JPS62172191A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS62172191A
JPS62172191A JP61012662A JP1266286A JPS62172191A JP S62172191 A JPS62172191 A JP S62172191A JP 61012662 A JP61012662 A JP 61012662A JP 1266286 A JP1266286 A JP 1266286A JP S62172191 A JPS62172191 A JP S62172191A
Authority
JP
Japan
Prior art keywords
heat
heat storage
bodies
storage device
heat accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61012662A
Other languages
Japanese (ja)
Other versions
JPH0524436B2 (en
Inventor
Nobuyuki Abe
宜之 阿部
Katsuhiko Kanari
金成 克彦
Masayuki Kamimoto
神本 正行
Yoshio Takahashi
義夫 高橋
Ryuji Sakamoto
龍二 坂本
Takeo Ozawa
小澤 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61012662A priority Critical patent/JPS62172191A/en
Publication of JPS62172191A publication Critical patent/JPS62172191A/en
Publication of JPH0524436B2 publication Critical patent/JPH0524436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To increase heat conduction performance without reducing a flow resistance by a method wherein only heat accumulating body, accommodated in the vicinity of the inlet port and the outlet port of heat medium, is provided with a large heat transfer area especially. CONSTITUTION:Heat accumulating bodies 4, having comparatively fine diameter and pillar type configuration, are arranged near the upper inlet and outlet port 2 and the lower inlet and outlet port 3 of a heat accumulator 1 while the pillar type heat accumulating bodies 5, having comparatively large diameter, are arranged in the middle section of the heat accumulating vessel 1. In the heat accumulator constituted in such manner, flowing between the heat accumulating bodies 5 is easy in the middle section of the vessel 1, therefore a pressure loss can be small and the number of the heat accumulating bodies is not increased so much as a whole whereby the increase of production cost may be reduced and highly efficient heat radiating and accumulating characteristics may be obtained.

Description

【発明の詳細な説明】 (以 下 余 白) 3、発明の詳イ(IIな説明 [産業上の利用分野コ 本発明は、蓄熱器に関し、特に各種工業過程等において
熱エネルギーの有効利用手段として好適な温度効率の高
い、温度成層を形成する蓄熱器に関するものである。
[Detailed Description of the Invention] (Hereinafter in the margin) 3.Details of the Invention The present invention relates to a heat storage device that has high temperature efficiency and forms temperature stratification, which is suitable as a heat storage device.

〔従来の技術〕[Conventional technology]

蓄熱器などのように熱エネルギーを貯蔵する技術は、熱
エネルギーの有効な回収、利用を図る上でも特に重要な
技術の一つである。このような蓄熱器において、効率の
良い熱の出し入れを可能とするには、蓄熱材料と熱媒体
との間の伝熱効率を高める必要があり、最も確実かつ容
易な手段として、双方間の伝熱面積を増大させる方法が
採用されてきた。すなわち、その伝熱面に突起物やフィ
ン等をつけたり、代表寸法の小さい蓄熱体、例えは細い
円柱、小さい球、薄い板等を用いることによって、伝熱
面積の増大を図ることかできる。
Technology for storing thermal energy, such as heat storage devices, is one of the most important technologies for effectively recovering and utilizing thermal energy. In order to enable efficient heat transfer in such a heat storage device, it is necessary to increase the heat transfer efficiency between the heat storage material and the heat medium. Methods of increasing area have been adopted. That is, the heat transfer area can be increased by attaching protrusions, fins, etc. to the heat transfer surface, or by using a heat storage body with a small typical size, such as a thin cylinder, a small sphere, a thin plate, etc.

一方、蓄熱)器内の熱媒体の流通系路を工夫することに
よっても、効率良い熱のH,H入れかできる。
On the other hand, efficient heat input can also be achieved by devising the flow path of the heat medium in the heat storage device.

すなわち、蓄熱時には、蓄熱器の上部側から熱媒体を流
下させ、放熱時には蓄熱器の下部側から熱媒体を流入さ
せることによって、蓄熱器内に温度成層を形成するよう
に構成すると、内部で一様に混合される蓄熱器に比べて
、極めて温度効率の高い蓄・放熱が可能である。第5図
は、従来の蓄熱器における熱媒体出口温度と放熱時間と
の関係を示す放熱特性の例を示したものであるが、ここ
で、 CAは温度成層型の特性曲線、 cBは一様混合
型の特性曲線である。このように、全熱量は同じでも、
放出される熱の温度が高い状態に維持されるのが、温度
成層型の特長である。
In other words, if the heat medium is made to flow down from the upper side of the heat storage device during heat storage, and the heat medium flows from the bottom side of the heat storage device during heat dissipation, thereby forming temperature stratification inside the heat storage device, it is possible to create a temperature stratification inside the heat storage device. It is possible to store and release heat with extremely high temperature efficiency compared to heat storage devices that are mixed in the same way. Figure 5 shows an example of heat radiation characteristics showing the relationship between heat medium outlet temperature and heat radiation time in a conventional heat storage device, where CA is a temperature stratification type characteristic curve, and cB is a uniform characteristic curve. This is a mixed type characteristic curve. In this way, even though the total amount of heat is the same,
A feature of the temperature stratification type is that the temperature of the emitted heat is maintained at a high level.

しかしながら、従来の上述したような蓄熱器にあっては
、伝熱性能の向上を図るために伝熱面積の増大を図ろう
とすると、伝熱媒体の流動性の低下をきたすのみならず
、11り造ならびに作業性の点からコスト高を招く。し
かして、このことは温度成層型の蓄熱器の場合にあって
も例外ではない。
However, in the conventional heat storage device as described above, if an attempt is made to increase the heat transfer area in order to improve heat transfer performance, it not only causes a decrease in the fluidity of the heat transfer medium, but also causes problems such as This results in higher costs in terms of construction and workability. However, this is no exception even in the case of a temperature stratification type heat storage device.

(発明が解決しようとする問題点) 本発明は、蓄熱旧材を小容器に収容して用いるカプセル
型蓄熱器、または、形状安定性面密度ポリエチレンを用
いた直接接触蓄熱器などのように、蓄熱材料を直接蓄熱
器内に収容した蓄熱器を、温度成層型として用いる場合
に、より経済的でより効率の高い蓄熱器を提供すること
を目的とするものである。
(Problems to be Solved by the Invention) The present invention solves problems such as a capsule type heat storage device in which old heat storage material is housed in a small container, or a direct contact heat storage device using shape-stable areal density polyethylene. It is an object of the present invention to provide a more economical and more efficient heat storage device when a heat storage device in which a heat storage material is directly housed in the heat storage device is used as a temperature stratification type.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的を達成するために、本発明は、複数の蓄熱用
物体または蓄熱用物体を収容した複数の蓄熱体を蓄熱容
器内に設け、当該蓄熱容器内に熱媒体を流通させること
により熱媒体を介して蓄熱および放熱が行われる蓄熱器
において、蓄熱用物体または蓄熱体の伝熱面積を、蓄熱
容器内の流通位置によって異ならせたことを特徴とする
ものである。
In order to achieve such an object, the present invention provides a plurality of heat storage objects or a plurality of heat storage bodies containing heat storage objects in a heat storage container, and circulates a heat medium in the heat storage container, thereby distributing the heat medium. This heat storage device is characterized in that the heat transfer area of the heat storage object or heat storage body is varied depending on the distribution position within the heat storage container.

〔作 用〕[For production]

このように構成した蓄熱器においては、温度成層型の利
点と特色を生かし、しかもその熱媒体の人口部および出
口部近傍に収容される蓄熱体のみを特に伝熱面積の大き
いものとしたことによって、流動抵抗の低下をきたすこ
となく、重点的に効率よく伝熱性能を高めることができ
る。
The heat storage device constructed in this way takes advantage of the advantages and features of the temperature stratification type, and also by making only the heat storage bodies housed near the population and outlet of the heat medium particularly large in heat transfer area. , it is possible to intensively and efficiently improve heat transfer performance without causing a decrease in flow resistance.

(実施例) 以下に、図面に基づいて本発明の実施例を詳細かつ具体
的に説明する。
(Example) Examples of the present invention will be described below in detail and specifically based on the drawings.

なお、その実施例の説明に先立ち、本発明の着眼点につ
いて述べると、温度成層型の蓄熱器の場合、その伝熱特
性は、蓄熱器上部および下部、すなわち、熱媒体の入口
部および出口部近傍の蓄熱体による伝熱効率によって左
右されるという認識に基づくものであって、熱媒体人口
部および出口部近傍の蓄熱体のみによって伝熱効率の向
上を図るべく、その伝熱面積を大きくし、蓄熱器の中央
部は、比較的伝熱面積を小さくすることによって流通性
の向上を図り、伝熱性能全体の向上を図るように構成す
るものである。
Before explaining the embodiments, the focus of the present invention will be described. In the case of a temperature stratification type heat storage device, its heat transfer characteristics are This is based on the recognition that the heat transfer efficiency is affected by the heat transfer efficiency of nearby heat storage bodies, and in order to improve the heat transfer efficiency only by the heat transfer medium area and the heat storage body near the outlet, the heat transfer area is enlarged, and the heat storage The central portion of the vessel is configured to improve circulation by making the heat transfer area relatively small, thereby improving overall heat transfer performance.

第1図は本発明の一実施例を示す。ここで、lは蓄熱容
器、2および3は熱媒体の上部出入口および下部出入口
である。しかして、本例では蓄熱器1の上部すなわち−
に部出入D2の近傍と、下部すなわち下部出入口3の近
傍とにそれぞれ径の細い柱状の蓄熱体4を配設し、これ
らが蓄熱体4の中間、すなわち蓄熱容器1の中央部に径
の比較的太い柱状の蓄熱体5を配設する。なお、これら
の蓄熱体4および5には蓄熱用の材料が充填されている
FIG. 1 shows an embodiment of the invention. Here, 1 is a heat storage container, and 2 and 3 are upper and lower inlets and outlets for the heat medium. Therefore, in this example, the upper part of the heat storage device 1, that is, -
Column-shaped heat storage bodies 4 with small diameters are arranged near the entrance/exit D2 and in the lower part, that is, near the lower entrance/exit 3, and these are arranged in the middle of the heat storage bodies 4, that is, in the center of the heat storage container 1, where the diameters are compared. A thick columnar heat storage body 5 is provided. Note that these heat storage bodies 4 and 5 are filled with a heat storage material.

このように構成した蓄熱器においては、その蓄熱時には
上部出入口2から熱媒体を流下させて蓄熱体4および5
に熱を吸収させるようになし、放熱時には逆に熱媒体を
下部出入口3から流入させることにより蓄熱体4および
5から熱を放熱させてこれを吸収させることかできる。
In the heat storage device configured in this way, during heat storage, the heat medium is allowed to flow down from the upper entrance/exit 2 to the heat storage bodies 4 and 5.
When heat is radiated, conversely, the heat medium is allowed to flow in from the lower entrance/exit 3, thereby radiating and absorbing heat from the heat storage bodies 4 and 5.

いま、このような蓄熱器による放熱特性の一例を第2図
によって説明すると、ここで、曲線Ccは蓄熱容器1に
装填する柱状の蓄熱体、すなわち第1図て蓄熱体4およ
び5に相当するものを全てその直径が1インチのものと
した場合の特性曲線であり、また曲線coは同様にこれ
らの蓄熱体を全て直径か172インチのものとした場合
の特性曲線である。
Now, an example of the heat dissipation characteristics of such a heat storage device will be explained with reference to FIG. 2. Here, the curve Cc corresponds to the columnar heat storage bodies loaded in the heat storage container 1, that is, the heat storage bodies 4 and 5 in FIG. This is a characteristic curve when all of the heat storage bodies have a diameter of 1 inch, and curve co is a characteristic curve when all of these heat storage bodies have a diameter of 172 inches.

更にまた曲線箱は、第1図に示したような本例の蓄熱器
において、その上部および下部における容積的にそれぞ
れ2096に相当する部分に装填する蓄熱体4の径を1
/2インチ、その中央部の60%に相当する部分に装填
する蓄熱体5の径を1インチのものとした場合の特性曲
線である。
Furthermore, in the heat storage device of this example as shown in FIG.
/2 inch, and the diameter of the heat storage body 5 loaded in a portion corresponding to 60% of the central portion is 1 inch.

これらの特性曲線を比較するに、まず、曲線Ccに対し
て全体の伝熱面積を大きくした場合の曲線Coの方が蓄
熱体と熱媒体との間の熱の授受が速やかになっている。
Comparing these characteristic curves, first of all, in curve Co, where the overall heat transfer area is made larger than in curve Cc, heat transfer between the heat storage body and the heat medium is faster.

すなわち、後者の方が温度低下の少ない効率的な熱交換
が得られることを示しているが、その反面、蓄熱器の生
産コストがほぼ2倍となる上に、容器1内を流通する熱
媒体の流体圧力損失が大きくなる。
In other words, the latter method provides more efficient heat exchange with less temperature drop, but on the other hand, the production cost of the heat storage device is almost double, and the heat medium flowing inside the container 1 is The fluid pressure loss increases.

一方、曲線Coと曲線Cεとを比較するに、その特性は
大方変わらない。こうした特性は、放熱時のみならず蓄
熱時の特性についても、全く同様の効果が得られる。こ
のように、本発明の適用例では、容器1の中央部では蓄
熱器5間の流通が容易なことから圧力損失も僅かですむ
上に、蓄熱体全体の数か差程、増大しないことにより生
産コストのアップも曲線Ccの場合の例に比して約30
零ですみ、しかも効率の高い蓄放熱特性を得ることがで
きる。
On the other hand, when comparing the curve Co and the curve Cε, their characteristics are largely unchanged. These characteristics provide exactly the same effect not only during heat radiation but also during heat storage. As described above, in the application example of the present invention, since the circulation between the heat storage units 5 is easy in the central part of the container 1, the pressure loss is small, and the total number of heat storage units does not increase significantly. The increase in production cost is also about 30% compared to the case of curve Cc.
It is possible to obtain highly efficient heat storage/dissipation characteristics with zero energy consumption.

第3図は本発明の他の実施例を示す。本例は、容器1に
おける上部および下部に装填する蓄熱体14の形状を球
体としたものであって、中央部には例えばその球体とほ
ぼ同じ径の円柱状をなす蓄熱体15を装填する。かくし
て、容器の上部および下部に設けた蓄熱体14によって
その伝熱面積が大きく保持されるもので、その作用につ
いては上述したところと変わらない。
FIG. 3 shows another embodiment of the invention. In this example, the heat storage bodies 14 loaded in the upper and lower parts of the container 1 are spherical in shape, and the heat storage body 15, which is cylindrical and has approximately the same diameter as the sphere, is loaded in the center. Thus, the heat transfer area is maintained large by the heat storage bodies 14 provided at the upper and lower parts of the container, and its function is the same as described above.

第4A図は本発明の更に他の実施例を示す。本例では容
器lの上部および下部に装填する蓄熱体24と中央部に
装填する蓄熱体25とを同一の径のものどなし、その長
さを長短を異にする外、短い円柱状の蓄熱体24にはそ
の内面に第4B図に示すように放射状のフィン24Aを
設けるようにする。かくして、蓄熱体24においてはこ
のようなフィン24Aを設けたことによって、蓄熱体2
4内に封入される蓄熱材料が蓄熱体24と接する伝熱面
積が増されたことになり、上述したと同様な作用および
効果を得ることができるものである。ただし、フィン2
4Aの形状はこのような形状に限られるものではな、く
、更にまた、蓄熱体24の外側の流通に支障のないよう
な位置に図示しないがフィンを付加するようにしてもよ
い。
FIG. 4A shows yet another embodiment of the invention. In this example, the heat storage bodies 24 loaded in the upper and lower parts of the container l and the heat storage bodies 25 loaded in the center part are of the same diameter, and the lengths are different. The body 24 is provided with radial fins 24A on its inner surface as shown in FIG. 4B. Thus, by providing such fins 24A in the heat storage body 24, the heat storage body 2
This means that the heat transfer area of the heat storage material sealed in the heat storage body 24 in contact with the heat storage body 24 is increased, and the same functions and effects as described above can be obtained. However, fin 2
The shape of 4A is not limited to this shape, and fins (not shown) may be added at positions that do not hinder the flow of the heat storage body 24 outside.

(発明の効果) 以上説明してきたように、本発明によれば、温度成層型
蓄熱器の熱媒体上部出入口側および下部出入口側の近傍
に配置する蓄熱体の伝熱面積、すなわち熱交換面積を容
器中央部に配置する蓄熱体の熱交換面積より大きくする
ことによって、廉価でしかも熱媒体の流通性がよく、熱
交換効率の高い高性能の蓄熱器を提供することができ、
熱エネルギーの有効利用に更に一層貢献することかでき
る。
(Effects of the Invention) As explained above, according to the present invention, the heat transfer area, that is, the heat exchange area, of the heat storage body disposed near the heat medium upper inlet/outlet side and the lower heat medium inlet/outlet side of the temperature stratification type heat storage device is increased. By making the heat exchange area larger than that of the heat storage body placed in the center of the container, it is possible to provide a high-performance heat storage device that is inexpensive, has good heat medium circulation, and has high heat exchange efficiency.
This can further contribute to the effective use of thermal energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明蓄熱器の構成の一例を示す模式の断面図
、第2図は温度成層型蓄熱器において、従来式な蓄熱体
を収容配置した場合と、本発明を適用して第1図の例に
従って蓄熱体を収容配置した場合との放熱特性を比較し
て示す特性曲線図、第3図は本発明の他の実施例の構成
を模式に示す断面図、第4A図は本発明の更に他の実施
例の構成の模式断面図、第4B図は第4A図のうちの出
入口近傍に配設する蓄熱体の断面図、第5図は従来の温
度成層型蓄熱器および混合型蓄熱器の放熱特性を比較し
て示す特性曲線図である。 1・・・蓄熱容器、 2.3・・・熱媒体出入口、 4.14.2C5,15,25・・・蓄熱体。 □        Cε−m− 第2図 第4A図 第48図
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the heat storage device of the present invention, and FIG. 2 shows a temperature stratification type heat storage device in which a conventional heat storage body is housed and arranged, and a case in which the present invention is applied. A characteristic curve diagram showing a comparison of heat dissipation characteristics when the heat storage body is housed and arranged according to the example shown in the figure, FIG. 3 is a sectional view schematically showing the configuration of another embodiment of the present invention, and FIG. 4A is a diagram showing the present invention. FIG. 4B is a cross-sectional view of a heat storage body disposed near the entrance and exit of FIG. It is a characteristic curve diagram showing a comparison of heat dissipation characteristics of the device. 1... Heat storage container, 2.3... Heat medium inlet/outlet, 4.14.2C5, 15, 25... Heat storage body. □ Cε-m- Figure 2 Figure 4A Figure 48

Claims (1)

【特許請求の範囲】[Claims] 複数の蓄熱用物体または該蓄熱用物体を収容した複数の
蓄熱体を蓄熱容器内に設け、当該蓄熱容器内に熱媒体を
流通させることにより該熱媒体を介して蓄熱および放熱
が行われる蓄熱器において、前記蓄熱用物体または前記
蓄熱体の伝熱面積を、前記蓄熱容器内の流通位置によっ
て異ならせたことを特徴とする蓄熱器。
A heat storage device in which a plurality of heat storage objects or a plurality of heat storage bodies containing the heat storage objects are provided in a heat storage container, and heat storage and heat radiation are performed through the heat medium by circulating a heat medium in the heat storage container. The heat storage device according to the invention, wherein the heat transfer area of the heat storage object or the heat storage body is varied depending on the distribution position within the heat storage container.
JP61012662A 1986-01-23 1986-01-23 Heat accumulator Granted JPS62172191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012662A JPS62172191A (en) 1986-01-23 1986-01-23 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012662A JPS62172191A (en) 1986-01-23 1986-01-23 Heat accumulator

Publications (2)

Publication Number Publication Date
JPS62172191A true JPS62172191A (en) 1987-07-29
JPH0524436B2 JPH0524436B2 (en) 1993-04-07

Family

ID=11811573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012662A Granted JPS62172191A (en) 1986-01-23 1986-01-23 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS62172191A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284031A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Heat storage device
CN102425969A (en) * 2011-11-14 2012-04-25 武汉理工大学 Cast heat retainer
WO2014039318A1 (en) * 2012-09-10 2014-03-13 Saint-Gobain Ceramics & Plastics, Inc. Structured media and methods for thermal energy storage
JP2016142514A (en) * 2015-02-05 2016-08-08 八洋エンジニアリング株式会社 Thermal storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195791A (en) * 1982-05-10 1983-11-15 Matsushita Electric Ind Co Ltd Heat accumulation tank
JPS5929578U (en) * 1982-08-11 1984-02-23 株式会社東芝 heat storage tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929578B2 (en) * 1975-03-04 1984-07-21 藤沢薬品工業株式会社 Method for producing substituted phenoxy fatty acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195791A (en) * 1982-05-10 1983-11-15 Matsushita Electric Ind Co Ltd Heat accumulation tank
JPS5929578U (en) * 1982-08-11 1984-02-23 株式会社東芝 heat storage tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284031A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Heat storage device
JP4714923B2 (en) * 2005-03-31 2011-07-06 独立行政法人産業技術総合研究所 Heat storage device
CN102425969A (en) * 2011-11-14 2012-04-25 武汉理工大学 Cast heat retainer
WO2014039318A1 (en) * 2012-09-10 2014-03-13 Saint-Gobain Ceramics & Plastics, Inc. Structured media and methods for thermal energy storage
JP2016142514A (en) * 2015-02-05 2016-08-08 八洋エンジニアリング株式会社 Thermal storage device

Also Published As

Publication number Publication date
JPH0524436B2 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
US3651865A (en) Cooled electronic equipment mounting plate
CN113028869B (en) Loop thermosiphon fin
JPS62172191A (en) Heat accumulator
CN117950471B (en) Air-cooled radiator
CN210778566U (en) Chip embedded micro-channel radiator
JPS62119947A (en) Cooling unit for integrated circuit element
CN115831894B (en) Heat radiation module of circuit element
CN208205853U (en) A kind of hot water light calandria heat radiator
CN112683080B (en) Thermodynamic type superconducting cooling process
CN208706452U (en) Electric machine controller thin-film capacitor with high efficiency and heat radiation ability
CN115764044A (en) Liquid cooling plate with jujube core type wing column structure, heat dissipation device and automobile
JPH0343571Y2 (en)
KR200290314Y1 (en) Hydronic pump type heat radiator
JPS61173084A (en) Heat storage tank
JP3089479U (en) Heat dissipation device
JPH0113036B2 (en)
JPH0473075B2 (en)
CN117539003A (en) Micro-groove group composite phase-change heat-transfer optical module
JPS6234153Y2 (en)
CN115540657A (en) Heat exchanger and battery thermal management system
CN115942696A (en) Uniform temperature plate radiator
JPH0230863U (en)
CN2717179Y (en) Funnel type steam cavity heat radiator
JP3090559U (en) Coolant circulation pump heat absorber
JPH0756432B2 (en) Heat storage device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term