JPS62171620A - Air feeder for culture of plant - Google Patents

Air feeder for culture of plant

Info

Publication number
JPS62171620A
JPS62171620A JP1434086A JP1434086A JPS62171620A JP S62171620 A JPS62171620 A JP S62171620A JP 1434086 A JP1434086 A JP 1434086A JP 1434086 A JP1434086 A JP 1434086A JP S62171620 A JPS62171620 A JP S62171620A
Authority
JP
Japan
Prior art keywords
oxygen
gas diffusion
rubber
air guide
guide pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1434086A
Other languages
Japanese (ja)
Inventor
四郎 桜井
伊藤 孝治郎
松井 邦郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP1434086A priority Critical patent/JPS62171620A/en
Publication of JPS62171620A publication Critical patent/JPS62171620A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は栽培植物の根圏に酸素ガスを定量供給する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for supplying a fixed amount of oxygen gas to the rhizosphere of cultivated plants.

(従来の技術) 従来の薩菜2作物、果樹、花弁、花木、樹木等の栽培植
物の栽培においては自然の土壌に植物を直接植えつけて
、肥料と雨水あるいは潅水を適宜施すことにより、該植
物を栽培する。いわゆる土耕栽培法がもっばら実施され
てきた。それに対して最近上を全く用いず空気中の酸素
を溶入さすため空気を溶存させた液体肥料(養液)を該
植物の根圏に循環させて完全に人工的に植物を栽培する
水耕栽培法が登場し、急速に普及しつつある。本方法は
従来の土耕栽培法に対比して(1)施肥管理が有効に行
われる。(2)農耕不能の土地でも利用できる。(3)
連作障害が回避できる。(4)水と肥料を能率良く使え
る。(5)培地を簡単に、しかも安価に消毒できる。(
6)栽培密度を高(でき、しかも生育条件が理想化でき
るので、単位面積当たりの収量が増え2作物の品質を良
質のものが得られる。などの長所が挙げられる。
(Prior art) In the conventional cultivation of cultivated plants such as Satsuma 2 crops, fruit trees, flower petals, flowering plants, and trees, the plants are directly planted in natural soil, and fertilizer and rainwater or irrigation are applied as appropriate. Cultivate plants. So-called soil cultivation methods have been widely practiced. On the other hand, recently hydroponic cultivation is a completely artificial method of cultivating plants by circulating liquid fertilizer (nutrient solution) containing dissolved air into the root zone of the plant in order to infiltrate oxygen from the air without using a top. Cultivation methods have emerged and are rapidly becoming popular. In contrast to conventional soil cultivation methods, this method (1) allows for more effective fertilization management; (2) It can be used even on land that cannot be cultivated. (3)
Continuous crop failure can be avoided. (4) Use water and fertilizer efficiently. (5) Culture media can be easily and inexpensively sterilized. (
6) The cultivation density can be increased (and the growing conditions can be idealized, so the yield per unit area can be increased and the quality of the two crops can be obtained).

しかし、一方で(1)設備投資が高額となる(2)養液
を循環するので病気が発生した場合、それが全系に短時
間に広まってしまう。(3)複雑な未解決の栄養問題が
ある。(4)水、電気等の供給源のない土地での実施は
難しい。(5)根および根圏微生物にとって必須の養液
中の酸素の需要、供給のバランス維持が困難である。な
どの欠点があり、この方法の普及に大きな制約となって
いる。
However, on the other hand, (1) the equipment investment is high; and (2) the nutrient solution is circulated, so if a disease occurs, it will spread throughout the system in a short period of time. (3) There are complex unresolved nutritional issues. (4) It is difficult to implement in areas without water, electricity, etc. sources. (5) It is difficult to maintain a balance between the demand and supply of oxygen in the nutrient solution, which is essential for roots and rhizosphere microorganisms. These drawbacks are a major constraint on the widespread use of this method.

(発明が解決しようとする問題点) 本発明者は水耕栽培法の上記長所を有し、かつ上記欠点
のない新しい栽培法が得られぬものかと鋭意研究し、原
理的にも全く新規な視点に立って植物と土壌との関係を
見立した結果、該植物の根部における微生物との共生関
係が植物生育に重要な役割を果たしていること、および
該共生関係に対して根圏の酸素濃度が強い相関関係を有
することが明らかとなった。かくしてこれら相関関係を
詳細に研究し、植物根圏の酸素濃度を大気系とは異なっ
た濃度範囲に人工的に調節することにより。
(Problems to be Solved by the Invention) The present inventor has conducted extensive research to see if a new cultivation method that has the above-mentioned advantages of the hydroponic cultivation method and does not have the above-mentioned drawbacks, and has developed a method that is completely new in principle. As a result of looking at the relationship between plants and soil from this perspective, we found that the symbiotic relationship with microorganisms in the roots of plants plays an important role in plant growth, and that the oxygen concentration in the rhizosphere is related to this symbiotic relationship. It became clear that there was a strong correlation between the two. Thus, by studying these correlations in detail and artificially adjusting the oxygen concentration in the plant rhizosphere to a concentration range different from that in the atmospheric system.

従来全く予期されぬ、すばらしい生育促進効果が得られ
ることを見出した。ところでこのように栽培法を完成さ
れた農業技術として実施するには大気下にある土壌雰囲
気を大気とは異なった人工系に微妙に調節するためにの
装置が必要となるが。
It has been discovered that a completely unexpected and wonderful growth promoting effect can be obtained. By the way, in order to implement this cultivation method as a complete agricultural technology, a device is required to subtly adjust the soil atmosphere under the atmosphere to an artificial system different from the atmosphere.

経済的、且つ長期安定的に使用可能なものは現存せず、
鋭意工夫を重ねた結果1本願の発明に到った。
There are currently no products that can be used economically and stably over a long period of time.
As a result of repeated efforts, we have arrived at the invention of the present application.

(問題点を解決するための手段) 本願発明は酸素ガス透過性の中空管状体を主構成体とす
る気体拡散放出装置と高圧の酸素を収容した圧力容器と
が連結されており、該気体拡散放出装置より、酸素が制
御された流量放出され、栽培植物の根圏に供給されるこ
とを特徴とする植物栽培用気体供給装置に関するもので
ある。
(Means for Solving the Problems) The present invention is characterized in that a gas diffusion release device mainly composed of a hollow tubular body permeable to oxygen gas is connected to a pressure vessel containing high-pressure oxygen, and the gas diffusion The present invention relates to a gas supply device for plant cultivation, characterized in that oxygen is released in a controlled flow rate from a release device and is supplied to the rhizosphere of cultivated plants.

ここで酸素ガス透過性の中空管状体とは少なくとも酸素
ガスがわずかなりとも透過し得る円管(チューブ)、長
尺袋、中空糸膜等の形状の物体のことで、素材としては
ポリエチレン、ポリプロヒレン、塩化ビニル樹脂、ポリ
エチレン酢酸ビニル共重合体、ナイロン6、ナイロン6
6、合成ゴム、シリコーンゴム等の高分子吻譬、バイコ
ールガラス、硬質磁器等のセラミックス等が使用できる
Here, the oxygen gas permeable hollow tubular body refers to an object in the shape of a circular pipe (tube), long bag, hollow fiber membrane, etc. that allows at least a small amount of oxygen gas to permeate, and is made of polyethylene, polypropylene, etc. , vinyl chloride resin, polyethylene vinyl acetate copolymer, nylon 6, nylon 6
6. Polymer materials such as synthetic rubber and silicone rubber, ceramics such as Vycor glass, and hard porcelain can be used.

しかし、酸素ガス透過性、耐久性、輸送性、敷設作業性
、経済性等を考慮すると(a)低密度ポリエチレン(直
鎖状低密度ポリエチレンも含む)(b)エチレン酢酸ビ
ニル共重合体(酢酸ビニル成分5〜30moJ%)(c
)軟質塩化ビニル樹脂(dl天然ゴム(e)合成ゴム(
シリコーンゴム、ポリイソプレンゴム。
However, when considering oxygen gas permeability, durability, transportability, installation workability, economic efficiency, etc., (a) low-density polyethylene (including linear low-density polyethylene), (b) ethylene-vinyl acetate copolymer (acetic acid Vinyl component 5-30moJ%) (c
) Soft vinyl chloride resin (dl natural rubber (e) synthetic rubber (
silicone rubber, polyisoprene rubber.

SBR,NBR,ポリブタジェンゴム、エチレン−プロ
ピレンゴム等)(f)熱可塑性エラストマー(h:ポリ
スチレン、S:ポリブタジェンからなるタフプレンQ、
ツルプレン■等のポリスチレン系。
(SBR, NBR, polybutadiene rubber, ethylene-propylene rubber, etc.) (f) Thermoplastic elastomer (Tuffprene Q consisting of h: polystyrene, S: polybutadiene,
Polystyrene type such as Tsurprene ■.

h:ボリプロビレン、S:エチレンプロピレンゴムから
なるTPR■等のポリオレフィン系、h:ポリウレタン
、S:ポリエステル又はポリエーテルからなるエラスト
ラン■等のポリウレタン系。
h: Polypropylene, S: Polyolefin type such as TPR ■ made of ethylene propylene rubber, h: Polyurethane, S: Polyurethane type such as Elastlan ■ made of polyester or polyether.

h:ポリブチレンテレフタレート s:ポリテトラメチ
レングリコールからなるHytrel■等のポリエステ
ル系、h:ナイロン12.3:ポリエーテルからなるダ
イアミド■PAEグレード等のポリアミド系、h:シン
ジ第1−2−ポリブタジェン、s:無定形1−2ポリブ
タジエンからなるJSR−RB■等の低結晶1・2−ポ
リブタジェン系等(ここでh:ハードセグメンF+S:
ソフトセグメントを表す))のいずれか、それらの混合
物、あるいはそれらのいずれかの成分を少なくとも70
%以上含み、これと他の高分子物質との混合物よりなる
実質的に無孔の高分子物質が最も好ましいものである。
h: polybutylene terephthalate s: polyester type such as Hytrel made of polytetramethylene glycol, h: polyamide type such as PAE grade, diamide made of nylon 12.3: polyether, h: Syndi-1-2-polybutadiene, s: Low crystalline 1,2-polybutadiene system such as JSR-RB■ consisting of amorphous 1-2 polybutadiene (where h: hard segment F+S:
representing a soft segment)), a mixture thereof, or a component of any of them at least 70%
% or more, and a substantially non-porous polymeric material comprising a mixture of this and other polymeric materials is most preferred.

管状体のサイズは対象とする栽培植物、土壌条件等によ
って種々変える必要があるが、実用的に好適なものとし
ては、内径dmmおよび肉厚smmに関してl≦d≦2
0.0.1≦S≦3.0.05≦S/d≦0.5の式に
従う範囲内に設定することが望ましい。もし、この範囲
外のものを採用すると酸素ガス透過性、埋設・撤去作業
性、受傷・破損抵抗性。
The size of the tubular body needs to be varied depending on the target cultivated plants, soil conditions, etc., but a practically preferred one is l≦d≦2 in terms of inner diameter dmm and wall thickness smm.
It is desirable to set it within a range that follows the formula: 0.0.1≦S≦3.0.05≦S/d≦0.5. If a material outside this range is used, it will have poor oxygen gas permeability, ease of burial/removal work, and resistance to injury/damage.

輸送性、経済性のいずれかが満足しなくなるからである
This is because either transportability or economical efficiency becomes unsatisfactory.

トマトキュウリ等の疏菜の栽培において円管状の低密度
ポリエチレンを用いた場合を例示すると内径5〜15m
m、肉厚0.5〜2mm程度のものが適切である。素材
の組織としては多孔物質等のような空隙の多いものは制
御性能が悪くて好ましくない。ポアーサイズは1000
Å以下、好ましくは対象気体が分子間の間隙を拡散律速
的に通過する程度の材質のものがよい。
An example of using circular low-density polyethylene for cultivating cane such as tomatoes and cucumbers is an inner diameter of 5 to 15 m.
m, and a wall thickness of about 0.5 to 2 mm is appropriate. Regarding the structure of the material, materials with many voids such as porous materials are not preferred because of poor control performance. Pore size is 1000
Å or less, preferably a material that allows the target gas to pass through the gaps between molecules in a diffusion-limited manner.

気体拡散放出装置は上記酸素が透過性の中空管状体を主
構成体とするが、その一部に酸素ガス不透過性のチュー
ブ等を連結して使用しても構わない。また該中空管状体
の一端を導気管に連結して使用する場合、その他端はス
トッパー結合、封止体挿入、封止剤充填、あるいは結紮
、圧接等の方法で封止する。圧力容器は通常の工業的に
使用される高圧ボンベ、スポーツ、レジャー、医療等で
使用される安全ボンベ等いずれも使用可能である。
Although the gas diffusion/discharge device has the oxygen-permeable hollow tubular body as its main component, a tube or the like that is impermeable to oxygen gas may be connected to a part of the hollow tubular body. In addition, when one end of the hollow tubular body is used by connecting it to an air conduit, the other end is sealed by a method such as joining with a stopper, inserting a sealing body, filling with a sealant, or ligating or pressing. As the pressure vessel, any of high pressure cylinders commonly used in industry, safety cylinders used in sports, leisure, medicine, etc. can be used.

圧力容器に収容する気体は実質的に純粋な酸素であるが
10%以内の窒素等地気体との混合物でも構わない。
The gas contained in the pressure vessel is substantially pure oxygen, but may be a mixture with up to 10% nitrogen gas.

根気圏における酸素濃度の適量は栽培植物、土壌環境に
よって異なるが、それに関与する因子としては(11栽
培植物根部および周辺土壌生存微生物の酸素消費、(2
)大気圏と根気圏との拡散、対流による置換、(3)雨
水、および地下水と根気圏との交換、(4)本装置によ
る酸素供給が挙げられ、このうち(1)〜(3)の因子
に比較して(4)の因子を必要にして十分な大きさの量
に設定すると根気圏の酸素濃度が大まかに制御できる。
The appropriate amount of oxygen concentration in the rhizosphere differs depending on the cultivated plant and soil environment, but the factors involved are (11) oxygen consumption by microorganisms living in the roots of cultivated plants and in the surrounding soil, (2)
) diffusion between the atmosphere and the aerosphere, replacement by convection, (3) exchange between rainwater and groundwater and the aerosphere, and (4) oxygen supply by this device, among which factors (1) to (3) Compared to , if factor (4) is necessary and set to a sufficiently large amount, the oxygen concentration in the aerosphere can be roughly controlled.

長期にわたる研究結果。Long-term research results.

この値として根圏1m”当り換算して100〜1000
0m7!/dayが適量であることが分った。一方気体
拡散放出装置に関しても栽培植物、土壌環境、敷設容易
性、経済性等を総合的に評価すると中空管状体の敷設本
数(間隔)も大まかに適切な範囲が決まり、前記管材質
、形状等の制限をも総合的に勘案すると中空管状体長さ
1m当たり50〜5000H1/dayの流量範囲が適
量である。
This value is converted to 100 to 1000 per 1m of root zone.
0m7! /day was found to be an appropriate amount. On the other hand, regarding the gas diffusion release device, if we comprehensively evaluate the cultivated plants, soil environment, ease of installation, economic efficiency, etc., the appropriate range for the number (spacing) of hollow tubular bodies to be laid will be roughly determined, and the pipe material, shape, etc. Taking into consideration the above limitations comprehensively, a flow rate range of 50 to 5000 H1/day per meter of the length of the hollow tubular body is appropriate.

以下図面によって本発明を説明する。第1図は本発明の
装置およびその使用法の概要を例示した概念図である。
The present invention will be explained below with reference to the drawings. FIG. 1 is a conceptual diagram illustrating an overview of the apparatus of the present invention and its usage.

栽培植物1を土壌2に植え該栽培植物の根部1aの2〜
50cm下方(Iaの上限は主根の分岐点)、に中空管
状体からなる気体拡散放出装置3を埋設する(管の位置
は必ずしも根部直下に置く必要はなく、その近傍数10
aa以内であればよい)。該気体拡散放出装置の1端(
右端)は封止されているが他端(左端)は導気管5に連
結されている。該導気管の他端は圧力計6.コネクター
、パルプ8と連った導管を通じて圧力容器4に連結され
ている。使用に際してはバルブ8を開放し圧力計6を見
ながら所定気圧に設定する(前記例の場合設定圧力は6
〜10気圧程度が適切である)。第2図は畑作物の栽培
等畝植に際して好適な複数個の気体拡散放出装置と1個
の圧力容器とを連結した装置系の適用例を示すもので。
Cultivated plant 1 is planted in soil 2 and roots 1a of the cultivated plant 2 to 2 are planted in soil 2.
A gas diffusion release device 3 made of a hollow tubular body is buried 50 cm below (the upper limit of Ia is the branching point of the main root) (the position of the pipe does not necessarily have to be directly under the root, but several tens of meters are placed in the vicinity).
(as long as it is within aa). One end of the gas diffusion release device (
The right end) is sealed, but the other end (left end) is connected to the air guide pipe 5. The other end of the air guide pipe is a pressure gauge 6. A connector is connected to the pressure vessel 4 through a conduit connected to the pulp 8. When using, open the valve 8 and set the pressure to the specified pressure while watching the pressure gauge 6 (in the above example, the set pressure is 6
~10 atm is appropriate). FIG. 2 shows an example of the application of a device system in which a plurality of gas diffusion/discharge devices and one pressure vessel are connected, which is suitable for ridge planting such as cultivation of field crops.

1列の畝10に対して気体拡散放出装置(3,3’)を
2台皿列して埋設した4畝複数接続の例である。
This is an example of a plurality of four ridges connected in which two gas diffusion and discharge devices (3, 3') are buried in a dish row in one row of ridges 10.

ここで各気体拡散放出装置と導気管5との間には分配管
9が配置されている。
Here, a distribution pipe 9 is arranged between each gas diffusion/discharge device and the air guide pipe 5.

以上の例では別の系にて酸素を充填した圧力容器を栽培
現場に運んでその場で使用し、所定量酸素を消費したら
その都度別の圧力容器と取替えて使用する例を示したが
、栽培現場で必要とする酸素を製造しつつ気体拡散放出
装置に、したがって栽培植物に酸素を供給することも可
能である。
In the above example, a pressure vessel filled with oxygen is transported to a cultivation site in a separate system and used on the spot, and each time a predetermined amount of oxygen is consumed, it is replaced with another pressure vessel. It is also possible to produce the oxygen required at the cultivation site while supplying oxygen to the gaseous diffusion release device and thus to the cultivated plants.

この系の導気管までの装置系を例示したのが第3図であ
る。ここで第3図−(a)は圧力容器の1つのバルブよ
り酸素の充填と放出を交互に行う方式の系で、酸素製造
装置11にて製造した酸素を導気管(2113を通じて
1字バルブ12に送り、バルブ(1)8を介して圧力容
器4に充填する。
FIG. 3 shows an example of the equipment system up to the air guide pipe of this system. Here, FIG. 3-(a) shows a system in which oxygen is alternately charged and released from one valve of the pressure vessel, and oxygen produced in the oxygen production device 11 is passed through the air guide pipe (2113) to the one-shaped valve 12. and fills the pressure vessel 4 via valve (1) 8.

次に1字バルブ12を切換え、導気管(l)5に酸素を
送り込む、第3図−(b)は圧力容器に2つのバルブを
取付け、酸素の充填と放出を交互あるいは同時に行う方
式の系で、酸素製造装置11にて製造した酸素を導気管
(2) 13 、バルブ(2) 14と通じて圧力容器
4に充填し、バルブ+2) 14およびバルブ(1)8
を適宜操作することにより同時または交互に酸素を導気
管(1)5を通じて気体拡散放出装置に送る。酸素製造
装置としては従来公知の深冷法。
Next, the figure 1 valve 12 is switched to send oxygen into the air guide pipe (l) 5. Figure 3-(b) shows a system in which two valves are attached to the pressure vessel and oxygen is filled and released alternately or simultaneously. Then, the pressure vessel 4 is filled with oxygen produced by the oxygen production device 11 through the air guide pipe (2) 13 and the valve (2) 14, and the pressure vessel 4 is filled with the oxygen produced by the oxygen production device 11.
Oxygen is simultaneously or alternately sent to the gas diffusion/discharging device through the air guide pipe (1) 5 by appropriately operating the . The cryogenic method is conventionally known as an oxygen production device.

モレキュラーシープ吸着法等いずれでもよい。Any method such as molecular sheep adsorption method may be used.

(作 用) 本発明の装置を使用して栽培植物の栽培を行うと、同植
物の根圏(第1図2a)においては大気系下の該根圏に
存した空気が気体拡散放出装置より放出供給された酸素
によって相当量置換され酸素富化雰囲気の根気圏が形成
される。すると酸素富化効果により根部に共生する接合
菌エンドゴーン等の好気性の菌根菌の生長、活性化が促
進され。
(Function) When a cultivated plant is cultivated using the device of the present invention, in the rhizosphere of the plant (Fig. 1, 2a), the air existing in the rhizosphere under the atmospheric system is released from the gas diffusion and release device. A considerable amount of oxygen is replaced by the released and supplied oxygen, forming an oxygen-enriched atmosphere, the aerosphere. The oxygen-enriching effect then promotes the growth and activation of aerobic mycorrhizal fungi such as Zygomycete endogone, which live symbiotically in the roots.

また眠っていた同面胞子の発芽、宿主根への着生がさか
んになり、結果として根と共生微生物との相互関係がき
わめてよくなる。かくて菌根にて産出されるオーキシン
、サイトカイニン等の植物ホルモンの作用と菌根そのも
のの特性によって(1)植物の栄養および水分の吸収能
力が増加し、生育状態がよくなって、生長が促進する(
肥料の節約)(2)病虫害に対して耐性ができる(農薬
がほとんど必要でなくなる。)(3)連作障害がなくな
る(4)以上の複合効果として収穫物の収量1品質がと
もに向上する。等のきわめて好ましい効果が発揮される
In addition, the dormant isophonous spores germinate and become attached to the host roots, and as a result, the mutual relationship between the roots and the symbiotic microorganisms becomes extremely good. Thus, due to the action of plant hormones such as auxin and cytokinin produced by mycorrhizas and the characteristics of mycorrhizas themselves, (1) the ability of plants to absorb nutrients and water increases, improving their growth conditions and promoting growth; do(
Savings on fertilizers) (2) Resistance to pests and diseases (almost no need for pesticides) (3) Eliminating problems with continuous cropping (4) As a combined effect of the above, both the yield and quality of the crops improve. Very favorable effects such as these are exhibited.

また豆科植物における・共生根粒菌および菌根菌との相
互作用において、それらの共生関係が活性化すると共に
酸素富化による窒素固定が著しく促進され、収穫物の収
量が増加する。
In addition, in the interaction with symbiotic rhizobia and mycorrhizal fungi in leguminous plants, the symbiotic relationship between them is activated, and nitrogen fixation due to oxygen enrichment is significantly promoted, increasing the yield of crops.

根気圏の二酸化炭素は酸素によって置換されるので、そ
の濃度はかなり低下する。かくて従来の系において問題
となっていた重炭酸イオンのアルカリ金属、アルカリ土
類金属イオン捕捉効果によって発生するアルカリ金属、
アルカリ土類金属不足栄養障害が解消される。
Carbon dioxide in the rhizosphere is replaced by oxygen, so its concentration decreases considerably. In this way, the alkali metals generated by the bicarbonate ion trapping effect and alkaline earth metal ions, which was a problem in the conventional system,
Alkaline earth metal deficiency malnutrition is resolved.

良好な土壌環境、栽培条件下にある栽培植物は根圏土壌
に多量の空隙を有し、その空隙に大気から自然に供給さ
れる酸素を消費して、種細胞の呼吸、根の新生、養分イ
オン、水の吸収、地上部への移行等の重要な生理活動を
行なうと共に、根圏およびその近傍に生息する微生物も
その酸素を消費して生活を営み、根の生育に好適な土壌
環境をつくり出している。
Cultivated plants under favorable soil environment and cultivation conditions have a large amount of voids in the rhizosphere soil, and these voids consume oxygen that is naturally supplied from the atmosphere, leading to respiration of seed cells, new root growth, and nutrients. In addition to carrying out important physiological activities such as absorption of ions and water and transfer to above-ground parts, microorganisms living in the rhizosphere and its vicinity also consume oxygen to live their lives, creating a soil environment suitable for root growth. is creating.

ところが、土壌の粘質化による湿害、有機質不足1合成
肥料、農薬の長期多量使用等による団粒構造の破壊、微
生物、その他共存生物の異常繁殖。
However, moisture damage due to soil viscosity, lack of organic matter1, destruction of aggregate structure due to long-term heavy use of synthetic fertilizers and pesticides, and abnormal proliferation of microorganisms and other coexisting organisms.

残根の共存等の原因により、酸素不足となると前述の状
態は保てなくなり、植物の生育は阻害される。このよう
な場合にも本願の方法は有効である。
If there is a lack of oxygen due to coexistence of residual roots, etc., the above-mentioned conditions cannot be maintained, and plant growth is inhibited. The method of the present invention is also effective in such cases.

一方、従来の養液栽培システム、植物工場等の植物栽培
装置に比較して本装置は次のような特徴がある。
On the other hand, compared to conventional hydroponic systems and plant cultivation devices such as plant factories, this device has the following features.

(1)装置がきわめて簡単であり、基本構成体(圧力容
器および気体拡散放出装置)に可動部分を含んでいない
ので操作が容易で、メインテナンスがきわめて楽である
。(圧力容器は容易に取替が可能) (2)極く微量の酸素流量をバルブ操作一つで高精度に
調節することができる。
(1) The device is extremely simple, and since the basic components (pressure vessel and gas diffusion/discharge device) do not include moving parts, it is easy to operate and maintenance is extremely easy. (The pressure vessel can be easily replaced) (2) The extremely small amount of oxygen flow rate can be adjusted with high precision with a single valve operation.

(3)装置価格、敷設・撤去工事費用、およびランニン
グコストがいずれもきわめて安価である。
(3) The equipment price, installation/removal work cost, and running cost are all extremely low.

(4)基本構成体で使用する場合には電源、水源(水道
)等のユーティリティー設備のないところでも実施する
ことができる。
(4) When used as a basic structure, it can be implemented even in places without utility equipment such as a power source or water source (water supply).

(5)従来の土耕栽培法と基本的にはほとんど同じであ
るので導入しやすく、運営に高度の技術および経験を要
しない。
(5) Since it is basically almost the same as the conventional soil cultivation method, it is easy to introduce and does not require advanced technology or experience to operate.

実施例1 ビニルハウス内にA市場140rrf (1,75m 
X80m)B市場140rrr (1,75m X80
m)の2甫場を並列して作り、A市場には砂質土、B市
場には重粘上を入れそれぞれパーク堆肥560kg、化
成肥料(N : P : K・1:1:1) 4.2 
kgを全面に施してうね立てし、それぞれの区画の横半
分(1,75mx40m)に内径5mm、肉厚0 、5
mm 、長さ4011の直鎖状低密度ポリエチレンチュ
ーブ(気体拡散放出装置)を3末娘区画の縦中心線対称
形に50cm間隔の並列配置で15〜20■の深さに埋
設し、 (この区画を本性処理区、その他の区画を無処
理区と云う)、気体不透過性の合成ゴム(塩化ビニリデ
ン樹脂/NBR複層体)よりなる分配管および導気管を
介して7Nm’の酸素を充填した酸素ボン゛べ(110
kg/cJ)に連結した。バルブ操作により本ボンベの
出力圧力を7 kg/dに設定し、はぼ定常的に酸素を
土壌中に拡散放出させた。
Example 1 A market 140rrf (1,75m
X80m) B market 140rrr (1,75m X80
Build 2 pottery fields in parallel, put sandy soil in market A and heavy clay in market B, each with 560 kg of park compost and chemical fertilizer (N: P: K, 1:1:1) 4 .2
kg on the entire surface and ridge, and the horizontal half of each section (1.75m x 40m) has an inner diameter of 5mm and a wall thickness of 0.5mm.
Linear low-density polyethylene tubes (gas diffusion and release devices) with a length of 4011 mm were buried in a parallel arrangement symmetrical to the longitudinal center line of the third daughter compartment at a depth of 15 to 20 mm, with an interval of 50 cm. 7 Nm' of oxygen was filled through a distribution pipe made of gas-impermeable synthetic rubber (vinylidene chloride resin/NBR composite) and an air guide pipe. Oxygen cylinder (110
kg/cJ). The output pressure of this cylinder was set to 7 kg/d by valve operation, and oxygen was diffused and released into the soil almost constantly.

これら両市場にイチゴ「定文早生」種のランナーよりウ
ィルスフリー育苗を行なった展開葉5〜6枚2重さ20
〜30gの苗954株を25CI11間隔で縦6列の千
鳥配列に定植し、 (1本の埋設チューブの上層にそれ
をはさむように2列の苗列を配置)シ、常法に従って6
力月間の普通半促成栽培を行った。
Virus-free seedlings were raised from runners of the strawberry "Jobun Wase" variety in these markets. 5 to 6 leaves weighing 2.
954 seedlings weighing ~30g were planted in a staggered array of 6 vertical rows at intervals of 25CI11 (2 rows of seedlings were placed on top of one buried tube so as to sandwich the seedlings).
Normal semi-forced cultivation was carried out during the period of cultivation.

このような栽培を同じ市場にて3年間続け、栽培状況を
観察した。なお、2年目以降の採苗用ランナーの母株は
特別にウィルスフリー株に限定せず、生育の良好な株か
ら無作為に採取した。全栽培気管を通じて農薬は全く使
用しなかった。その結果 第1表 イチゴ「定文早生」種の普通半促成栽培成果本
法処理区のイチゴは両市場ともに無処理区のに比較して
軍勢は強く、また葉色は濃く光沢がある。
This kind of cultivation was continued for three years in the same market, and the cultivation status was observed. The mother plants of runners for seedling collection from the second year onwards were not limited to virus-free plants, but were randomly collected from plants with good growth. No pesticides were used throughout the cultivation. The results are shown in Table 1.Results of ordinary semi-forced cultivation of the Strawberry 'Jobun-early' variety.Strawberries in the areas treated with this method are stronger in both markets than those in the untreated areas, and their leaves are darker and glossier.

ランナーの発生は旺盛で育苗は容易であった。Runners were abundant and raising seedlings was easy.

収穫状況は第1表に示したように1末法処理区は初年度
で30〜50%増収し、果実も大きく、糖度が高くて食
味、香りともに優れていた。
As for the harvest status, as shown in Table 1, the yield in the plots treated with No. 1 increased by 30 to 50% in the first year, and the fruits were large, had high sugar content, and had excellent taste and aroma.

これが2年組、3年組と件数が進むにつれて無処理区で
は通常の病虫害と連作障害により、収量が暫時減少し、
果実の大きさも小さく1粒が不揃いで不整形果がふえて
くるのに対して1末法処理区はむしろわずかながら収量
が増え2粒のそろった果実が毎年確実に得られるように
なった。
As the number of cases progresses to 2nd and 3rd year groups, the yield in untreated plots decreases for a while due to normal pests and damage from continuous cropping.
The size of the fruit is small, and the number of irregularly shaped fruits increases, whereas in the plots treated with the 1st method, the yield increased, albeit slightly, and it became possible to reliably obtain fruits with two uniform grains every year.

実施例2 前栽培年度に大麦を栽培した204 rd (12m 
X 17m)の水田(残根多く酸素不足の土壌)の半分
に内径10mm、肉厚1 mm、長さ17mの低密度ポ
リエチレンチューブを約150Cmの間隔で3本土中1
0〜15cmの深さに埋設し、酸素量7m”充填の酸素
ボンベ110 kg/cutに連結し、負荷圧3 kg
 / crAに設定し、チューブ1本当たり 150 
m 7!/m /dayの流量で定常的に酸素を放出し
つづけた。
Example 2 204 rd (12 m
Low-density polyethylene tubes with an inner diameter of 10 mm, a wall thickness of 1 mm, and a length of 17 m were placed in one of the three main islands at intervals of approximately 150 cm in half of a rice field (with oxygen-deficient soil with many remaining roots) of
Buried at a depth of 0 to 15 cm, connected to a 110 kg/cut oxygen cylinder with a 7 m" oxygen capacity, and a load pressure of 3 kg.
/ crA, 150 per tube
m 7! Oxygen was constantly released at a flow rate of /m 2 /day.

この水田にカルバ処理(過酸化カルシウムコーティング
)した未刊(日本晴)を数粒づつ側区画それぞれ3列配
置で4080株分(20株/m′)湛水直播きを行った
。(本性処理区の播種位置は埋設チューブの直上にくる
ようにした。)かくて常法に従い一栽培年栽培を行い1
両区画より無作為に結実穂の坪刈りを行い、その収穫状
況を評価した。
In this paddy field, 4080 plants (20 plants/m') of unpublished (Nipponbare) which had been carba-treated (calcium peroxide coating) were directly sown in 3 rows in each side compartment, with a few grains each. (The sowing position in the original treatment area was set to be directly above the buried tube.) Thus, cultivation was carried out in one cultivation year according to the conventional method.
Fruiting panicles were harvested randomly from both plots, and the harvest status was evaluated.

結果を第2表に示した。なお、参考のため1両区画の隣
接区画にカルバ処理をほどこさない同じ未刊を各3列4
080株分播種し1本法の装置を使用せずに栽培状況を
比較したが、生育はきわめて悪くみるべき収穫は得られ
なかった。
The results are shown in Table 2. For reference, 3 rows of 4 identical unpublished books without curvature treatment are placed in adjacent sections of 1 car section.
080 plants were sown and the cultivation conditions were compared without using the single-plant method, but the growth was extremely poor and no acceptable harvest was obtained.

第2表  水稲(日本晴)についての試験結果上記結果
より明らかなように収量の顕著な増加が認められ、また
末法処理米の味覚は従来米に比してすこぶる美味であっ
た。
Table 2 Test results for paddy rice (Nipponbare) As is clear from the above results, a remarkable increase in yield was observed, and the taste of the powder-treated rice was much better than that of conventional rice.

(発明の効果) 本発明によれば栽培植物の生育が一段と旺盛となり、農
産物の収穫量および品質が向上する。花木樹木において
は樹精がよくなり、生長が促進されると共に葉や花の色
調が鮮明となる。また連作障害および栄養障害の弊害が
なく、農薬をほとんど使用しないので9食品、用材等の
消費面で安全である。肥料消費量も著しく節約できる。
(Effects of the Invention) According to the present invention, the growth of cultivated plants is further enhanced, and the yield and quality of agricultural products are improved. In flowering trees, tree vitality improves, growth is promoted, and the colors of leaves and flowers become clearer. In addition, there are no adverse effects such as continuous cropping or malnutrition, and almost no pesticides are used, so it is safe for consumption as food and materials. Fertilizer consumption can also be significantly reduced.

一方基本的には土耕栽培であるので、水耕栽培において
みられたような病原菌による全栽培物の一斉感染′ 被
害はなくなる。設備費、敷設・撤去費、ランニングコス
トも従来の養液栽培システム、植物工場に比較してきわ
めて安価である。
On the other hand, since it is basically soil cultivation, there is no possibility of simultaneous infection of all cultivated plants by pathogenic bacteria, which is the case with hydroponic cultivation. Equipment costs, installation/removal costs, and running costs are also extremely low compared to conventional hydroponic systems and plant factories.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置を実施するための植物栽培用気体
供給装置の一例の要部側面図 第2図は複数個の気体拡散放出装置を1個の圧力容器に
連結した本発明の装置の畝植畑への適用例を示す平面概
略図。 第3図は酸素製造装置を栽培現場に設置し、気体供給装
置に連結して使用するようになしたる本発明の装置の要
部側面概路面である。 1−・−栽培植物 1a−同上の根部 2 ・・・ 土壌 3− 気体拡散放出装置 4 ・−・ 圧力容器 5− 導気管(1) 6− 圧力計 7− コネクター 8− バルブ(1) 9− 分配管 10・・−献 11−  酸素製造装置 12  ・−・ 1字バルブ 13−  導気管(2) 14−  バルブ(2)
FIG. 1 is a side view of essential parts of an example of a plant cultivation gas supply device for carrying out the device of the present invention. FIG. 2 is a device of the present invention in which a plurality of gas diffusion and discharge devices are connected to one pressure vessel. FIG. FIG. 3 is a schematic side view of the main part of the apparatus of the present invention, which is used by installing an oxygen production apparatus at a cultivation site and connecting it to a gas supply apparatus. 1--Cultivated plant 1a-root 2 as above...Soil 3-Gas diffusion release device 4--Pressure vessel 5-Air guide pipe (1) 6-Pressure gauge 7-Connector 8-Valve (1) 9- Distribution pipe 10... - reference 11 - Oxygen production equipment 12 - Figure 1 valve 13 - Air guide pipe (2) 14 - Valve (2)

Claims (5)

【特許請求の範囲】[Claims] (1)酸素ガス拡散透過性の中空管状体を主構成体とす
る気体拡散放出装置と、高圧の酸素を収容した圧力容器
とが導気管を介して連結されており、該気体拡散放出装
置より酸素が制御された流量放出され、栽培植物の根圏
に供給されることを特徴とする植物栽培用気体供給装置
(1) A gas diffusion and discharge device whose main component is a hollow tubular body that is permeable to oxygen gas diffusion and a pressure vessel containing high-pressure oxygen are connected via an air guide pipe, and the gas diffusion and discharge device A gas supply device for plant cultivation, characterized in that oxygen is released at a controlled flow rate and supplied to the rhizosphere of cultivated plants.
(2)気体拡散放出装置より栽培植物根圏に放出される
酸素ガスの流量が、気体拡散放出装置の中空管状体長さ
1m当たり50〜5000ml/dayの範囲の定流量
に制御されていることを特徴とする特許請求の範囲(1
)に記載の装置。
(2) The flow rate of oxygen gas released into the rhizosphere of cultivated plants from the gas diffusion release device is controlled to a constant flow rate in the range of 50 to 5000 ml/day per meter of the hollow tubular body length of the gas diffusion release device. Characteristic claims (1)
).
(3)酸素ガス拡散透過性の中空管状体が(a)低密度
ポリエチレン(直鎖状低密度ポリエチレンを含む)、(
b)エチレン−酢酸ビニル共重合体(酢酸ビニル成分5
〜30モル%)、(c)軟質塩化ビニル樹脂、(d)天
然ゴム、(e)合成ゴム(シリコーンゴム、ポリイソプ
レンゴム、SBR、NBR、ポリブタジエンゴム、エチ
レンプロピレンゴム等)、(f)熱可塑性エラストマー
(ポリスチレン系、ポリオレフィン系、1.2ポリブタ
ジエン系、ポリウレタン系、ポリエステル系、ポリアミ
ド系等)のいずれか、それらの混合物あるいはそれらい
ずれかの成分を少くとも70%以上含み、これと他の高
分子物質との混合物よりなる実質的に無孔で、管の断面
における内径dmmおよび厚みsmmが次式 1≦d≦20 0.1≦S≦3 0.05≦S/d≦0
.5にて表わされる範囲にあることを特徴とする特許請
求の範囲1に記載の装置。
(3) The hollow tubular body permeable to oxygen gas diffusion includes (a) low-density polyethylene (including linear low-density polyethylene), (
b) Ethylene-vinyl acetate copolymer (vinyl acetate component 5
~30 mol%), (c) soft vinyl chloride resin, (d) natural rubber, (e) synthetic rubber (silicone rubber, polyisoprene rubber, SBR, NBR, polybutadiene rubber, ethylene propylene rubber, etc.), (f) heat Contains at least 70% of any of plastic elastomers (polystyrene, polyolefin, 1.2 polybutadiene, polyurethane, polyester, polyamide, etc.), mixtures thereof, or any of these components, and other It is a substantially non-porous tube made of a mixture with a polymeric substance, and the inner diameter dmm and thickness smm in the cross section of the tube are as follows: 1≦d≦20 0.1≦S≦3 0.05≦S/d≦0
.. 5. The device according to claim 1, characterized in that it lies in the range indicated by 5.
(4)複数個の気体拡散放出装置が分配管を介して導気
管に連結されていることを特徴とする特許請求の範囲(
1)に記載の装置。
(4) Claims characterized in that a plurality of gas diffusion and discharge devices are connected to an air guide pipe via a distribution pipe (
1).
(5)圧力容器に収容する酸素を製造する酸素製造装置
が、特許請求の範囲(1)に記載の導気管とは別の導気
管を介して、該圧力容器に連結していることを特徴とす
る特許請求の範囲(1)に記載の装置。
(5) An oxygen production device that produces oxygen contained in a pressure vessel is connected to the pressure vessel via an air guide pipe that is different from the air guide pipe set forth in claim (1). The device according to claim (1).
JP1434086A 1986-01-25 1986-01-25 Air feeder for culture of plant Pending JPS62171620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1434086A JPS62171620A (en) 1986-01-25 1986-01-25 Air feeder for culture of plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1434086A JPS62171620A (en) 1986-01-25 1986-01-25 Air feeder for culture of plant

Publications (1)

Publication Number Publication Date
JPS62171620A true JPS62171620A (en) 1987-07-28

Family

ID=11858335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1434086A Pending JPS62171620A (en) 1986-01-25 1986-01-25 Air feeder for culture of plant

Country Status (1)

Country Link
JP (1) JPS62171620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356747A2 (en) * 1988-08-31 1990-03-07 Linde Aktiengesellschaft Process and apparatus for intensive plant cultivation
JP2011097888A (en) * 2009-11-09 2011-05-19 Shiro Sakurai Method for applying oxygen to plant root
JP2018139541A (en) * 2017-02-28 2018-09-13 戸田建設株式会社 Cultivation device and oxygen supply body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151434A (en) * 1974-10-19 1976-05-07 Toshiro Yokota Hatakeno dochuni kuki ofukumaseru hoho
JPS5224838A (en) * 1975-08-13 1977-02-24 Anlet Kk Cultivation of plant
JPS5948025A (en) * 1982-09-13 1984-03-19 日本カーバイド工業株式会社 Activation of soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151434A (en) * 1974-10-19 1976-05-07 Toshiro Yokota Hatakeno dochuni kuki ofukumaseru hoho
JPS5224838A (en) * 1975-08-13 1977-02-24 Anlet Kk Cultivation of plant
JPS5948025A (en) * 1982-09-13 1984-03-19 日本カーバイド工業株式会社 Activation of soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356747A2 (en) * 1988-08-31 1990-03-07 Linde Aktiengesellschaft Process and apparatus for intensive plant cultivation
EP0356747A3 (en) * 1988-08-31 1990-03-14 Linde Aktiengesellschaft Process and apparatus for intensive plant cultivation
JP2011097888A (en) * 2009-11-09 2011-05-19 Shiro Sakurai Method for applying oxygen to plant root
JP2018139541A (en) * 2017-02-28 2018-09-13 戸田建設株式会社 Cultivation device and oxygen supply body

Similar Documents

Publication Publication Date Title
Weathers et al. Aeroponics for the culture of organisms, tissues and cells
CN104429581B (en) A kind of Organic tomato health cultural method
US20060193695A1 (en) Irrigation system and associated methods
JP2014143926A (en) Plant cultivation system and plant cultivation method
Prior et al. Effects of carbon dioxide enrichment on cotton nutrient dynamics
Gul et al. Accelerating the growth of Araucaria heterophylla seedlings through different gibberellic acid concentrations and nitrogen levels
EP3031790B1 (en) Method for cultivating crops using bacterium belongings to genus bacillus
JP3344019B2 (en) How to produce high quality crops
Hidayat et al. Adjustment of Phosphorus Concentration to Increase Growth and Yield of Cherry Tomato Using Hydroponic Drip System Pengaturan Konsentrasi Fosfor untuk Meningkatkan Pertumbuhan dan Hasil Tanaman Tomat Cherry pada Sistem Hidroponik Irigasi Tetes
AP1783A (en) Plant cultivation apparatus and method for growing crops in sequence.
JP2012034649A (en) Plant cultivation system and plant cultivation method
JP2001103857A (en) Method for hydroponic culture and medium used therefor
CN106489700A (en) A kind of cutting propagation seedbed
JPS62171620A (en) Air feeder for culture of plant
CN216392450U (en) Improved soil structure suitable for grape growth
JP2525826B2 (en) Medium improvement method
JP2003116382A (en) Method for cultivating papaya
JPH06319380A (en) Plant cultivation method and apparatus for producing plant cultivation water
JP4786089B2 (en) Plant cultivation method by hydroponics
Silvola et al. Combined effects of CO 2 concentration and nutrient status on the biomass production and nutrient uptake of birch seedlings (Betula pendula)
RU2704835C1 (en) Composition for presowing treatment of seeds and intensification of plants (versions)
JPH0398518A (en) Nutritive solution culture of tree and device therefor
CN113661234A (en) Soil inoculation system based on microalgae and using method
Chartzoulakis et al. Influence of different irrigation systems on greenhouse tomatoes
JP2003009666A (en) Method for plant cultivation