に供給
することで実施される。この方法で、異種の供給
原料ガスを切換えて供給することにより、第2図
に成長層の断面を示したようにSi基板6上に所望
の電気伝導度のSi成長層7,8を成長させること
ができる。
Methods for growing semiconductor crystals on a substrate include a vapor phase method, a liquid phase method, and a molecular beam method. Among them, the gas phase method is generally used in the field where Si is used as the matrix. FIG. 1 schematically shows a cross-sectional example of a conventional Si vapor phase epitaxial growth apparatus. In FIG. 1, a Si substrate 1 is placed on an inclined substrate setting plate 2 and set inside a high purity quartz tube 3. In order to grow crystals, the temperature of the substrate setting plate 2 is increased using high frequency, and the temperature of the substrate 1 is controlled to a desired temperature. Only the parts necessary for explanation are shown in the figure, that is, 4 is a coil that heats the board setting plate 2, and a high frequency power source and the like are omitted. Although not shown, the raw material gas for growth, such as SiCl 4 or SiH 4 , is used on the left side of Figure 1 (arrow 5) using high-purity hydrogen as a carrier gas.
is supplied onto the Si substrate 1 from. Since the Si substrate 1 is heated to a desired temperature, Si is deposited on the Si substrate 1. In order to control the electrical conductivity and conductivity type of the grown layer, it is necessary to inject impurity gas at a predetermined concentration in advance, for example.
This is carried out by mixing PH 3 , B 2 H 6 , etc. with SiCl 4 or SiH 4 , and then supplying the mixed gas onto the Si substrate 1. In this method, by switching and supplying different types of raw material gases, Si growth layers 7 and 8 with desired electrical conductivity are grown on the Si substrate 6, as shown in the cross section of the growth layer in FIG. be able to.

かかる場合において、基板6中の不純物濃度が
高くて、成長層の不純物濃度が低い場合には、よ
く知られている不純物のオートドーピングやその
影響に寄与する停帯層が存在するなどのために、
基板6と成長層7界面で急峻な濃度プロフアイル
の結晶が得られ難い。さらに成長層7と8の伝導
形をかえて成長させた場合、供給原料ガスの切換
場所から基板までの容積が大きいために、そのガ
スの置換に時間がかかり、成長層の界面附近で急
峻な伝導形の変化した結晶が得られない欠点があ
る。
In such a case, if the impurity concentration in the substrate 6 is high and the impurity concentration in the growth layer is low, this may be due to the well-known autodoping of impurities or the presence of a stop layer that contributes to its effects. ,
It is difficult to obtain crystals with a steep concentration profile at the interface between the substrate 6 and the growth layer 7. Furthermore, when growth layers 7 and 8 are grown with different conductivity types, since the volume from the source gas switching point to the substrate is large, it takes time to replace the gas, and a steep rise occurs near the interface between the growth layers. It has the disadvantage that crystals with changed conductivity types cannot be obtained.

本発明は、成長用ガス供給部材をその対向面が
基板に平行にかつ近接するよう配設するととも
に、上記対向面の略中央に開口する掃気口を有す
る掃気用ガス導入管を設けて、成長用ガスを基板
上に速やかに切換供給し得るように構成すること
によりかかる欠点を除去し、さらに最近急速に必
要となつてきている−族化合物半導体結晶や
その混晶などにも有効に適用できるようになされ
た半導体気相成長装置を提供するものである。
In the present invention, a growth gas supply member is disposed so that its opposing surface is parallel to and close to the substrate, and a scavenging gas introduction pipe having a scavenging port opening approximately in the center of the opposing surface is provided. This drawback can be eliminated by configuring the system so that the gas can be quickly switched and supplied onto the substrate, and it can also be effectively applied to - group compound semiconductor crystals and their mixed crystals, which have recently become rapidly needed. The present invention provides a semiconductor vapor phase growth apparatus constructed as described above.

本発明の一実施例を第3図を参照して説明す
る。第3図は気相成長装置の概略断面図であり、
ガス供給システムや基板加熱用電源などは図示さ
れていない。ここでは−族化合物半導体結晶
の一つである。InP基板上にInxGa1-xAs1-yPy
InPを順次成長させる場合を例にとつて実施例を
説明する。したがつて、この場合第2図の成長結
晶断面図で6はInP基板、7はInxGa1-xAs1-yPy
長層、8はInP成長層に相当することになる。第
3図に於て、11は複数のInP基板、12は基板
設定加熱板で、軸12aを中心として回転可能で
あり、14は加熱用高周波コイル収納部、15は
その加熱用電源に接続され基板温度を一定に制御
する熱電対である。16は成長させる供給原料ガ
スを基板11上に一様に供給するためのガス供給
部材であり、ガス供給部材が基板に近接して対向
した面は基板と平行に設置され、その対向面は上
記複数の基板11を覆う面積を有し、該対向面に
は数多くの細孔16aが設けられており、供給原
料ガスは入口17から上記細孔16aを通つて基
板11上に導入される。ガス供給部材16の中心
に、成長用供給ガスと独立に、掃気用ガスを基板
11上に導入できるガス導入管18が設けてあ
る。このガス導入管はガスが導入される入口19
を有し、基板11上に開口している。入口20か
ら供給されるガスは、それ以外の不要なガスを出
口21から排出して成長装置13内を清浄に保持
するためのものである。実際に結晶を成長させる
ときには次のようにして行う。所望の状態に前処
理を行つたInP基板11を第3図のように設定す
る。所望の雰囲気ガス中で所定温度に昇温する。
次にInGaAsPである4元化合物結晶を成長させ
るために、In(C2H53、Ga(C2H53、AsH3
PH3を所望分圧で混合したガスをキヤリヤガスに
より第3図の入口17より、ガス供給部材16、
細孔16aを通して、InP基板11上に流す。こ
のときIn(C2H53、Ga(C2H53、AsH3、PH3
化学反応をしてInP基板11上に所望組成の
InGaAsPが成長する。InGaAsPが成長する厚み
は基板温度、混合ガスの供給量などによつて定ま
る。所望の成長層が得られたときに、ガス導入管
18より、高純度水素或いは不活性ガス等からな
る掃気用ガスを基板11上に導き、残留している
In(C2H53、Ga(C2H53などを除去する。次に
InPを成長させるべくIn(C2H53とPH3の所望分
圧の混合ガスをガス供給部材16、細孔16aを
通して基板11上に導入すると共にガス導入管1
8より導入せるガスをとめる。所望のInPが成長
したのちにガス供給部材16からの混合ガスの導
入を停止すると共に所望の雰囲気ガスをガス導入
管18よりすばやく導入し基板11上での成長を
停止する。基板11の表面と、ガス供給部材16
の基板11と対向している面とが平行に設置して
あるので、基板11上への成長用ガスの供給量は
基板11上で均一に保たれ、しかも基板11の上
面内の温度分布も一様に保たれる。したがつて基
板11上に成長する膜厚を均一に制御することが
できる。さらに基板11を回転させながら成長さ
せることも可能である。尚、ガス供給部材16の
材質としては高純度な石英、或は窒化硼素などが
良いが、モリブデンやタングステンなどの金属を
用いることもできる。また成長用原料としては成
長元素或いは成長元素からなる組成物質を用いる
ことができる。また本装置で不純物のドーピング
を行うには成長用混合ガス中に不純物の元素を有
する化合物ガスを所定分圧で添加しておけばよい
ことは自明である。不純物の供給源としてはZn
(C2H52、H2Se、H2Te、H2S、SnCl2、GeH4
SiH4などを必要に応じて適宜用いることができ
る。
An embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view of the vapor phase growth apparatus,
A gas supply system, a power source for heating the substrate, etc. are not shown. Here, it is one of - group compound semiconductor crystals. In x Ga 1-x As 1-y P y on InP substrate
An example will be described by taking as an example a case where InP is grown sequentially. Therefore, in this case, in the cross-sectional view of the grown crystal in FIG. 2, 6 corresponds to the InP substrate, 7 corresponds to the In x Ga 1-x As 1-y P y growth layer, and 8 corresponds to the InP growth layer. In Fig. 3, 11 is a plurality of InP substrates, 12 is a substrate setting heating plate, which can be rotated around an axis 12a, 14 is a heating high frequency coil housing part, and 15 is connected to the heating power source. This is a thermocouple that controls the substrate temperature at a constant level. Reference numeral 16 denotes a gas supply member for uniformly supplying the raw material gas to be grown onto the substrate 11, and the surface of the gas supply member facing the substrate in close proximity to the substrate is installed parallel to the substrate, and the opposite surface is arranged in parallel with the substrate. It has an area covering a plurality of substrates 11, and is provided with many pores 16a on the opposing surface, and feed gas is introduced onto the substrates 11 from an inlet 17 through the pores 16a. A gas introduction pipe 18 is provided at the center of the gas supply member 16 to allow scavenging gas to be introduced onto the substrate 11 independently of the growth supply gas. This gas introduction pipe is an inlet 19 through which gas is introduced.
It has an opening on the substrate 11. The gas supplied from the inlet 20 is used to discharge other unnecessary gases from the outlet 21 to keep the inside of the growth apparatus 13 clean. When actually growing a crystal, it is done as follows. The InP substrate 11, which has been pretreated to a desired state, is set as shown in FIG. The temperature is raised to a predetermined temperature in a desired atmospheric gas.
Next, in order to grow a quaternary compound crystal that is InGaAsP, In(C 2 H 5 ) 3 , Ga(C 2 H 5 ) 3 , AsH 3 ,
A gas mixed with PH 3 at a desired partial pressure is supplied to the gas supply member 16 through the inlet 17 in FIG. 3 using a carrier gas.
It flows onto the InP substrate 11 through the pores 16a. At this time, In(C 2 H 5 ) 3 , Ga(C 2 H 5 ) 3 , AsH 3 , and PH 3 undergo a chemical reaction to form a desired composition on the InP substrate 11.
InGaAsP grows. The thickness at which InGaAsP grows is determined by the substrate temperature, the amount of mixed gas supplied, and other factors. When the desired growth layer has been obtained, a scavenging gas consisting of high purity hydrogen or an inert gas is introduced onto the substrate 11 from the gas introduction pipe 18 to remove any residual gas.
In( C2H5 ) 3 , Ga ( C2H5 ) 3 , etc. are removed. next
In order to grow InP, a mixed gas of In(C 2 H 5 ) 3 and PH 3 at a desired partial pressure is introduced onto the substrate 11 through the gas supply member 16 and the pores 16a, and the gas introduction pipe 1
Stop the gas introduced from 8. After the desired InP has grown, the introduction of the mixed gas from the gas supply member 16 is stopped, and a desired atmospheric gas is quickly introduced from the gas introduction pipe 18 to stop the growth on the substrate 11. The surface of the substrate 11 and the gas supply member 16
Since the surface facing the substrate 11 is placed parallel to the substrate 11, the amount of growth gas supplied onto the substrate 11 is kept uniform, and the temperature distribution within the upper surface of the substrate 11 is also maintained. kept uniform. Therefore, the thickness of the film grown on the substrate 11 can be controlled uniformly. Furthermore, it is also possible to grow while rotating the substrate 11. The material for the gas supply member 16 is preferably high-purity quartz or boron nitride, but metals such as molybdenum and tungsten may also be used. Further, as the growth raw material, a growth element or a composition material consisting of a growth element can be used. Furthermore, it is obvious that in order to perform impurity doping with this apparatus, a compound gas containing an impurity element may be added to the growth mixed gas at a predetermined partial pressure. Zn as a source of impurities
( C2H5 ) 2 , H2Se , H2Te , H2S , SnCl2 , GeH4 ,
SiH 4 or the like can be used as appropriate.

以上のように、本発明は基板と対向した面に多
数の細孔を有する成長用ガス供給部材と、基板上
の雰囲気ガスを制御する排気用ガス導入管を設け
たので、急峻に変化した接合面を有する結晶を得
ることができる効果がある。
As described above, the present invention provides a growth gas supply member having a large number of pores on the surface facing the substrate, and an exhaust gas introduction pipe for controlling the atmospheric gas on the substrate, so that the bonding changes rapidly. This has the effect of making it possible to obtain crystals with planes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のSi気相成長装置の断面図、第2
図は成長した結晶の断面図、第3図は本発明の一
実施例による気相成長装置の断面図である。11
は基板、16は成長用ガス供給部材、16aは細
孔、18は排気用ガス導入管を示す。
Figure 1 is a cross-sectional view of a conventional Si vapor phase growth apparatus, Figure 2
The figure is a cross-sectional view of a grown crystal, and FIG. 3 is a cross-sectional view of a vapor phase growth apparatus according to an embodiment of the present invention. 11
16 is a substrate, 16 is a growth gas supply member, 16a is a pore, and 18 is an exhaust gas introduction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 その上面に載置された複数の基板を加熱する
ための加熱板と、その上記全ての基板を覆い多数
の細孔が形成された対向面が上記加熱板上の基板
と平行にかつ近接するように配設され、成長元素
或いは成長元素からなる組成物質或いはこれらの
混合ガスをキヤリアガスにより上記細孔を通して
上記基板上に供給する成長用ガス供給部材と、上
記対向面の略中央に開口する掃気口を有し該掃気
口から上記基板上に掃気用ガスを導入して該基板
上に残留する成長用ガスを外方に排出する掃気用
ガス導入管とを備えたことを特徴とする半導体気
相成長装置。
1. A heating plate for heating a plurality of substrates placed on its upper surface, and an opposing surface that covers all of the substrates and has a large number of pores formed therein, which is parallel to and close to the substrates on the heating plate. a growth gas supply member which supplies a growth element, a composition comprising the growth element, or a mixed gas thereof onto the substrate through the pores using a carrier gas; and a scavenging gas opening approximately in the center of the opposing surface. A scavenging gas introduction pipe having a gas scavenging port and introducing a scavenging gas onto the substrate from the scavenging port and discharging the growth gas remaining on the substrate to the outside. Phase growth device.
JP1395279A 1979-02-08 1979-02-08 Device for growing of semiconductor in vapor phase Granted JPS55107227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1395279A JPS55107227A (en) 1979-02-08 1979-02-08 Device for growing of semiconductor in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1395279A JPS55107227A (en) 1979-02-08 1979-02-08 Device for growing of semiconductor in vapor phase

Publications (2)

Publication Number Publication Date
JPS55107227A JPS55107227A (en) 1980-08-16
JPS6217370B2 true JPS6217370B2 (en) 1987-04-17

Family

ID=11847537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1395279A Granted JPS55107227A (en) 1979-02-08 1979-02-08 Device for growing of semiconductor in vapor phase

Country Status (1)

Country Link
JP (1) JPS55107227A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573797A (en) * 1980-06-09 1982-01-09 Fujitsu Ltd Vapor phase growing method of compound semiconductor and its vapor phase growing apparatus

Also Published As

Publication number Publication date
JPS55107227A (en) 1980-08-16

Similar Documents

Publication Publication Date Title
US5704985A (en) Device and a method for epitaxially growing objects by CVD
US6048398A (en) Device for epitaxially growing objects
CN100414004C (en) Device and method for producing single crystals by vapor deposition
US20050026402A1 (en) Method and device for depositing crystalline layers on crystalline substrates
US6030661A (en) Device and a method for epitaxially growing objects by CVD
US3941647A (en) Method of producing epitaxially semiconductor layers
RU2162117C2 (en) Method of epitaxial growth of silicon carbide single crystals and reactor for its embodiment
CN102057503A (en) Crystal growth apparatus for solar cell manufacturing
JPS6217370B2 (en)
JPH0230119A (en) Vapor growth device
JP2001250783A (en) Vapor growth device and method
US4895737A (en) Metal-organic chemical vapor deposition
JP3948577B2 (en) Manufacturing method of semiconductor single crystal thin film
JPH0547669A (en) Vapor growth apparatus
EP0263141B1 (en) Method for depositing materials containing tellurium
JP4232279B2 (en) Vapor growth equipment
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH0547674A (en) Apparatus and method for vapor growth
JPS6253933B2 (en)
JP2000091237A (en) Manufacture of semiconductor wafer
JP3071591U (en) Vapor phase epitaxial growth equipment
JP2004186376A (en) Apparatus and method for manufacturing silicon wafer
JPS61114519A (en) Vapor growth equipment
JPH11214316A (en) Manufacture of semiconductor
JPH04221820A (en) Vapor growth method for organic metal