JPS62172311A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS62172311A
JPS62172311A JP61013819A JP1381986A JPS62172311A JP S62172311 A JPS62172311 A JP S62172311A JP 61013819 A JP61013819 A JP 61013819A JP 1381986 A JP1381986 A JP 1381986A JP S62172311 A JPS62172311 A JP S62172311A
Authority
JP
Japan
Prior art keywords
light
photodetecting
light receiving
spot
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61013819A
Other languages
Japanese (ja)
Inventor
Takashi Azumi
安積 隆史
Takesuke Maruyama
竹介 丸山
Kenji Sano
賢治 佐野
Hironobu Sato
裕信 佐藤
Takaki Hisada
隆紀 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61013819A priority Critical patent/JPS62172311A/en
Publication of JPS62172311A publication Critical patent/JPS62172311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure of a focusing device and to improve the reliability of the device by moving or rotating only an optical system to detect the focusing state. CONSTITUTION:A light beam emitted from a light emitting element 3 is projected into a subject 8 by a projection lens 1, the reflected light is bent by a plane mirror 21 through a photodetecting lens 3 and its image is formed on a two-divided photodetecting element. A photodetecting spot image is formed on a position separated from the dividing line of the photodetecting element 4, and when a fixed difference is generated between the quantity of light made incident upon two photodetecting surfaces, the difference of the quantity of light is detected by a photodetecting circuit and decided as a defocused state and the rotating direction of a focus ring 5 is detected. A driving circuit rotated the focus ring 5 and moves a optional system holding member 22 through a rink mechanism 7 in a direction that the center of the photodetecting spot coincides with the dividing line of the photodetecting element 4. When the dividing line of the photodetecting element 4 coincides with the center of the photodetecting spot and the difference of the quantity of light made incident upon the two photodetecting surfaces is reduced less than the fixed value, and decided, as the focusing state. Consequently, the reliability of the focusing device can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ビデオカメラなどに用いて好適な自動合焦装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an automatic focusing device suitable for use in a video camera or the like.

〔発明の背景〕[Background of the invention]

従来、ビデオカメラには、操作性を高めるために、焦点
合わせな自動的に調節する自動合点装置が設けられてい
る。かかる手段は種々提案されているが、その−例とし
て特公昭46−28500号公報に開示されているよう
に、発光手段と受光手段とを備え、発光手段から発した
光を被写体に照射し、その反射光を受光手段で受光し、
受光手段におけるセンサ(受光素子)での反射光の照射
位はを検出して焦点合わせの調節を行な5ようにした技
術が矧られている。
Conventionally, video cameras have been equipped with an automatic focusing device that automatically adjusts focusing in order to improve operability. Various such means have been proposed, and one example is disclosed in Japanese Patent Publication No. 46-28500, which includes a light emitting means and a light receiving means, and irradiates the subject with light emitted from the light emitting means. The reflected light is received by a light receiving means,
There are several techniques that detect the irradiation position of the reflected light on a sensor (light receiving element) in the light receiving means and adjust the focusing.

以下、第7図により、かかる従来の自動合焦装置を具体
的に説明する。なお、同図において、1は投写レンズ、
2は発光素子、3は受光レンズ、4は2分割受光素子、
5はフォーカス環、6はカム、7はリンク機構、9は付
勢部材、10は固定部材、11は線材である。
Hereinafter, such a conventional automatic focusing device will be specifically explained with reference to FIG. In addition, in the same figure, 1 is a projection lens,
2 is a light emitting element, 3 is a light receiving lens, 4 is a two-part light receiving element,
5 is a focus ring, 6 is a cam, 7 is a link mechanism, 9 is a biasing member, 10 is a fixing member, and 11 is a wire rod.

同図において、この自動合焦装置は、投射レンズ1と発
光素子2とからなる発光部と、発光部の光軸と距離tだ
け離れた光軸をもつ受光レンズ5と2分割受光索子4と
からなる受光部と、カム6を有するフォーカス環5とリ
ンク機構7と付勢部材(弾性体)9とからなる受光素子
駆動部とで構成される。この構成により発光素子2から
のスポット光束(投写光束)は投射レンズ1により被写
体上に投射され、被写体からの反射光を受光レンズ3に
より2分割受光素子4で受光する。被写体距離yが変化
すると被写体上に投射されたスポット光の反射光が受光
レンズ3に入射する角度が変化し、受光レンズ5の焦点
距離fの位置に結像する投射スポット光の像(受光スポ
ット)は受光レンズ5め光軸と直角方向に移動する。こ
の移動量は、被写体距離yにより一義的に決まっている
ため、受光スポットの移動した位置に2分割受光素子4
をX方向に移動させたとき、受光スポットが2分割受光
素子の分割線上に位置するように設定する。
In the figure, this automatic focusing device includes a light emitting section consisting of a projection lens 1 and a light emitting element 2, a light receiving lens 5 having an optical axis separated by a distance t from the optical axis of the light emitting section, and a two-part light receiving cable 4. and a light receiving element drive section including a focus ring 5 having a cam 6, a link mechanism 7, and a biasing member (elastic body) 9. With this configuration, a spot light beam (projection light beam) from the light emitting element 2 is projected onto the subject by the projection lens 1, and reflected light from the subject is received by the light receiving lens 3 and the two-split light receiving element 4. When the subject distance y changes, the angle at which the reflected light of the spot light projected onto the subject enters the light receiving lens 3 changes, and the image of the projected spot light (light receiving spot) is formed at the focal length f position of the light receiving lens 5. ) moves in a direction perpendicular to the optical axis of the fifth light receiving lens. This amount of movement is uniquely determined by the subject distance y, so the two-split light receiving element 4 is placed at the position where the light receiving spot has moved.
The light receiving spot is set so that when the light receiving element is moved in the X direction, the light receiving spot is located on the dividing line of the two-split light receiving element.

この2分割受光素子4のX方向への移動は、モータ等で
回転されるフォーカス環5に設けたカム6とリンク機構
7及び付勢部材9とによって行なわれる。
The movement of the two-split light receiving element 4 in the X direction is performed by a cam 6 provided on a focus ring 5 rotated by a motor or the like, a link mechanism 7, and a biasing member 9.

ところで、2分割受光素子4には、各分割受光素子に対
応する2系統の信号を伝達するための線材11が接続さ
れていて、この線材は信号処理回路基板(図示せず)に
接続されている。また、この線材は、受光素子からの微
弱な電気信号を伝送するものであるため、ノイズの影響
を受げにくいシールド線が用いられる。しかし、シール
ド線は弾性が強いため、2分*lJ受光素子の取付げに
際しては、固定部材10によって一度固定してから信号
処理回路基板に接続することにより、線材11であるシ
ールド線と処理回路基板との間における、線材による引
張り力の影響をなくす構造としている。
Incidentally, a wire 11 is connected to the two-split light receiving element 4 for transmitting two systems of signals corresponding to each split light receiving element, and this wire is connected to a signal processing circuit board (not shown). There is. Furthermore, since this wire transmits a weak electrical signal from the light receiving element, a shielded wire that is less susceptible to noise is used. However, since the shield wire has strong elasticity, when installing the 2 min*lJ photodetector, it is necessary to fix it with the fixing member 10 and then connect it to the signal processing circuit board. It has a structure that eliminates the influence of the tensile force caused by the wire between it and the substrate.

しかし、固定部材10と2分割受光素子4との間の線材
については、上記したよ5な固定部材での対策ができな
いため、線材によるねじれ、引張り力が残る。このため
、2分割受元素子4に力がかかり、2分割受光素子4の
位置が正しく定まらず、合焦精度が低下する原因となり
ていた。この位置の精度を確保するために、付勢部材9
により強制的に2分割受光素子4を片寄せして、位tI
L設定をする必要があった。そのため、付勢部材9の押
し何は力を強くする構成となり、構造が複雑となり部品
点数も多いものとなり、また、組豆て時に、2分割受光
素子4を一度保持部材に取り付けた後、線材を介して基
板に接続する必要があるため、作業工程が多くなり、作
業性も悪いという欠点があった。
However, regarding the wire between the fixing member 10 and the two-split light-receiving element 4, since the fixing member described above cannot be used as a countermeasure, twisting and tensile force caused by the wire remain. For this reason, force is applied to the two-split light receiving element 4, and the position of the two-segment light receiving element 4 cannot be determined correctly, causing a decrease in focusing accuracy. In order to ensure the accuracy of this position, the biasing member 9
The two-split light receiving element 4 is forced to one side, and the position tI
I had to set it to L. Therefore, the force of the biasing member 9 is increased, resulting in a complicated structure and a large number of parts. Since it is necessary to connect to the board via a wire, there are disadvantages in that there are many work steps and workability is poor.

さらに、合焦動作のたびに2分割受光素子4を移動する
ことから、2分割受光素子4に接続している線材が屈伸
されるため、その材質疲労が生じて断縁する恐れがあり
、信頼性に問題を残していた。
Furthermore, since the two-split light-receiving element 4 is moved every time a focusing operation is performed, the wire connected to the two-segment light-receiving element 4 is bent and stretched, which may cause material fatigue and breakage. I had problems with my sexuality.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を解消し、構造が
簡単でかつ信頼性の大きい自動合焦装置を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an automatic focusing device with a simple structure and high reliability.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、2分割受光素子
を固定した状態で合焦調節可能な受光部光学系を採用し
たものであり、受光レンズと反射鏡としての平面鏡とか
ら成る受’5’e部光学系においては、これら2つを同
時に光軸方向に移動させろか、もしくは、平面鏡のみを
回動させることにより、2分割受光素子上の、被写体か
らの光束の結像位置を調節して合焦を得るようにした点
に特徴がある。
In order to achieve this object, the present invention employs a light-receiving optical system that is capable of focusing while a two-split light-receiving element is fixed. In the 5'e section optical system, the imaging position of the light beam from the subject on the two-split light receiving element can be adjusted by moving these two in the optical axis direction at the same time, or by rotating only the plane mirror. It is unique in that it is made to focus by

尚、受光部光学系の移動量もしくは回転量は、フォーカ
ス環に設けたカムとリンク機構によりフォーカス環の回
動量に連動している。また、凹面鏡よりなる受光部光学
系においても、同様に合焦を得ろようにしている。
The amount of movement or rotation of the light receiving optical system is linked to the amount of rotation of the focus ring by a cam and a link mechanism provided on the focus ring. In addition, focusing is similarly achieved in the light-receiving optical system made of a concave mirror.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による自動合焦装置の第一の実施例を示
す構成図であって、8は被写体、21は平面鏡、22は
光学系保持部材であり、第7図に対応する部分には同一
符号をつけている。
FIG. 1 is a configuration diagram showing a first embodiment of an automatic focusing device according to the present invention, in which 8 is a subject, 21 is a plane mirror, 22 is an optical system holding member, and the parts corresponding to FIG. are given the same sign.

同図において、光学系保持地材22は受光レンズ5と反
射鏡としての平面鏡で構成された光学系を保持している
In the figure, an optical system holding material 22 holds an optical system composed of a light receiving lens 5 and a plane mirror as a reflecting mirror.

リンク機構7はフォーカスR&5に一体となっているカ
ム乙の動きを光学系保持部材22に伝える。
The link mechanism 7 transmits the movement of the cam B integrated with the focus R&5 to the optical system holding member 22.

このリンク機構7の端部は、各々、カム6と光学系保持
部材22に当接し、光学系保持部材22の位置はフォー
カス環5により動作が規制される。
The ends of this link mechanism 7 abut on the cam 6 and the optical system holding member 22, respectively, and the position of the optical system holding member 22 is regulated by the focus ring 5.

付勢部材9は、リンク機構7をカム6と光学系保持部材
22とに接触させるためのものである。
The biasing member 9 is for bringing the link mechanism 7 into contact with the cam 6 and the optical system holding member 22.

投射レンズ10光軸と受光レンズ5の光軸との間隔は、
l(基版長)に設定している。平面鏡21は受光レンズ
30光軸に対して45度の角度で固定している。光学系
保持地材22は、受光レンズ30光軸方向(X方向)に
移動可能な構造を有している。
The distance between the optical axis of the projection lens 10 and the optical axis of the light receiving lens 5 is
It is set to l (base plate length). The plane mirror 21 is fixed at an angle of 45 degrees with respect to the optical axis of the light receiving lens 30. The optical system holding material 22 has a structure that is movable in the optical axis direction (X direction) of the light receiving lens 30.

次に、上記の構成による自動合焦動作について貌明する
Next, the automatic focusing operation with the above configuration will be explained.

発元累子2から発した光束は、投射レンズ1により被写
体8に投射される。被写体からの反射光は、受光レンズ
3を通して平面腕21によりで曲げられ、2分割受光素
子4上にM像する。
A light beam emitted from the source light source 2 is projected onto a subject 8 by a projection lens 1. The reflected light from the object passes through the light-receiving lens 3 and is bent by the flat arm 21, forming an M image on the two-split light-receiving element 4.

受光レンズ3の黒点距離fと、被写体距離yと、受光ス
ポット像の結像位置門との間には次の関係がある。
The following relationship exists between the sunspot distance f of the light-receiving lens 3, the subject distance y, and the imaging position of the light-receiving spot image.

また、光学系保持部材220光軸方向の移動波をX8、
リンク機構70支点Aと光学系保持地材22との接点の
長さをl3、支点Aとカム6との接点の長さを6、カム
6上の接点の移動量をZとすると、移動量X、は次式で
表わされる。
In addition, the moving wave in the optical axis direction of the optical system holding member 220 is
If the length of the contact point between the link mechanism 70 fulcrum A and the optical system holding material 22 is l3, the length of the contact point between the fulcrum A and the cam 6 is 6, and the amount of movement of the contact point on the cam 6 is Z, then the amount of movement is X is expressed by the following formula.

この実施鉤の自動合焦動作においては、2分割受光素子
4の2つの受光面に等しい光量が入射したときに合焦の
状態となる。
In the automatic focusing operation of this implementation hook, when an equal amount of light is incident on the two light-receiving surfaces of the two-part light-receiving element 4, a focused state is achieved.

2分割受光素子40分割線(2分割受光素子の受光面分
割境界巌)上から削れた位置に受光スポット塚が結像し
て、2つの受光・面に入射する光量に一定の差が生じる
と、その光量差を受光回路(図示せず)にて検出し、非
合焦状態と判定し、フォーカス環5の回動すべき方向を
検知する。受光回路が非合焦状態を検出すると、モータ
駆動回路(図示せず)はモータに通電し、フォーカス環
5を回動させる。同時廻、リンク機構7の一万の接点は
フォーカスR5のカム6に宿ってX方向に移動する。光
学系保持部材22と接しているリンク機構7の他方の接
点は、光学系保持部材22を、その受光スポットの中心
が2分割受元素子40分割巌に一紋する方向く動か丁。
When a light-receiving spot mound is formed at a position cut from the top of the 2-split light-receiving element 40 dividing line (light-receiving surface division boundary of the 2-split light-receiving element), a certain difference occurs in the amount of light incident on the two light-receiving surfaces. The difference in light amount is detected by a light receiving circuit (not shown), it is determined that the focus ring 5 is out of focus, and the direction in which the focus ring 5 should be rotated is detected. When the light receiving circuit detects an out-of-focus state, a motor drive circuit (not shown) energizes the motor to rotate the focus ring 5. At the same time, the 10,000 contact points of the link mechanism 7 are housed in the cam 6 of the focus R5 and move in the X direction. The other contact point of the link mechanism 7, which is in contact with the optical system holding member 22, moves the optical system holding member 22 in a direction in which the center of the light receiving spot is aligned with the 40 divisions of the two-divided receiving element.

2分割受光素子4の分割線と受光スポットの中心が一玖
して、2つの受光面に入射する光量差が一定値以下とな
ると、受光回路は合焦状態と判定し、モータの回動を停
止させる。
When the center of the dividing line of the two-split light-receiving element 4 and the light-receiving spot are separated by a distance, and the difference in the amount of light incident on the two light-receiving surfaces becomes less than a certain value, the light-receiving circuit determines that the focus is on and stops the rotation of the motor. make it stop.

この光学系保持地材22の移動量について一例を示すと
、被写体距離y=1m、基巌艮l=25mm、受光レン
ズの焦点距1@f = 2ammとすると、上記移動量
はQ、5mmとなる。
To give an example of the amount of movement of the optical system holding material 22, if the subject distance y = 1 m, the distance of the light receiving lens = 25 mm, and the focal length of the light receiving lens is 1@f = 2 am, then the amount of movement is Q, 5 mm. Become.

この実施例は、受光スポットの位置検出を、2分割受光
素子を移動して行な5かわりに、光学系を移動して行な
5構造としたものであり、移動量、移動機構、及び設定
位llIc梢度は従来例と同じである。しかし、2分割
受光素子を固定したため、線材のねじれ、引張り力によ
る2分割受光素子の設定位It棺度への影響はない。そ
の結果、従来のように、縁材として弾性の大きなシール
ド線を用いても、線材のねじれ、引張り力による受光ス
ポット位置と2分割受光素子の位置ずれは生じなくなる
In this embodiment, the position of the light-receiving spot is detected by moving the optical system instead of by moving the two-split light-receiving element. The position llIc degree is the same as that of the conventional example. However, since the two-split light-receiving element is fixed, there is no effect on the set position of the two-split light-receiving element due to twisting or tensile force of the wire. As a result, even if a shield wire with high elasticity is used as the edge material as in the past, the position of the light-receiving spot and the two-split light-receiving element will not be misaligned due to twisting or tensile force of the wire.

また、2分割受光素子を固定したため、合焦動作による
線材の屈伸は生じないので、屈伸による疲労で材質が劣
化することがなく、断線等の信頼性劣化要因を取り除く
ことができる。
Furthermore, since the two-split light-receiving element is fixed, the wire does not bend or stretch due to the focusing operation, so the material does not deteriorate due to fatigue due to bending or stretching, and reliability deterioration factors such as wire breakage can be eliminated.

なお、2分割受元素子はぼ号処理用の回路基板に直接取
り付けてもよく、その場合は線材は省(ことができる。
Note that the two-split receiving element may be directly attached to the circuit board for processing the blank, and in that case, the wire can be omitted.

第2図は本発明による目動合焦狭1の第二の実施例を示
す要部構成図であって、25は反射虚としての凹面鏡、
24は凹面鏡保持部材であり、第1図に対応する部分に
は同一符号を付けている。この実施例は、前記第一の実
施例における受光レンズを凹面鏡で置き換えたものであ
って、この凹面鏡25の中心は、投射レンズ1の光軸よ
り距離!(基線長)だけ離れて位置させている。
FIG. 2 is a block diagram showing the main parts of a second embodiment of the eye movement focusing lens 1 according to the present invention, in which 25 is a concave mirror as a reflective imaginary;
24 is a concave mirror holding member, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this embodiment, the light-receiving lens in the first embodiment is replaced with a concave mirror, and the center of the concave mirror 25 is located at a distance from the optical axis of the projection lens 1! (baseline length).

凹面鏡23の鏡軸は、投射レンズ1の光軸と45度の角
度で交わり、投射レンズ1の光軸と平行な凹面鏡25に
入射する光束を90度折曲させた後、2分割受光索子4
上に結像させる。
The mirror axis of the concave mirror 23 intersects the optical axis of the projection lens 1 at an angle of 45 degrees, and after bending the light beam incident on the concave mirror 25 parallel to the optical axis of the projection lens 1 by 90 degrees, 4
image on top.

凹面鏡保持部材24は、凹面鏡23を固定し、投写レン
ズ10光軸方向に移動可能な構造となっており、その位
置はフォーカス環5に形成したカム6と、カム6に接触
するリンク機構7、および付勢部材9とにより規制され
る。
The concave mirror holding member 24 has a structure that fixes the concave mirror 23 and is movable in the optical axis direction of the projection lens 10, and its position is between a cam 6 formed on the focus ring 5, a link mechanism 7 that contacts the cam 6, and a link mechanism 7 that contacts the cam 6. and the biasing member 9.

以下、この実施例の合焦動作を説明する。The focusing operation of this embodiment will be explained below.

2分割受元素子4は、凹面鏡23の結像面上に配置され
る。被写体が無限遠にあるときの受光スポットが結像す
る位置は、凹面!!23の中心より、凹面鏡23の焦点
距離fのところに結像する。
The two-split receiving element 4 is arranged on the imaging plane of the concave mirror 23. When the subject is at infinity, the position where the light receiving spot is focused is on a concave surface! ! An image is formed at a focal length f of the concave mirror 23 from the center of the concave mirror 23.

被写体が移動して、距@yが変化すると、凹面鏡23に
対する受光スポット光束入射角度が変化する。凹面鏡に
対する入射角度変化量と、反射角度の変化量は、同じ大
きさである。ここで、凹面鏡23の焦点距離をf、入射
角度の変化量をθとすると、受光スポットの移動量3:
8は、xs=f@θとなる。入射角度の変化量θは、被
写体る。したがって、被写体移動時の受光スポットの移
動量は、即ち凹面鏡を移動させる量であり間第−の実施
例に示すように、式(11で表わされるる凹面鏡25の
移動のメカニズムは、第一の実施例に示す光学系保持部
材22と同様のものである。
When the subject moves and the distance @y changes, the angle of incidence of the light receiving spot light beam on the concave mirror 23 changes. The amount of change in the angle of incidence on the concave mirror and the amount of change in the reflection angle are the same. Here, if the focal length of the concave mirror 23 is f and the amount of change in the angle of incidence is θ, then the amount of movement of the light receiving spot 3:
8 becomes xs=f@θ. The amount of change θ in the incident angle is the subject. Therefore, the amount of movement of the light receiving spot when the subject moves is the amount by which the concave mirror is moved.As shown in the second embodiment, the mechanism of movement of the concave mirror 25 expressed by equation (11) is the first This is similar to the optical system holding member 22 shown in the embodiment.

上記移動量の一例を示すと、被写体距離なy=1y+s
、基線長をl=25mm、凹面鏡の焦点距離をf =2
0mm、とすると、凹面鏡の移動量は、0.5mmとな
る。
To give an example of the amount of movement mentioned above, the subject distance is y=1y+s
, the base length is l = 25 mm, and the focal length of the concave mirror is f = 2.
If it is 0 mm, the amount of movement of the concave mirror will be 0.5 mm.

この実施例によれば、第1図は示したような受光レンズ
は不要となり、凹面鏡の移動のみで合焦操作をすること
ができるため、第一の実施例より機構を簡単化でき、小
型化することができる。
According to this embodiment, the light-receiving lens shown in Fig. 1 is not required, and focusing can be performed only by moving the concave mirror, so the mechanism is simpler and more compact than the first embodiment. can do.

第3図は本発明による自動合焦装置の第三の実施例を示
す要部構成図でありて、25は平面鏡、26はレバーで
あり、第1図は対応する部分部分は同一符号を付けてい
る。
FIG. 3 is a block diagram showing a third embodiment of the automatic focusing device according to the present invention, in which 25 is a plane mirror, 26 is a lever, and corresponding parts in FIG. 1 are given the same reference numerals. ing.

間色において、発光素子と投射レンズ(図示せず)によ
り被写体8に投写したスポット光の反射光束は、受光レ
ンズ3を経て平面@25に入り、平面wj!、25で反
射した光束は2分割受光索子4上に受光スポット像を結
像する。平面鏡25は、受光レンズ3の光軸と交わる点
を中心とし、フォーカスR5の回転によるカム6とレバ
ー26の接触点の変位により回転する機構を有する。
In the interchromatic state, the reflected beam of spot light projected onto the subject 8 by the light emitting element and the projection lens (not shown) enters the plane @25 via the light receiving lens 3, and enters the plane wj! , 25 forms a light receiving spot image on the two-split light receiving cable 4. The plane mirror 25 has a mechanism that rotates around a point that intersects with the optical axis of the light receiving lens 3 as a result of displacement of the contact point between the cam 6 and the lever 26 due to rotation of the focus R5.

第4図は第5図に示した実施例の動作を説明する動作説
明図であって、第5図と同一部分は同一部分を示す。
FIG. 4 is an explanatory diagram for explaining the operation of the embodiment shown in FIG. 5, and the same parts as those in FIG. 5 are shown.

同図により、受光レンズ5に角度θで入射した光束と、
その光束を2分割受光素子4の中央部に反射させるため
の平面鏡250角度αとの関係を説明する。
According to the same figure, the light flux incident on the light receiving lens 5 at an angle θ,
The relationship with the angle α of the plane mirror 250 for reflecting the luminous flux to the central portion of the two-split light receiving element 4 will be explained.

Lは受光レンズ5の三点位置5aから平面鏡25までの
光路長、10は平面!I25から2分割受光素子4まで
の光路長、θは受光レンズ3に入射する光線の角度、α
は平面鏡250光軸に対する角度、βは平面!I25へ
の光束の入射角である。
L is the optical path length from the three-point position 5a of the light receiving lens 5 to the plane mirror 25, and 10 is a plane! The optical path length from I25 to the two-split light receiving element 4, θ is the angle of the light beam incident on the light receiving lens 3, α
is the angle with respect to the optical axis of the plane mirror 250, and β is the plane! This is the angle of incidence of the luminous flux onto I25.

これらの間には、図より次式が成立する。Between these, the following equation holds true as shown in the figure.

また、光束の受光レンズ3への入射角θは、被写体距離
をy、基線長をlとすると、次式が成り立つ。
Further, the angle of incidence θ of the light flux onto the light receiving lens 3 is determined by the following formula, where y is the subject distance and l is the base line length.

θ= tar&−’ cj/y)          
te1式(3)と式(4)より、被写体距離yに対する
平面鏡25の回転角αが決まる。−例を示すと、被写体
距離yが無限遠(■)の場合の平面鏡の角度αを45度
、被写体距離をy = 1 m + L =10mnx
 10=5mmとし、l =25mmとすると、α=4
2.8S度となる。したがって、この例では、被写体距
離が至近(1m)から無限遠まで変化したときの平面鏡
の回転角は、2.15度となる。
θ= tar&-'cj/y)
The rotation angle α of the plane mirror 25 with respect to the subject distance y is determined from the te1 equation (3) and the equation (4). - To give an example, when the subject distance y is infinite (■), the angle α of the plane mirror is 45 degrees, and the subject distance is y = 1 m + L = 10 mnx
If 10 = 5 mm and l = 25 mm, then α = 4
It becomes 2.8S degree. Therefore, in this example, the rotation angle of the plane mirror is 2.15 degrees when the subject distance changes from close range (1 m) to infinity.

このように、平面鏡を受光レンズと2分割受元素子の間
に設置して平面鏡を回転させるだけでよく、構造が簡単
化されろ。また、可動部が少ないことから、移動に対す
る誤差要因が減少し、2分割受光素子4に対する受光ス
ポットの位置の不安定さが減少する。
In this way, it is sufficient to simply install a plane mirror between the light receiving lens and the two-part receiving element and rotate the plane mirror, which simplifies the structure. Furthermore, since there are fewer movable parts, error factors related to movement are reduced, and instability in the position of the light receiving spot with respect to the two-split light receiving element 4 is reduced.

第5図は本発明による自動合焦装置の第四の実施例を示
す要部構成図であって、26はレバー27は凹面鏡であ
り、第1図に対応する部分は同一符号を付けている。
FIG. 5 is a block diagram showing the main parts of a fourth embodiment of the automatic focusing device according to the present invention, in which a lever 27 is a concave mirror, and parts corresponding to those in FIG. 1 are given the same reference numerals. .

同図において、発光素子と投写レンズ(1示せず)によ
り被写体8に投射した光スポットの反射光束は、凹面鏡
27に入射し、その反射光束は凹面鏡27の収斂作用に
より2分割受光素子4上に結像する。
In the figure, the reflected light flux of the light spot projected onto the subject 8 by the light emitting element and the projection lens (1 not shown) enters the concave mirror 27, and the reflected light flux is reflected onto the two-split light receiving element 4 by the convergence effect of the concave mirror 27. Form an image.

凹面鏡27は、凹面鏡の中心を中心として、フォーカス
環5の回転によるカム6とレバー26の接触点の変位に
より回転する機構を有する。
The concave mirror 27 has a mechanism that rotates about the center of the concave mirror by displacement of the contact point between the cam 6 and the lever 26 due to rotation of the focus ring 5.

巣6図は第5図に示した実施例の動作を説明する動作説
明図でありて、第5図と同一部分は同一符号を付してい
る。
6 is an explanatory diagram for explaining the operation of the embodiment shown in FIG. 5, and the same parts as in FIG. 5 are given the same reference numerals.

同図において、被写体が接近し、凹面鏡27への光束の
入射角度なθとし、凹面鏡の焦点距離をfとすると、受
光スポット像の移動txは、−=f―θとなる。すなわ
ち、受光スポットの中心は、2分割受光素子4の分割線
よりf・θ離れた位置に結像する。凹面鏡な回転させて
、受光スポットの中ノuを2分割受元素子40分割線に
入射させるには、直入射角と反射角が尋しいことから、
θ/2回転させればよい。
In the figure, when the object approaches and the angle of incidence of the light beam on the concave mirror 27 is θ, and the focal length of the concave mirror is f, the movement tx of the light-receiving spot image becomes −=f−θ. That is, the center of the light-receiving spot is imaged at a position f·θ apart from the dividing line of the two-part light-receiving element 4. In order to rotate the concave mirror and make the center U of the light receiving spot enter the 40 dividing line of the 2-split receiving element, the normal incidence angle and the reflection angle are inappropriate.
All you have to do is rotate it by θ/2.

この実施例における具体例を以下に説明する無限遠(ψ
)にある被写体からの反射光束χ、凹面鏡27により4
5度折曲したとき、2分割受光素子4上に結像するよう
に設定する。a写体距離をy = 1m を基線長を1
−25關にすると、2分割受光素子4の分割線上に受光
スポットを結像させるには、凹面鏡を0.7度回転させ
ればよいこの回転量は、第三の実施例の場合に対して約
1/3である。そのため、回転機構を小さくすることか
でき、小型化に有効である。
A specific example of this embodiment will be explained below.
), the reflected light flux χ from the subject is 4 due to the concave mirror 27.
It is set so that an image is formed on the two-split light receiving element 4 when it is bent 5 degrees. aThe object distance is y = 1m and the baseline length is 1
-25 degrees, the concave mirror only needs to be rotated by 0.7 degrees in order to image the light receiving spot on the dividing line of the two-part light receiving element 4. This amount of rotation is different from that in the case of the third embodiment. It is about 1/3. Therefore, the rotation mechanism can be made smaller, which is effective for downsizing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光学系のみを移
動、または回転して合焦状態を検出するようにしたため
、2分割受光素子を固定できるため、2分割受ft、素
子く接続する線材のねじれ、引張り力による2分割受光
素子の位置設定の不安定さをな(し、また結顧部には線
材の屈伸及び(り返し荷重を受けることがな(、断線や
接触不良の発生を阻止でさ、上記従来技術の欠点を除い
て優れた機能の自動合焦gc置を提供することができる
As explained above, according to the present invention, since the in-focus state is detected by moving or rotating only the optical system, the two-split light-receiving element can be fixed. This prevents the positioning of the two-split photodetector from becoming unstable due to twisting and tensile force of the wire (and also prevents bending and stretching of the wire at the end (repetitive loads), resulting in wire breakage and poor contact. Thus, it is possible to provide an automatic focusing GC position with superior functionality, except for the drawbacks of the prior art described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による自動合焦S置の第一の実施例を示
す構成図、第2図は本発明による自動合焦装置の第二の
実施例を示す要部構成図、第3図は本発明による自動合
焦itの第三の実施例を示す要部構成図、第4図は第5
図に示した実施例の動作説明図、第5図は本発明による
自動合焦装置の第四の実地例を示す要部構成図第6図は
第5図に示した実施例の動作説明図、第7図は従来の自
動合焦装置の一例を示す構成図である。 1:投写レンズ   2:発光素子 3:受光レンズ   4:2分割受光素子5:フォーカ
ス環  6:カム
FIG. 1 is a block diagram showing a first embodiment of an automatic focusing device according to the present invention, FIG. 2 is a block diagram showing a main part of a second embodiment of an automatic focusing device according to the present invention, and FIG. 4 is a main part configuration diagram showing the third embodiment of the automatic focusing IT according to the present invention, and FIG.
FIG. 5 is a diagram illustrating the main part of a fourth practical example of the automatic focusing device according to the present invention. FIG. 6 is an explanatory diagram of the operation of the embodiment shown in FIG. , FIG. 7 is a block diagram showing an example of a conventional automatic focusing device. 1: Projection lens 2: Light emitting element 3: Light receiving lens 4: 2-split light receiving element 5: Focus ring 6: Cam

Claims (1)

【特許請求の範囲】[Claims] 投写レンズと発光素子とから成る発光部と、受光素子を
有する受光部とを備え、発光部から投写して被写体を照
明し、該被写体から反射した反射光束を受光部で受光し
、該受光部での該反射光束の受光状態に応じて撮影レン
ズのフォーカス環を回動させることにより該被写体に焦
点を合わせるようにした自動合焦装置において、前記受
光部の受光素子の前方に受光部の光軸と角度をもって反
射鏡を設置し、前記受光部の受光素子を固定し、前記フ
ォーカス環の回動に連動して前記反射鏡の位置又は角度
を変化させることにより、自動的に焦点を調節して合焦
状態を得るように構成したことを特徴とする自動合焦装
置。
The light-receiving section includes a light-emitting section consisting of a projection lens and a light-emitting element, and a light-receiving section having a light-receiving element. In an automatic focusing device that focuses on the subject by rotating a focus ring of a photographing lens according to the reception state of the reflected light flux at The focus is automatically adjusted by installing a reflecting mirror at an angle with the axis, fixing the light receiving element of the light receiving part, and changing the position or angle of the reflecting mirror in conjunction with rotation of the focus ring. An automatic focusing device characterized in that the automatic focusing device is configured to obtain a focused state using the following steps.
JP61013819A 1986-01-27 1986-01-27 Automatic focusing device Pending JPS62172311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013819A JPS62172311A (en) 1986-01-27 1986-01-27 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013819A JPS62172311A (en) 1986-01-27 1986-01-27 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS62172311A true JPS62172311A (en) 1987-07-29

Family

ID=11843888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013819A Pending JPS62172311A (en) 1986-01-27 1986-01-27 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS62172311A (en)

Similar Documents

Publication Publication Date Title
US5196875A (en) Projection head
US4728785A (en) Focus detecting device using adjustable inclined sensing means
US4740676A (en) Range finding automatic focusing system employing a rotatable transparent plate and a half-split light receiving element
KR19980063666A (en) Auto focusing method and device
US4370551A (en) Focus detecting device
US5825469A (en) Auto focus system using twice reflection
JPS62172311A (en) Automatic focusing device
JP3466841B2 (en) Scanning optical device
JPH02149814A (en) Monitor mechanism for scanning type optical device
US4009386A (en) Method and arrangement for automatically focussing an objective onto a subject, using autocollimation
US5909302A (en) Staring scanner
JP2971005B2 (en) Optical scanning device
JP2959830B2 (en) Optical scanning device
JPS60149985A (en) Optical distance measuring apparatus
US4739158A (en) Apparatus for the detection of pattern edges
JP2604112Y2 (en) Confocal microscope
JP2822255B2 (en) Scanning optical device
JP3325096B2 (en) Scanning optical microscope
KR970000083Y1 (en) Scanning apparatus
JPH0244258Y2 (en)
JPS63217336A (en) Automatic focus adjusting device
KR970050379A (en) Objective Lens Measurement Device of Optical Pickup Actuator
JPH0593885A (en) Optical spatial transmission device
JPH05248860A (en) Automatic focusing device
JPS60225814A (en) Automatic focus adjusting device