JPS62172370A - Electrostatic copying machine - Google Patents

Electrostatic copying machine

Info

Publication number
JPS62172370A
JPS62172370A JP1457486A JP1457486A JPS62172370A JP S62172370 A JPS62172370 A JP S62172370A JP 1457486 A JP1457486 A JP 1457486A JP 1457486 A JP1457486 A JP 1457486A JP S62172370 A JPS62172370 A JP S62172370A
Authority
JP
Japan
Prior art keywords
cvd method
gas
cyclotron resonance
film
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1457486A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takeshi Fukada
武 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP1457486A priority Critical patent/JPS62172370A/en
Priority to US07/006,379 priority patent/US4760008A/en
Publication of JPS62172370A publication Critical patent/JPS62172370A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)

Abstract

PURPOSE:To prevent the curling of transfer paper by providing a metallic squeegee in tight contact with a photosensitive body formed by an electron cyclotron resonance CVD method or the combination use of said method and glow discharge CVD method. CONSTITUTION:A non-product gas (argon, etc.) is supplied into a resonance space and a magnetic field is applied thereto by an air core coil; at the same time, a microwave is supplied to the resonance space to excite the argon and to release the same into a reaction space. A product gas (monosilane, etc.) is released to the reaction space to excite and activate the monosilane by argon so that the film is formed on a base body drum by the cyclotron resonance CVD method to obtain a photosensitive drum 30. The photosensitive drum 30 may be formed by making combination use of the above-mentioned method and the glow discharge CVD method. The metallic squeegee 32 is provided in tight contact with the photosensitive body 30 to prevent the curling of the transfer paper 31. The generation of the peeling and exfoliation of the coating is eliminated by forming the photosensitive body 30 by the cyclotron resonance CVD method, etc., and therefore, the curling of the transfer paper is prevented by providing the squeegee in tight contact with said body.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、電子サイクロトロン共鳴と高周波または直流
電界とを同時に用いることにより、被形成面特に広い面
積に渡ってより大きい被膜成長速度で行うことにより被
形成面上に被膜形成せしめる気相反応(CVD)方法を
用いた静電複写機の感光体に密接して、転写紙の巻き込
みを防止するスキージを設けた静電複写機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention provides a method of growing a film over a large area, particularly over a large area, by simultaneously using electron cyclotron resonance and a high frequency or direct current electric field. The present invention relates to an electrostatic copying machine that uses a vapor phase reaction (CVD) method to form a film on a surface to be formed, and is provided with a squeegee in close contact with a photoreceptor to prevent transfer paper from getting caught.

r従来技術J 従来、静電複写機の感光体を製造する際に用いる気相反
応による薄膜形成技術として、高周波または直流電界に
より反応性気体を活性にさせるプラズマCVD法(グロ
ー放電CVD法)が知られている。
rPrior Art J Conventionally, a plasma CVD method (glow discharge CVD method) in which a reactive gas is activated by a high frequency or a direct current electric field has been used as a thin film forming technology using a gas phase reaction when manufacturing photoreceptors for electrostatic copying machines. Are known.

この方法は、従来の熱CVD法に比べ、低温での被膜形
成が可能である点で優れたものである。さらに形成され
る被膜がアモルファスシリコン半導体等においては、同
時に再結合中心中和用の水素またはハロゲン元素を含有
させることができるため良好なPIN、PI、Nl接合
を作り得る。
This method is superior to the conventional thermal CVD method in that it allows film formation at low temperatures. Furthermore, when the film to be formed is an amorphous silicon semiconductor or the like, it is possible to simultaneously contain hydrogen or a halogen element for neutralizing recombination centers, thereby making it possible to form a good PIN, PI, and Nl junction.

しかし、かかるグロー放電CVD法においては、被膜の
形成速度がきわめて遅く、実用上その成長速度を10〜
500倍にすることが求められていた。
However, in this glow discharge CVD method, the film formation rate is extremely slow, and in practice, the growth rate is 10 to 10%.
It was required to be multiplied by 500 times.

さらにこの方法により形成される被膜は、高々1μm程
度の厚さに形成されると経時変化または、温度変化等に
より基板よりはがれたり、クラックが入ってしまったり
した。この為感光体ドラムに密接して転写紙の巻き込み
を防止するスキージを設けることは非常に困難であった
Furthermore, when the film formed by this method has a thickness of about 1 μm at most, it peels off from the substrate or cracks due to changes over time or temperature changes. For this reason, it has been extremely difficult to provide a squeegee in close contact with the photoreceptor drum to prevent the transfer paper from getting caught.

r問題を解決すべき手段」 本発明はこれらの問題を解決するためサイクロトロン共
鳴を用いて反応性気体の活性化し、複写感光体を作製し
該感光体に密接してスキージを設けたものである。
In order to solve these problems, the present invention uses cyclotron resonance to activate a reactive gas, prepares a copying photoreceptor, and provides a squeegee in close contact with the photoreceptor. .

「作用」 例えばアモルファスシリコン半導体を直接励起型のグロ
ー放電プラズマCVD法のみで形成せんとする場合は、
その成長速度は1人/秒しか得られない。しかし、本発
明のサイクロトロン共鳴を単独または併用して用いると
この速度を20〜100人/秒に高めることが期待でき
る。
"Operation" For example, when trying to form an amorphous silicon semiconductor using only the direct excitation type glow discharge plasma CVD method,
Its growth rate is only 1 person/second. However, when the cyclotron resonance of the present invention is used alone or in combination, it is expected that this speed will be increased to 20 to 100 persons/second.

本発明においては、グロー放電用電源としては13.5
6MHzの高周波電源を用いた。しかし直流グロー放電
であっても励起した反応性気体の励起状態を持続できる
In the present invention, the power source for glow discharge is 13.5
A 6 MHz high frequency power source was used. However, even with DC glow discharge, the excited state of the excited reactive gas can be maintained.

さらにサイクロトロン共鳴は不活性気体または非生成物
気体(分解または反応をしてもそれ自体は気体しか生じ
ない気体)を用いる。不活性気体としではアルゴンが代
表的なものである。しかしヘリューム、ネオン、クリプ
トンを用いてもよい。
Furthermore, cyclotron resonance uses an inert gas or a non-product gas (a gas that itself produces only a gas when decomposed or reacted). Argon is a typical inert gas. However, helium, neon, or krypton may also be used.

非生成物気体として、酸化物気体の場合は酸素、酸化窒
素(NzO,NO,No□)、酸化炭素(CO,C07
)、水(+120)又窒化物気体としては窒素(NZ)
、アンモニア(NH3)、ヒドラジン(N2H4)、弗
化炭素(Nh、N2FJまたはこれらにキャリアガ′ス
または水素を混合した気体が代表的なものである。
As non-product gases, in the case of oxide gases, oxygen, nitrogen oxides (NzO, NO, No□), carbon oxides (CO, C07
), water (+120) or nitrogen (NZ) as a nitride gas
, ammonia (NH3), hydrazine (N2H4), fluorocarbon (Nh, N2FJ), or a mixture thereof with a carrier gas or hydrogen.

また反応性気体としては生成物気体(分解または反応を
して固体を形成する気体)としては、珪化物気体は5i
nH2n−z(n≧1)、5tFn(n≧2) 、 5
iHnF4−、、(1≦n≦4)、ゲルマニューム化物
はGeHs + GeF4.。
In addition, as a reactive gas, as a product gas (a gas that decomposes or reacts to form a solid), silicide gas is 5i
nH2n-z (n≧1), 5tFn (n≧2), 5
iHnF4-, (1≦n≦4), germanium compound is GeHs + GeF4. .

GeHnF4−n(n=1+2,3)、アルミニューム
化物は八1(C’り 3.AI (CzHs) i、A
lCl3.ガリューム化物はGa(CH+)i。
GeHnF4-n (n=1+2,3), aluminum compound is 81 (C'ri) 3. AI (CzHs) i, A
lCl3. Gallium compound is Ga(CH+)i.

Ga (Cz’s) ff、 5nC141Sn (C
H3) a + InCl31 In (CHi) 3
1SbC1:+、5b(CH3)3がその代表的なもの
である。更に添加物として生成物気体に他の生成物気体
であるBi2.BP+、PH3,AsH,3等のドーピ
ング用気体を加えることも有効である。 これらの非生
成物気体をサイクロトロン共鳴をさせて活性化せしめ、
この共鳴領域より外部の反応空間で生成物気体と混合し
、励起エネルギを生成物気体に移す。すると生成物気体
はきわめて大きい電磁エネルギを受けるため、生成物気
体をほぼ100χ活性化させることができ、かつ自らが
そのエネルギを運動エネルギではなく内圧する活性化エ
ネルギとして保持できる。
Ga (Cz's) ff, 5nC141Sn (C
H3) a + InCl31 In (CHi) 3
1SbC1:+, 5b(CH3)3 is a typical example. Furthermore, other product gases Bi2. It is also effective to add a doping gas such as BP+, PH3, AsH,3, etc. These non-product gases are activated by cyclotron resonance,
It mixes with the product gas in the reaction space outside this resonance region and transfers excitation energy to the product gas. Then, the product gas receives an extremely large amount of electromagnetic energy, so that the product gas can be activated by approximately 100x, and the product gas itself can retain that energy as activation energy, which is an internal pressure, rather than kinetic energy.

また反応室にグロー放電を誘起しておき、この励起また
は反応状態の生成物気体を反応室全体に広げてもよい。
Alternatively, a glow discharge may be induced in the reaction chamber, and the excited or reactive product gas may be spread throughout the reaction chamber.

さらに室温〜500℃の温度で基板を加熱することによ
り、この基板の被形成面上に被膜を形成させることがで
きる。
Further, by heating the substrate at a temperature of room temperature to 500°C, a film can be formed on the surface of the substrate to be formed.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

実施例1 本実施例は、サイクロトロン共鳴型プラズマCvD法に
よる感光体の作製を示す。
Example 1 This example shows the production of a photoreceptor using a cyclotron resonance plasma CVD method.

第1図は本実施例で用いた装置の概要を示す。FIG. 1 shows an outline of the apparatus used in this example.

図面において、ステンレス容器(1′)は蓋(1”)を
有し、反応空間(1)を構成させている。この容器(1
゛)は、内部に基体(10)を基体ホルダ(10’)に
設け、その裏側の!(1”)側にはハロゲンランプヒー
タ(7)を設け、基体の装着の時はi(1°°)を上方
向に開けて行う。石英窓(19)を通して赤外線を基板
に照射し加熱している。さらにこの基板の内側に一つの
網状電極(20°)と容器(1°)の下部には他の一方
の網状電極(20)とを有せしめ、ここに高周波または
直流電[(6)より13.56MHzまたは直流の高周
波電界を加える。基板(10)はこの電界に垂直に第1
図では位置させている。しかしこの基板を電界に平行に
し基板を垂直に多数林立させてもよい。さらに基体はそ
の円周方向に回転をしている。
In the drawing, a stainless steel container (1') has a lid (1'') and defines a reaction space (1).
In ゛), the base body (10) is provided inside the base body holder (10'), and the back side of the base body (10) is provided inside the base body holder (10'). A halogen lamp heater (7) is installed on the (1”) side, and when mounting the substrate, open i (1°°) upwards. Infrared rays are irradiated onto the substrate through the quartz window (19) to heat it. Furthermore, one mesh electrode (20°) is provided inside this substrate, and the other mesh electrode (20) is provided at the bottom of the container (1°), and a high frequency or DC current [(6) A high frequency electric field of 13.56 MHz or DC is applied to the substrate (10) perpendicularly to this electric field.
In the figure, it is located. However, a large number of substrates may be arranged vertically in parallel to the electric field. Furthermore, the base body is rotating in its circumferential direction.

また 非生成物気体をドーピング系(13)より(18
)を経て石英管(29)で作られた共鳴空間(2)に供
給する。この共鳴空間はその外側に空心コイル(5)。
In addition, the non-product gas is transferred from the doping system (13) to (18
) to the resonance space (2) made of a quartz tube (29). This resonant space has an air-core coil (5) outside it.

(5゛)を配し磁場を加える。同時にマイクロ波発振器
(3)によりアナライザー(4)を経て例えば2.45
GHzのマイクロ波が共鳴空間(2)に供給される。
(5゛) and apply a magnetic field. At the same time, the microwave oscillator (3) passes through the analyzer (4), e.g.
GHz microwave is supplied to the resonant space (2).

この空間では共鳴を起こすべく非生成物気体をアルゴン
とすると、その質量、周波数により決められた磁場(例
えば875ガウス)が空心コイルにより加えられる。
In this space, if the non-product gas is argon in order to cause resonance, a magnetic field (for example, 875 Gauss) determined by its mass and frequency is applied by an air-core coil.

このため、アルゴンガスが励起して磁場によりビンチン
グすると同時に共鳴し、十分励起した後に反応空間(1
)へ電子および励起したアルゴンガスとして放出(21
)される。この空間の出口には生成物気体がドーピング
系(13)の系(16)を経て複数のリング状ノズル(
17)により放出(22)される。その結果、生成物気
体(22)は非生成物気体(21)により励起され、活
性化する。加えて一対の電極(20)。
For this reason, the argon gas is excited and resonates at the same time as it is binned by the magnetic field, and after being sufficiently excited, the reaction space (1
) is released as electrons and excited argon gas (21
) to be done. At the outlet of this space, the product gas passes through a doping system (13) and a system (16), and then passes through a plurality of ring-shaped nozzles (
17) is released (22). As a result, the product gas (22) is excited and activated by the non-product gas (21). Additionally a pair of electrodes (20).

(20’)により生じた電界が同時にこれら反応性気体
に加えられる。
An electric field generated by (20') is simultaneously applied to these reactive gases.

その結果、共鳴空間(2)より被形成面が十分離れてい
ても(一般的には5〜20cm)反応性気体の励起状態
を持続させることができる。
As a result, even if the formation surface is sufficiently far from the resonance space (2) (generally 5 to 20 cm), the excited state of the reactive gas can be maintained.

また反応性気体を十分反応室で広げ、かつサイクロトロ
ンをさせるため、反応空間(1)、共鳴空間(2)の圧
力を1〜10− ’ torr例えば0.03〜0.0
01torrとした。この圧力は排気系(11)のコン
トロールバルブ(14)によりターボポンプを併用して
真空ポンプ(9)の排気量を調整して行った。
In addition, in order to spread the reactive gas sufficiently in the reaction chamber and to activate the cyclotron, the pressure in the reaction space (1) and resonance space (2) is set to 1 to 10-' torr, for example, 0.03 to 0.0.
It was set to 01 torr. This pressure was achieved by adjusting the displacement of the vacuum pump (9) using a turbo pump together with the control valve (14) of the exhaust system (11).

更に図面においては電子または共鳴励起したアルゴンを
反応空間に十分床げるため、一方の電極(20)がホモ
ジナイザ(20)の効果を併用させ得る。
Furthermore, in the drawing, one electrode (20) can also have the effect of a homogenizer (20) in order to sufficiently fill the reaction space with electron- or resonance-excited argon.

すると、このモジナイザの穴より放出される気体(21
)とノズル(17)よりの気体(22)とをより基板表
面に対応して広い面積で混合させることができ、大面積
の均一性をより良好に得るため好ましい。
Then, the gas (21
) and the gas (22) from the nozzle (17) can be mixed over a wide area corresponding to the substrate surface, which is preferable because uniformity over a large area can be better obtained.

もちろんかかるホモジナイザをいれるとこの面への電子
及び活性気体の衝突は避けられず、結果としてそこでの
エネルギ消費がおきるため、成長速度の減少が見られる
。そのため高い成長速度をより得んとする場合、均一性
の欠乏が観察されるが、このホモジナイザの効果を除去
し、単に大きな開口を有する網状電極とすればよい。不
要気体は周辺部の排気口(8)より排気系(11)にて
排気した。
Of course, when such a homogenizer is used, collisions of electrons and active gas with this surface are unavoidable, resulting in energy consumption and a decrease in the growth rate. Therefore, if a higher growth rate is to be obtained, a lack of uniformity is observed, but this homogenizer effect can be removed and a mesh electrode with large openings simply provided. Unnecessary gas was exhausted through the exhaust system (11) from the exhaust port (8) in the peripheral area.

実験例1 この実験例は被膜として、アモルファスシリコン膜を形
成させたものである。
Experimental Example 1 In this experimental example, an amorphous silicon film was formed as the coating.

即ち反応空間の圧力0.003torr 、非生成物気
体として(18)よりアルゴンを20SCCMで供給し
た。加えて、モノシランを(16)よりIO5CCMで
供給した。
That is, the pressure in the reaction space was 0.003 torr, and argon was supplied from (18) at 20 SCCM as a non-product gas. In addition, monosilane was fed from (16) at IO5CCM.

マイクロ波は2.45GHzの周波数を有し、30〜5
00賀の出力例えば50讐で調整した。磁場(5)、(
5”)の共鳴強度は875ガウスとした。
Microwaves have a frequency of 2.45 GHz and 30-5
I adjusted the output of 00ga, for example, 50. Magnetic field (5), (
5'') resonance intensity was 875 Gauss.

導電性表面をすくなくとも一部に有する円筒状の基体(
10)を用い、この被形成面上に非単結晶半導体例えば
アモルファスシリコン半導体を形成し、不要気体を排気
系(11)より放出した。すると基板温度が250°C
において被膜形成速度45人/秒を作ることができ、製
膜時間は約18分だった。この速度はプラズマCvDの
みで得られる1、5人ノ秒に比べ30倍の速さである。
A cylindrical substrate having at least a portion of an electrically conductive surface (
10), a non-single-crystal semiconductor, such as an amorphous silicon semiconductor, was formed on the surface to be formed, and unnecessary gas was discharged from the exhaust system (11). Then the board temperature is 250°C
A film formation rate of 45 people/second could be achieved in this method, and the film formation time was about 18 minutes. This speed is 30 times faster than the 1.5 person seconds obtained with plasma CVD alone.

このアモルファスシリコン膜の電気特性として、暗転導
度2 xlQ−10(Scm−1)、光転導度(AMI
 (100mW/cm2)の条件下)7 X 10−’
(Scm−’ )を得ることができた。この値はこれま
で知られているプラズマCVD法におけるアモルファス
シリコン膜と同様の特性であり、PIN接合を有する光
電変換装置としても同様の高い変換効率を得ることがで
き得る。
The electrical properties of this amorphous silicon film include dark conductivity 2xlQ-10 (Scm-1) and optical conductivity (AMI
(under the condition of 100 mW/cm2) 7 X 10-'
(Scm-') could be obtained. This value is a characteristic similar to that of an amorphous silicon film in the hitherto known plasma CVD method, and the same high conversion efficiency can be obtained as a photoelectric conversion device having a PIN junction.

さらに半導体膜を1μ形成した。その膜中には0.1〜
0.01μの大きさのピンホールが多数プラズマCVD
法の被膜では観察されるが、本発明のサイクロトロン共
鳴型プラズマCVD装置ではこのピンホール数は約17
10に減少(X100の暗視野にて平均1〜3ゲ/視野
)させることができた。第20に、この被膜の光照射後
の伝導度の特性を示す。
Furthermore, a 1 μm semiconductor film was formed. The film contains 0.1~
Plasma CVD with many pinholes with a size of 0.01μ
However, in the cyclotron resonance plasma CVD apparatus of the present invention, the number of pinholes is approximately 17.
10 (on average 1-3 games/field in the dark field of X100). 20th, the conductivity characteristics of this film after light irradiation are shown.

約1μmという厚さにもかかわらず光照射(AMllo
omW /ant)4時間後、従来の方法で作製された
被膜とちがい光劣化はほとんどみられない。
Despite the thickness of approximately 1 μm, light irradiation (AMllo
omW /ant) After 4 hours, almost no photodeterioration is observed, unlike the coating produced by the conventional method.

生成物気体をモノシランでなくジシランまたはモノシラ
ンと弗化シラン(SizFa)の混合気体とすると、更
に被膜成長速度の向上を期待できる。
If the product gas is disilane or a mixed gas of monosilane and fluorinated silane (SizFa) instead of monosilane, further improvement in the film growth rate can be expected.

次にこの装置を用い複写機の感光体ドラムを作製した。Next, a photosensitive drum for a copying machine was manufactured using this apparatus.

基体(10)として直径25cm長さ30cmの物を用
いその表面はアルミニュームまたはその化合物で覆われ
ている物を用いた。この基体(10)を第1図の装置に
セットし、反応空間の圧力3 X 10− ’!Tor
rAr20SCCMを(18)よりSillnlOSC
CM、 Bzl160.2SCCMを(16)より導入
した。この後マイクロ波出力(2,45Gl+□)50
W磁場強度875ガウス、プラズマ放電用型tA(13
,56MH)出力30WにてP型非単結晶珪素半専体を
500〜2000人本実施例では700人を形成した。
The substrate (10) was 25 cm in diameter and 30 cm in length, and its surface was covered with aluminum or a compound thereof. This substrate (10) is set in the apparatus shown in Fig. 1, and the pressure in the reaction space is 3 x 10-'! Tor
rAr20SCCM from (18)
CM, Bzl160.2SCCM was introduced from (16). After this, microwave output (2,45Gl+□) 50
W magnetic field strength 875 Gauss, plasma discharge type tA (13
, 56MH) at an output of 30 W, 500 to 2,000 people (700 people in this example) were formed semi-exclusively of P-type non-single crystal silicon.

この後一度反応室を排気し残留ガスを反応室外へ排気し
た。
After this, the reaction chamber was once evacuated and residual gas was exhausted to the outside of the reaction chamber.

次にI型の非単結晶珪素半導体を形成する為Ar25S
CCM、 Sit1415SCCMで■型珪素半導体層
をP型半導体層上に2〜10μm、本実施例では約5μ
m形成した。その他の条件はP型半導体層の場合と同じ
であった。
Next, Ar25S was used to form an I-type non-single crystal silicon semiconductor.
CCM, Sit1415SCCM, a ■-type silicon semiconductor layer is placed on the P-type semiconductor layer with a thickness of 2 to 10 μm, in this example, about 5 μm.
m was formed. Other conditions were the same as in the case of the P-type semiconductor layer.

次にI型半導体層上に保護膜として、5i3Na−x 
(0≦x〈4)を形成するために、I型半導体の形成条
件に加えてアンモニア505CCMを導入した。この保
護膜を数100人本実施例では200人形成し、複写機
の感光体を完成した。この全工程を終了するのにかかっ
た時間は約30分であった。
Next, 5i3Na-x was applied as a protective film on the I-type semiconductor layer.
In order to form (0≦x<4), 505 CCM of ammonia was introduced in addition to the conditions for forming an I-type semiconductor. This protective film was formed by several hundred people, in this example 200 people, and the photoreceptor of the copying machine was completed. The time it took to complete this entire process was approximately 30 minutes.

実施例2゜ サイクロトロン共鳴のみを用いて、実施例1と同様な感
光体を作製した。作製条件は実施例1と同+iである。
Example 2 A photoreceptor similar to that in Example 1 was produced using only cyclotron resonance. The manufacturing conditions were the same as in Example 1 +i.

ただしサイクロトロン共鳴のみの場合は、大面積に被膜
を形成することに若干の問題があった為、本実施例では
基体(10)を回転させるとともに左右に移動させなか
ら製膜を行った。本実施例により作製された感光体に対
し、室温−15000の温度サイクルを100回行った
結果を表1に示す。このように被膜にクラックが入った
り基板よりはがれたりビーリングせず、歩留まりは約9
8%だった。
However, in the case of only cyclotron resonance, there were some problems in forming a film over a large area, so in this example, the film was formed while rotating the substrate (10) and not moving it from side to side. Table 1 shows the results of 100 temperature cycles from room temperature to 15,000 degrees Celsius for the photoconductor produced according to this example. In this way, the film does not crack, peel off from the substrate, or bead, and the yield is approximately 9.
It was 8%.

表1 また、このSampleを静電複写機に装着し、この感
光体ドラムに密接して転写紙のまき込みを防止する  
          スキージを設けたが感光体の半導
体被膜は、基体よりはがれず104〜106回の複写動
作に対しても変化はなかった。
Table 1 Also, install this Sample in an electrostatic copying machine and place it in close contact with this photoreceptor drum to prevent the transfer paper from getting caught.
Although a squeegee was provided, the semiconductor coating on the photoreceptor did not peel off from the substrate and remained unchanged even after 104 to 106 copying operations.

「効果」 本発明はサイクロトロン共鳴のみサイクロトロン共鳴と
グロー放電の併用により、複写機の感光体を形成するこ
とにおいて非常に早く厚い被膜を、形成することができ
る。またその被膜の特性として一般的方法で形成された
アモルファス珪素半導体に比べて、I型半導体層の光劣
化の程度が著しく少ない。そのため長期の信頼性に優れ
ている。
"Effects" The present invention uses only cyclotron resonance and a combination of cyclotron resonance and glow discharge to form a thick film very quickly when forming a photoreceptor for a copying machine. Further, as a characteristic of the film, the degree of photodeterioration of the I-type semiconductor layer is significantly lower than that of an amorphous silicon semiconductor formed by a general method. Therefore, it has excellent long-term reliability.

また10μm程度の厚膜としても、ピーリング、クラッ
ク等が発生せず装置の歩留まりが向上した。
Furthermore, even when the film was about 10 μm thick, peeling, cracking, etc. did not occur, and the yield of the device was improved.

このため感光体ドラム(10)に密接して転写機(31
)の巻き込み防止用のスキージ(32)を設けることが
可能となった。さらに、このスキージ(32)を設けて
も基体(10)より半導体層が、はがれたリクラノクが
入ることはなかった。
Therefore, the transfer machine (31) is placed in close contact with the photoreceptor drum (10).
) can be provided with a squeegee (32) to prevent it from getting caught. Furthermore, even with this squeegee (32) provided, the semiconductor layer did not come off from the base (10).

発明は実施例のみに限定されてないことは云うまでもな
い。さらに実施例1.2においてP型非単結晶珪素半導
体を従来のグロー放電法で形成しても、本発明の効果に
何ら変わるところはない。
It goes without saying that the invention is not limited only to the examples. Furthermore, even if the P-type non-single-crystal silicon semiconductor is formed by the conventional glow discharge method in Example 1.2, the effects of the present invention will not change in any way.

【図面の簡単な説明】[Brief explanation of drawings]

第3図は本発明の装置を示す。 (30)−一・−・・・感光ドラム (31)・・−一一−−転写紙 (32)・−・・・・スキージ FIG. 3 shows the apparatus of the invention. (30)-1.--Photosensitive drum (31)...-11--Transfer paper (32)・−・・・Squeegee

Claims (1)

【特許請求の範囲】[Claims] 1、複写機における感光体においてその感光体を形成す
る全部または一部の被膜を、電子サイクロトロン共鳴C
VD法のみ、または電子サイクロトロン共鳴とグロー放
電CVD法の併用にて形成された感光体を用いた静電複
写機において、前記感光体に密接して金属またはそれに
匹敵する物質製のスキージを設けたことを特徴とする静
電複写機。
1. All or part of the coating forming the photoreceptor in a copying machine is coated with electron cyclotron resonance C.
In an electrostatic copying machine using a photoreceptor formed by the VD method alone or by a combination of electron cyclotron resonance and glow discharge CVD methods, a squeegee made of metal or a comparable material is provided in close proximity to the photoreceptor. An electrostatic copying machine characterized by:
JP1457486A 1986-01-24 1986-01-24 Electrostatic copying machine Pending JPS62172370A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1457486A JPS62172370A (en) 1986-01-24 1986-01-24 Electrostatic copying machine
US07/006,379 US4760008A (en) 1986-01-24 1987-01-23 Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1457486A JPS62172370A (en) 1986-01-24 1986-01-24 Electrostatic copying machine

Publications (1)

Publication Number Publication Date
JPS62172370A true JPS62172370A (en) 1987-07-29

Family

ID=11864930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1457486A Pending JPS62172370A (en) 1986-01-24 1986-01-24 Electrostatic copying machine

Country Status (1)

Country Link
JP (1) JPS62172370A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159167A (en) * 1983-03-01 1984-09-08 Zenko Hirose Manufacture of amorphous silicon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159167A (en) * 1983-03-01 1984-09-08 Zenko Hirose Manufacture of amorphous silicon film

Similar Documents

Publication Publication Date Title
EP0478984A1 (en) Plasma enhanced chemical vapor processing system using hollow cathode effect
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JP4441607B2 (en) Method for passivating a semiconductor substrate
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS6248753B2 (en)
US20020005159A1 (en) Method of producing thin semiconductor film and apparatus therefor
US5574958A (en) Hydrogen radical producing apparatus
JPS62172370A (en) Electrostatic copying machine
JPS62172369A (en) Formation of copying photosensitive body
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPS63169385A (en) Formation of copying photosensitive body
JPH0420985B2 (en)
JP2608456B2 (en) Thin film forming equipment
JP3274099B2 (en) Solar cell manufacturing method
JPS6380525A (en) Formation of coat
JPH04355970A (en) Manufacture of solar cell
JP2662688B2 (en) Coating method
JP3088446B2 (en) Plasma processing apparatus and plasma processing method
JP3486292B2 (en) Cleaning method of metal mesh heater
JP3088447B2 (en) Plasma processing apparatus and plasma processing method
JPS61247018A (en) Deposition film forming method and deposition film forming equipment
JPS61189625A (en) Formation of deposited film
JPH0474432B2 (en)
JPH02174223A (en) Plasma vapor growth device, usage thereof and formation of film
JPH1174204A (en) Method and device for manufacturing semiconductor thin film