JPS62172746A - Liquid cooling apparatus for electric device - Google Patents
Liquid cooling apparatus for electric deviceInfo
- Publication number
- JPS62172746A JPS62172746A JP738087A JP738087A JPS62172746A JP S62172746 A JPS62172746 A JP S62172746A JP 738087 A JP738087 A JP 738087A JP 738087 A JP738087 A JP 738087A JP S62172746 A JPS62172746 A JP S62172746A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling body
- channel
- insulator
- channels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims description 66
- 239000007788 liquid Substances 0.000 title claims description 12
- 239000002826 coolant Substances 0.000 claims description 19
- 239000012212 insulator Substances 0.000 claims description 18
- 239000004065 semiconductor Substances 0.000 claims description 14
- 239000000110 cooling liquid Substances 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000010292 electrical insulation Methods 0.000 claims description 4
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- 239000000615 nonconductor Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 5
- 238000003754 machining Methods 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Rectifiers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は電気デバイス特に半導体デバイス用液冷装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid cooling device for electrical devices, particularly semiconductor devices.
[従来の技術]
整流器素子を直列接続した半導体整流器モジュールでは
、整流器素子をそれぞれ固定片に取り付け、各列の整流
器素子相互の結合のために対向片を用いながら、固定片
を薄い絶縁層を中間に挟んで水の貫流する金属製の二つ
の冷却管上に一列に並べることがドイツ連邦共和国特許
第1208008号明細書により知られている。この構
−造では固定片から絶縁層への及びそこから冷却管への
良好な熱伝導は、固定片の絶縁性の円筒形空所が冷却管
の外径に正確に適合するときにだけ保証される。[Prior Art] In a semiconductor rectifier module in which rectifier elements are connected in series, each rectifier element is attached to a fixed piece, and while opposing pieces are used to connect the rectifier elements in each row, the fixed pieces are connected with a thin insulating layer between them. It is known from German Patent No. 1 208 008 to arrange them in a row on two metal cooling tubes sandwiched between them and through which water flows. In this construction, a good heat transfer from the fixing piece to the insulation layer and from there to the cooling tube is only guaranteed if the insulating cylindrical cavity of the fixing piece exactly matches the outer diameter of the cooling tube. be done.
ドイツ連邦共和国実用新案第7539808号明細書に
より電気デバイスの液冷装置が知られており、この装置
では電気デバイスと冷却液との間の電位分離のために電
気絶縁性の自立した管が用いられ、この管を冷却液が貫
流する。管上には電気デバイスを支持する冷却体が鈴状
に固定されている。A device for liquid cooling of electrical devices is known from German Utility Model No. 75 39 808, in which an electrically insulating free-standing tube is used for the potential separation between the electrical device and the cooling liquid. , through which a cooling liquid flows. A bell-shaped cooling body that supports electrical devices is fixed on the tube.
冷却液を導く管に冷却体をこのように結合するときには
、必然的に冷却体と管壁との間の高い伝熱抵抗が生じる
。なぜならば加工誤差のために冷却体の全面の十分な接
触が得られないからである。更に冷却体を管上に取り付
けるために追加の加工費を必要とする。When a cooling body is connected in this way to a tube carrying a cooling liquid, a high heat transfer resistance between the cooling body and the tube wall necessarily occurs. This is because sufficient contact of the entire surface of the cooling body cannot be obtained due to machining errors. Furthermore, additional machining costs are required to mount the cooling body on the tube.
更にドイツ連邦共和国実用新案第7539385号明細
書から半導体整流器装置が知られており、この装置では
冷却流路を備えた接触板上に伝熱性の良い絶縁材料板が
配置され、ケースに入れられていない整流器素子がこの
板に固定されている。Furthermore, a semiconductor rectifier device is known from German Utility Model No. 7539385, in which a plate of insulating material with good heat conductivity is arranged on a contact plate provided with a cooling channel, and the plate is enclosed in a case. No rectifier elements are fixed to this plate.
[発明が解決しようとする問題点]
この発明は、デバイスを導電かつ伝熱可能に冷却体上に
配置し、導電性の冷却媒体を用いながら、構造の更に著
しい簡単化と更に良好な熱伝導とが得られるように、電
気デバイスiに半導体デバイスの液冷装置を構成するこ
とを目的とする。[Problems to be Solved by the Invention] The present invention provides a device that is arranged on a cooling body in a conductive and heat-transferable manner, and uses an electrically conductive cooling medium while significantly simplifying the structure and achieving better heat conduction. It is an object of the present invention to configure a liquid cooling device for a semiconductor device in an electric device i so that the following can be obtained.
[問題点を解決するための手段]
この目的はこの発明に基づき電気デバイス特に半導体デ
バイスの液冷装置において、デバイスが導電かつ伝熱可
能に冷却体上に配置され、この冷却体が少なくとも一つ
の冷却流路を有し、この冷却流路の壁が空洞無しに電気
絶縁層に結合され、その際冷却流路の端部が、冷却体に
対して電気的に絶縁された冷却媒体管路用接続手段を有
することにより達成される。[Means for Solving the Problems] This object is based on the present invention in a liquid cooling device for an electrical device, particularly a semiconductor device, in which the device is disposed on a cooling body in an electrically conductive and heat transferable manner, and the cooling body has at least one For cooling medium lines with cooling channels, the walls of which are connected without cavities to an electrically insulating layer, the ends of the cooling channels being electrically insulated with respect to the cooling body. This is achieved by having a connecting means.
更にこの目的は電気デバイス特に半導体デバイスの液冷
装置において、デバイスが導電かつ伝熱可能に冷却体上
に配置され、この冷却体自体が冷却液の貫流し自立した
少なくとも一つの電気絶縁体に伝熱結合され、その際冷
却体が空洞無しに絶縁体に結合され、冷却媒体管路が冷
却体に対して電気的に絶縁されてこの絶縁体に接続され
ていることによっても達成される。Furthermore, the object is to provide a liquid cooling system for electrical devices, in particular semiconductor devices, in which the device is arranged in an electrically conductive and heat transferable manner on a heat sink, through which the coolant flows and conducts the heat to at least one free-standing electrical insulator. A thermal connection is also achieved in that the heat sink is connected without cavities to the insulator and the coolant lines are connected to the insulator in an electrically insulated manner with respect to the heat sink.
[発明の効果J
この発明によれば、相互に押圧されたデバイス間で熱が
伝導される公知の構造に比べて、熱伝導が著しく改善さ
れる。なぜならば伝熱経路で空気層が完全に避けられ、
かつ伝熱経路自体を小さく保つことができるからである
。この装置は組立、保守及び運転時に外部からの作用に
対して抵抗力のあるコンパクトなモジュールを形成する
。[Effect of the Invention J] According to the present invention, heat conduction is significantly improved compared to known structures in which heat is conducted between devices that are pressed together. This is because air layers are completely avoided in the heat transfer path,
This is also because the heat transfer path itself can be kept small. The device forms a compact module that is resistant to external influences during assembly, maintenance and operation.
また自立する絶縁体を用いるときにも、絶縁体と冷却体
との間の熱伝導が改善され、製作費が低減される。Also, when using a free-standing insulator, heat transfer between the insulator and the cooling body is improved and manufacturing costs are reduced.
[実施態様] 冷却体と自立する絶縁体との間の空洞の無い 。[Embodiment] There is no cavity between the cooling body and the free-standing insulator.
結合は、冷却体が溶射又は鋳込みにより絶縁体に結合さ
れることにより、加工技術上容易に達成される。The connection is easily achieved in terms of processing technology, in that the heat sink is bonded to the insulator by thermal spraying or casting.
冷却体の金属との密着性、電気絶縁能力、良好な伝熱能
力及び良好な結合可能性に関するすべての要求に対応す
る装置は、絶縁体として窒化ホウ素セラミックから作ら
れた板状の中空体を用いることを特徴とする。The device, which meets all the requirements regarding adhesion to the metal of the cooling body, electrical insulation ability, good heat transfer ability and good bondability, uses a plate-like hollow body made of boron nitride ceramic as an insulator. It is characterized by the use of
大きい伝熱面はこの発明の別の実施態様に基づき、中空
体の中空室の中には向かい合った両側に壁によって各一
つの長手流路が形成され、これらの流路の内の一方は冷
却媒体供給管路に結合され、他方は冷却媒体返送管路に
結合され、更に中空室の中には両長手流路を結合する横
流路が設けられていることにより得られる。The large heat transfer surface is based on another embodiment of the invention, in which one longitudinal channel is formed in the cavity of the hollow body by the walls on opposite sides, one of these channels being cooled. This is obtained in that one side is connected to the medium supply line and the other side is connected to the cooling medium return line, and a transverse flow line is provided in the hollow space which connects the two longitudinal channels.
伝熱面は、横流路の間に長手流路に平行に延びる結合流
路を設けることによって更に増大できる。The heat transfer surface can be further increased by providing coupling channels between the transverse channels that extend parallel to the longitudinal channels.
冷却体の向かい合った両面を、加圧接触される半導体デ
バイスの接触面として形成することは特に有利である。It is particularly advantageous to form the opposite sides of the heat sink as contact surfaces for the semiconductor component to be brought into pressure contact.
その際冷却体は導電性の冷却液を用いながら通電部とし
て働く、冷却液として水道水を用いるときに脱イオン装
置を省略できる。In this case, the cooling body functions as a current-carrying part while using a conductive cooling liquid, and when tap water is used as the cooling liquid, a deionization device can be omitted.
[実施例]
次にこの発明に基づく装置の複数の実施例を示す図面に
より、この発明の詳細な説明する。[Embodiments] Next, the present invention will be described in detail with reference to drawings showing a plurality of embodiments of the apparatus based on the present invention.
第1図において符号1は金属製の冷却体を表し、この冷
却体上に冷却すべき電気デバイス特に半導体デバイスが
直接に、すなわち絶縁層を中間に挟まないで配置される
。冷却体1の中には冷却流路2が配置されている。冷却
流路の壁は接着、蒸着、溶射、溶接、M込み又は溶融に
より空洞無しに電気絶縁層3に結合されている。冷却流
路2の端部は、金属製の冷却体lに対して電気的に絶縁
された冷却媒体管路用接続手段を有する。接続手段とし
て冷却体lの中の冷却流路2の端部に設けられた孔4.
5が用いられる。これらの孔は電気絶縁層6を有するめ
ねじ7を備え、このめねじの中に冷却媒体管路9のねじ
付き短管8がねじ込み可能である(第2図参照)。In FIG. 1, reference numeral 1 designates a metallic cooling body, on which the electrical devices, in particular the semiconductor devices, to be cooled are arranged directly, ie without an intervening insulating layer. A cooling channel 2 is arranged in the cooling body 1 . The walls of the cooling channels are bonded to the electrically insulating layer 3 without cavities by gluing, vapor deposition, thermal spraying, welding, M-filling or melting. The end of the cooling channel 2 has a connection means for the cooling medium pipe which is electrically insulated with respect to the metal cooling body l. Holes 4 provided at the ends of the cooling channels 2 in the heat sink l as connection means.
5 is used. These holes are provided with internal threads 7 with an electrically insulating layer 6, into which the threaded short tubes 8 of the coolant lines 9 can be screwed (see FIG. 2).
第3図に示すように、冷却流路2の端部に設けられ電気
絶縁被覆6を備えたta続短管lOを接続手段として用
いることもできる。As shown in FIG. 3, a ta-connection short pipe IO provided at the end of the cooling channel 2 and provided with an electrically insulating coating 6 can also be used as the connection means.
冷却媒体接続部の範囲では、絶縁層6が冷却流路自体の
中の絶縁層3より厚く選ばれるのが有利である。その際
確実な絶縁を保証するために、絶縁層6は接続部の近傍
をも囲む。In the area of the cooling medium connections, it is advantageous for the insulation layer 6 to be chosen to be thicker than the insulation layer 3 in the cooling channels themselves. In order to ensure reliable insulation, the insulating layer 6 also surrounds the vicinity of the connections.
第4図に示したモジュールは、冷却体1の間に配置され
両側から冷却され加圧接触された半導体デバイス11か
ら成る。その際冷却体lの向かい合った両面12はそれ
ぞれ、加圧接触される半導体デバイス11のための接触
面として形成されている。半導体デバイスと冷却体とは
締め付は要素により結合され、この締め付は要素は締め
付はポルト13、ナツト14、加圧片15及び締め付は
枠16から成る。The module shown in FIG. 4 consists of a semiconductor device 11 placed between cooling bodies 1, cooled from both sides and brought into pressure contact. The opposite sides 12 of the heat sink l are each designed as a contact surface for the semiconductor component 11 to be brought into pressure contact. The semiconductor device and the cooling body are connected by a fastening element, and the fastening element consists of a fastening port 13, a nut 14, a pressure piece 15, and a fastening frame 16.
冷却体1は同時に、接続ラグ17を備えた電流レールと
して働く。The cooling body 1 simultaneously serves as a current rail with connecting lugs 17.
第5図ないし第7図でも符号1はそれぞれ金属から成る
冷却体を表し、この冷却体上に冷却すべき電気デバイス
又は電子デバイスが絶縁層を中間に挟むことなく直接配
置されている。電気絶縁性のしかしながら良伝熱性の材
料から成る管20は冷却体lに空洞無しに結合されてい
る。それにより管20と冷却体lとの間の良好な熱伝導
が生じ、この冷却体はその上に配置されたデバイスから
熱を奪い去る。管20には冷却媒体管路が接続され、こ
の管路は管20を貫流する冷却媒体を供給しかつ運び去
る。In FIGS. 5 to 7, the reference numeral 1 each represents a cooling body made of metal, on which the electrical or electronic device to be cooled is directly arranged without an intervening insulating layer. A tube 20 made of an electrically insulating but heat-conducting material is connected to the cooling body l without a cavity. This results in a good heat transfer between the tube 20 and the cooling body l, which takes away heat from the devices arranged above it. Connected to the tube 20 is a coolant line which supplies and carries away the coolant flowing through the tube 20.
第6図及び第7図に示した実施例では、冷却媒体の貫流
する絶縁体は板状の中空体21として形成されている。In the embodiment shown in FIGS. 6 and 7, the insulator through which the cooling medium flows is designed as a plate-shaped hollow body 21. In the embodiment shown in FIGS.
中空体21の各長手側面22に平行に各一つの長手流路
23が形成されている。One longitudinal channel 23 is formed parallel to each longitudinal side 22 of the hollow body 21 .
一方の長手流路23には冷却媒体を供給する管路が接続
され、他方の長手流路23には冷却媒体を返送する管路
が接続されている。両長手流路23の間にはこれらの長
手流路を相互に結合する横流路24が設けられている。A conduit for supplying a cooling medium is connected to one of the longitudinal passages 23, and a conduit for returning the cooling medium is connected to the other longitudinal passage 23. A transverse flow path 24 is provided between both longitudinal flow paths 23 to connect these longitudinal flow paths to each other.
横流路24の壁25には更に結合流路26が配置され、
この結合流路により中空体21と中空体を貫流する冷却
液との間の伝熱面が一層増大される。A coupling channel 26 is further arranged on the wall 25 of the horizontal channel 24,
This coupling channel further increases the heat transfer surface between the hollow body 21 and the cooling liquid flowing through the hollow body.
’ff20又は板状の中空体21の形の自立した絶縁体
は、金属製の冷却体を岡囲に鋳込まれるか又は溶射され
る。それにより自立した絶縁体を用いるときにも、この
絶縁体と冷却体lとの間の空洞の無い結合が達成される
。自立する絶縁体としては特に窒化ホウ素セラミックか
ら成る絶縁体が良好であることが実証されている。なぜ
ならばこの種のセラミックは液密であり、大きい伝熱能
力を有し、切削加工が可能であり、また良好な電気絶縁
能力を有し、かかる絶縁体に対して設けられたすべての
要求を満たすからである。A self-supporting insulator in the form of a 'ff20 or plate-like hollow body 21 is cast or sprayed onto the wall of the metal cooling body. Even when using a free-standing insulator, a cavity-free connection between this insulator and the cooling body l is thereby achieved. Insulators made of boron nitride ceramics have proven particularly good as self-supporting insulators. This is because this type of ceramic is liquid-tight, has a large heat transfer capacity, can be machined and has good electrical insulation capabilities, meeting all the requirements set for such insulators. Because it satisfies.
第1図はこの発明に基づく液冷装置の一実施例の断面図
、第2図は第1図に示す装置の管路接続部の拡大断面図
、第3図は管路接続部の別の実施例の拡大断面図、第4
図は第1図に示す液冷装置を用いた半導体モジュールの
側面図、第5図は液冷装置の別の実施例の管路接続部の
拡大断面図、第6図は液冷装置の更に別の実施例の断面
図、第7図は第6図に示す液冷装置の切断線■−■によ
る断面図である。
l・・・冷却体、 2・・・冷却流路、 4゜5・・
・孔、 6・・會電気絶縁層、 7Φ・・めねじ、 8
・・・ねじ付き短管、 9・争・冷却媒体管路、
10・・・接続短管、 11−Φ・半導体デバイス、
12・・・向かい合った両面、 20.21・・・
電気絶縁体、 23・・・長手流路、 24−・・横
流路、 26・φ・結合流路。
(0110)J(ゝ1轡1. .1?、i’、1l−1
−’f”rす+ 島I33
FIG 4
FIG 5
FIG 6FIG. 1 is a cross-sectional view of one embodiment of a liquid cooling device according to the present invention, FIG. 2 is an enlarged cross-sectional view of a pipe connection part of the apparatus shown in FIG. 1, and FIG. Enlarged sectional view of the example, No. 4
The figure is a side view of a semiconductor module using the liquid cooling device shown in FIG. 1, FIG. 5 is an enlarged sectional view of a pipe connection part of another embodiment of the liquid cooling device, and FIG. A cross-sectional view of another embodiment, FIG. 7 is a cross-sectional view taken along cutting line 1--2 of the liquid cooling device shown in FIG. l...Cooling body, 2...Cooling channel, 4゜5...
- Hole, 6... Electrical insulation layer, 7Φ... Female thread, 8
... Threaded short pipe, 9. Coolant pipe line,
10... Connection short pipe, 11-Φ/semiconductor device,
12... Both sides facing each other, 20.21...
Electrical insulator, 23--Longitudinal flow path, 24--Horizontal flow path, 26.φ.Combined flow path. (0110) J(ゝ1轡1..1?, i', 1l-1
-'f”rs+ Island I33 FIG 4 FIG 5 FIG 6
Claims (1)
(1)上に配置され、この冷却体が少なくとも一つの冷
却流路(2)を有し、 この冷却流路の壁が空洞無しに電気絶縁層 (6)に結合され、その際冷却流路(2)の端部が、冷
却体(1)に対して電気的に絶縁された冷却媒体管路用
接続手段を有することを特徴とする電気デバイス用液冷
装置。 2)冷却体(1)の冷却流路(2)の端部に設けられ電
気絶縁層(6)を有するめねじ (7)を備えた孔(4、5)が接続手段として用いられ
、このめねじの中に冷却媒体管路(9)のねじ付き短管
(8)がねじ込み可 能であることを特徴とする特許請求の範囲 第1項記載の装置。 3)冷却流路(2)の端部に設けられた電気絶縁層(6
)を備えた接続短管(10)が接続手段として用いられ
ることを特徴とする特許請求の範囲第1項記載の装置。 4)接続短管(10)が電気絶縁被覆(6)を有するお
ねじを備えていることを特徴とする特許請求の範囲第3
項記載の装置。 5)絶縁層(6)が接続手段の所では冷却流路(2)の
中の絶縁層に比べて厚くなっていることを特徴とする特
許請求の範囲第3項又は第4項記載の装置。 6)冷却体(1)が一部材で形成されていることを特徴
とする特許請求の範囲第1項ないし第5項のいずれか1
項に記載の装置。 7)冷却体(1)の向かい合った両面(12)が、加圧
接触される半導体デバイス(11)のための接触面とし
て形成されていることを特徴とする特許請求の範囲第6
項記載の装 置。 8)電気デバイスが導電かつ伝熱可能に冷却体(1)上
に配置され、この冷却体自体が冷却液の貫流し自立した
少なくとも一つの電気絶縁体(20又は21)に伝熱結
合され、その際冷却体(1)が空洞無しに絶縁体(20 又は21)に結合され、冷却媒体管路が冷却体(1)に
対して電気的に絶縁されてこの絶縁体に接続されている
ことを特徴とする電気デバイス用液冷装置。 9)冷却体(1)が溶射又は鋳込みにより絶縁体(20
又は21)に結合されていることを特徴とする特許請求
の範囲第8項記載の装 置。 10)絶縁体として窒化ホウ素セラミックから作られた
板状の中空体(21)が用いられることを特徴とする特
許請求の範囲第8項又は第9項記載の装置。 11)中空体(21)の中空室の中には向かい合った両
側に壁によって各一つの長手流路 (23)が形成され、これらの流路の内の 一方は冷却媒体供給管路に結合され、他方は冷却媒体返
送管路に結合され、更に中空室の中には両長手流路(2
3)を結合する横流路(24)が設けられていることを
特徴とする特許請求の範囲第10項記載の装置。 12)横流路(24)の間には長手流路 (23)に平行に延びる結合流路(26)が設けられて
いることを特徴とする特許請求の範囲第11項記載の装
置。[Claims] 1) An electrical device (11) is electrically conductively and heat-transferably arranged on a cooling body (1), which cooling body has at least one cooling channel (2), the cooling flow being Connection for the cooling medium line, in which the walls of the channel are connected without cavities to the electrically insulating layer (6), the ends of the cooling channels (2) being electrically insulated with respect to the cooling body (1). A liquid cooling device for an electrical device, characterized in that it has a means. 2) Holes (4, 5) with internal threads (7) provided at the ends of the cooling channels (2) of the cooling body (1) and having an electrically insulating layer (6) are used as connection means; 2. Device according to claim 1, characterized in that the threaded short tube (8) of the coolant line (9) can be screwed into the internal thread. 3) Electrical insulation layer (6) provided at the end of the cooling channel (2)
2. Device according to claim 1, characterized in that a connecting tube (10) with a tube (10) is used as the connecting means. 4) Claim 3, characterized in that the connecting short pipe (10) has a male thread with an electrically insulating coating (6).
Apparatus described in section. 5) Device according to claim 3 or 4, characterized in that the insulation layer (6) is thicker at the connection means than the insulation layer in the cooling channel (2). . 6) Any one of claims 1 to 5, characterized in that the cooling body (1) is formed of a single member.
The equipment described in section. 7) The opposite sides (12) of the cooling body (1) are designed as contact surfaces for semiconductor devices (11) that are brought into pressure contact.
Apparatus described in section. 8) the electrical device is electrically and heat-transferably arranged on a cooling body (1), which is itself heat-conductively coupled to at least one free-standing electrical insulator (20 or 21) through which a cooling liquid flows; In this case, the cooling body (1) is connected without cavities to the insulator (20 or 21), and the cooling medium lines are connected to this insulator in electrically insulated relation to the cooling body (1). A liquid cooling device for electrical devices featuring: 9) The cooling body (1) is coated with an insulator (20
or 21). 10) The device according to claim 8 or 9, characterized in that a plate-shaped hollow body (21) made of boron nitride ceramic is used as the insulator. 11) One longitudinal channel (23) is formed in the hollow chamber of the hollow body (21) by walls on opposite sides, one of these channels being connected to the cooling medium supply pipe. , the other is connected to the cooling medium return pipe, and further inside the hollow chamber there are both longitudinal channels (2
11. The device according to claim 10, characterized in that a transverse flow path (24) is provided for coupling 3). 12) Device according to claim 11, characterized in that between the transverse channels (24) there is provided a connecting channel (26) extending parallel to the longitudinal channel (23).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3601140.1 | 1986-01-16 | ||
DE19863601140 DE3601140A1 (en) | 1986-01-16 | 1986-01-16 | Device for liquid cooling of an electrical component, especially a semiconductor component |
DE8632161.7 | 1986-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62172746A true JPS62172746A (en) | 1987-07-29 |
Family
ID=6291977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP738087A Pending JPS62172746A (en) | 1986-01-16 | 1987-01-14 | Liquid cooling apparatus for electric device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS62172746A (en) |
DE (1) | DE3601140A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT392186B (en) * | 1987-09-25 | 1991-02-11 | Siemens Ag Oesterreich | Apparatus for cooling power electronics components |
DE3805851A1 (en) * | 1988-02-25 | 1989-08-31 | Standard Elektrik Lorenz Ag | CIRCUIT BOARD WITH A COOLING DEVICE |
DE3908996C2 (en) * | 1989-03-18 | 1993-09-30 | Abb Patent Gmbh | Method of manufacturing a liquid heat sink |
DE3933956C2 (en) * | 1989-10-11 | 1994-03-24 | Abb Patent Gmbh | Tension bandage for a converter |
DE3937130A1 (en) * | 1989-11-08 | 1990-05-31 | Asea Brown Boveri | Box-type cooler - for power semiconductor modules insulated by layer of specified plastic material |
DE4301865A1 (en) * | 1993-01-25 | 1994-07-28 | Abb Management Ag | Cooling box for electric component |
DE19640488C2 (en) * | 1996-09-30 | 2001-12-13 | Fraunhofer Ges Forschung | Method of manufacturing a ceramic cooling element |
DE102005048100B4 (en) * | 2005-09-30 | 2018-07-05 | Robert Bosch Gmbh | Electrical device, in particular electronic control device for motor vehicles |
DE102005048492B4 (en) * | 2005-10-07 | 2009-06-04 | Curamik Electronics Gmbh | Electric module |
DE102017003854A1 (en) * | 2017-04-20 | 2018-10-25 | Leopold Kostal Gmbh & Co. Kg | Housing for an electrical or electronic device |
DE102019133871B4 (en) * | 2019-12-11 | 2024-03-14 | Semikron Elektronik Gmbh & Co. Kg | Capacitor arrangement with a capacitor and with a liquid cooling device |
-
1986
- 1986-01-16 DE DE19863601140 patent/DE3601140A1/en not_active Withdrawn
-
1987
- 1987-01-14 JP JP738087A patent/JPS62172746A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE3601140A1 (en) | 1987-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6230791B1 (en) | Heat transfer cold plate arrangement | |
US6166903A (en) | Electronic power module, and electronic power system comprising a plurality of said modules | |
US7081671B2 (en) | Power module | |
US7547966B2 (en) | Power semiconductor module | |
US8266802B2 (en) | Cooling apparatus and method of fabrication thereof with jet impingement structure integrally formed on thermally conductive pin fins | |
US7940526B2 (en) | Electrical module | |
JP3254001B2 (en) | Integrated radiator for semiconductor module | |
US5495889A (en) | Cooling device for power electronic components | |
JP4292913B2 (en) | Semiconductor cooling unit | |
EP2834841B1 (en) | Semiconductor cooling apparatus | |
KR100901539B1 (en) | Electrical bus with associated porous metal heat sink and method of manufacturing same | |
US8385067B2 (en) | In-line memory and circuit board cooling system | |
JPS62172746A (en) | Liquid cooling apparatus for electric device | |
US20050128705A1 (en) | Composite cold plate assembly | |
JP6596570B2 (en) | Component modules and power modules | |
US20220142013A1 (en) | Ultra-compact configurable double-sided manifold micro-channel cold plate | |
JPH053143B2 (en) | ||
JPH036848A (en) | Semiconductor cooling module | |
JPS62502929A (en) | Cooling stack of electrically insulated semiconductors | |
WO2021223695A1 (en) | Power module | |
US20130032230A1 (en) | Flow distributor | |
US20020110165A1 (en) | Method and system for cooling at least one laser diode with a cooling fluid | |
US11025032B2 (en) | Double sided cooling of laser diode | |
JP2000243886A (en) | Cooling body for power semiconductor element | |
US20050175327A1 (en) | Heat exchanger provided for heating purposes and comprising an electric heating device |