JPS62170706A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS62170706A
JPS62170706A JP1333786A JP1333786A JPS62170706A JP S62170706 A JPS62170706 A JP S62170706A JP 1333786 A JP1333786 A JP 1333786A JP 1333786 A JP1333786 A JP 1333786A JP S62170706 A JPS62170706 A JP S62170706A
Authority
JP
Japan
Prior art keywords
fiber
turbine blade
ceramics
whisker
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1333786A
Other languages
Japanese (ja)
Inventor
Nozomi Kawasetsu
望 川節
Takashi Yamaoka
隆 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1333786A priority Critical patent/JPS62170706A/en
Publication of JPS62170706A publication Critical patent/JPS62170706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance and the erosion resistance of a turbine blade by plating the blade surface of a turbine with thin plate manufactured from fiber-reinforced metal consisting of general turbine blade material or the like as matrix and ceramics whisker or the like as reinforcing fiber. CONSTITUTION:Thin plate manufactured from fiber-reinforced metal (FRM) consisting of general turbine blade material or stellite as matrix and ceramics whisker or ceramics short fiber as reinforcing fiber is plated on a part or the whole of turbine blade face. Then, for example, ceramics whisker or ceramics short fiber such as titanic acid potassium or the like including Sic, K2O.6TiO2 or the like. Likewise, for example, B type single crystal which is generally sold has diameter of 0.2-0.5mum and length of 100-200mum is used in SiC whisker crystal mechanism. Hereby the fiber of the fiber-reinforced metal is uniformly diffused, therefore corrosion resistance, erosion resistance or abrasion resistance can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 繊維強化金属(FRM)により被覆された耐食・耐エロ
ージヨン性を有するタービン翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a turbine blade coated with fiber reinforced metal (FRM) and having corrosion and erosion resistance properties.

〔従来の技術〕[Conventional technology]

従来、地熱タービンや蒸気タービン等のタービン翼には
、耐食・耐エロージヨン性向上を目的として、圧延及び
焼結等によって作られるステライト薄板のろう付は被覆
等が施されていた。
BACKGROUND ART Conventionally, turbine blades of geothermal turbines, steam turbines, and the like have been coated with brazed stellite thin plates made by rolling, sintering, etc. for the purpose of improving corrosion resistance and erosion resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述した従来の方法で作られたタービン翼は、
地熱タービン、蒸気タービン等ノ耐食・耐エロージヨン
性を強く要求される所では、かなり条件がきびしく、充
分な性能のものを得ることが難しい。
However, turbine blades made using the conventional method described above,
In places where corrosion resistance and erosion resistance are strongly required, such as geothermal turbines and steam turbines, the conditions are quite severe and it is difficult to obtain products with sufficient performance.

また、被覆材として用いられるステラ、イト薄板は、加
工が困難なこともあり硬さ、耐エロージヨン性及びコス
トの点でも充分でない等の不具合があった。
In addition, the Stella and Ito thin plates used as coating materials are sometimes difficult to process and have disadvantages such as insufficient hardness, erosion resistance, and cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、タービン翼の耐食性・耐二ローション性を向
上させるために、タービン翼材料あるいはステ、ライト
をマトリックスとし、セラミックスウィスカまたは、セ
ラミックス短繊維を強化繊維とした繊維強化金属(FR
M)薄板をタービン翼面の一部もしくは全面にろう付は
等で被覆してなるタービン翼である。
In order to improve the corrosion resistance and lotion resistance of turbine blades, the present invention utilizes fiber-reinforced metal (FR) using turbine blade material or steelite as a matrix and ceramic whiskers or ceramic short fibers as reinforcing fibers.
M) A turbine blade made by coating a thin plate on a part or the entire surface of the turbine blade with brazing, etc.

なお、発明に用いる強化繊維としては、SiC。Note that the reinforcing fiber used in the invention is SiC.

5iaNi 、 AewOs  やKx 0 ・6Ti
 Ch等のチタン酸カリウム等のセラミックスウィスカ
あるいは、セラミックス短繊維が挙げられる。
5iaNi, AewOs, Kx 0, 6Ti
Examples include ceramic whiskers such as potassium titanate such as Ch, or ceramic short fibers.

SiCウィスカ結晶構造は、立方晶系のα型、単結晶の
β型の2種類があるが、本発明では、一般に市販されて
いる直径が0.2〜05μm、長さが100〜200μ
mのβ型単結晶が使用できる。
There are two types of SiC whisker crystal structures: cubic α-type and single-crystal β-type.
β type single crystal of m can be used.

また、S i s N4  ウィスカとしては、一般に
市販されている直径が0.2〜05μm、長さか50〜
300厨のα型針状単結晶のものが使用できる。また、
M2O3繊維としては、直径が3μm、長さが100〜
200IIj?Iのものが使用できる。
In addition, SiS N4 whiskers are generally commercially available with a diameter of 0.2 to 05 μm and a length of 50 to 50 μm.
300 mm α-type needle-like single crystal can be used. Also,
M2O3 fibers have a diameter of 3μm and a length of 100~
200IIj? I can be used.

一般的に、セラミックスウィスカやセラミックス短繊維
を強化繊維とした繊維強化金属は、セラミック系長繊維
で強化した繊維強化金属と比較して、繊維が均一に分散
するため、耐食・耐エロージヨン、あるいは耐摩耗性が
良好なことが期待できる。また、加工により薄板化が可
能となる。
In general, fiber-reinforced metals made of ceramic whiskers or short ceramic fibers are more resistant to corrosion, erosion, or corrosion than fiber-reinforced metals made of long ceramic fibers because the fibers are more evenly dispersed. Good abrasion resistance can be expected. Additionally, it is possible to make the plate thinner through processing.

なお、タービン動翼では繊維強化金属(FRM )薄板
をタービン動翼の翼根部を包むようにして折り返して被
覆すると、タービン翼の耐食性・耐エロージヨン性の向
上のみならず、動翼に発生する遠心力の一部をFRMが
分担するので翼根部の強度を向上することができる。
In addition, for turbine rotor blades, if a fiber reinforced metal (FRM) thin plate is folded back to cover the blade root of the turbine rotor blade, it not only improves the corrosion resistance and erosion resistance of the turbine blade, but also reduces the centrifugal force generated in the rotor blade. Since the FRM takes on a part of the load, the strength of the blade root can be improved.

〔実施例〕〔Example〕

本実施例では、M合金(A6061 )をマ) IJソ
ックスし、SiCウィスカを強化繊維としたFRMにつ
いて、水中キャビテーションエロージョン試験を実施し
た。
In this example, an underwater cavitation erosion test was conducted on an FRM made of M alloy (A6061) as an IJ sock and reinforced with SiC whiskers.

SiCウィスカのFRM中の体積含有量(V/)は15
チで、FRM製造は、溶湯鍛造法によった。
The volume content (V/) of SiC whiskers in FRM is 15
In H, the FRM was manufactured using a molten metal forging method.

キャビテーションエロージョン試験は、磁歪式実施した
。第1表はこれらの試験条件で母材とFRMKついて、
キャビテーションエロージョン試験を行ない、試験前後
における重量変化の比較結果を示したものである。
The cavitation erosion test was carried out using a magnetostrictive method. Table 1 shows the base material and FRMK under these test conditions.
A cavitation erosion test was conducted, and the comparison results of weight changes before and after the test are shown.

第  1  表 第1表に示す試験後の供試材の重量減比較結果からも判
るように、FRMは母材と比較して重量減が著しく少な
いのが認められた。
Table 1 As can be seen from the comparison results of the weight loss of the test materials after the test shown in Table 1, it was observed that the weight loss of FRM was significantly smaller than that of the base material.

また、上記試験条件での、母材とFRMの試験前後のマ
クロ外観状況を第1図から第4図に、ミクロ外観状況を
第5図から第6図に示している。すなわち、第1図と第
2図は母材であるM合金A6061のキャビテーション
エロージョン試験前後のマクロ外観状況を示している。
Furthermore, under the above test conditions, the macroscopic appearance of the base material and FRM before and after the test is shown in FIGS. 1 to 4, and the microscopic appearance is shown in FIGS. 5 to 6. That is, FIGS. 1 and 2 show the macroscopic appearance of the base material M alloy A6061 before and after the cavitation erosion test.

また第3図と第4図はF RM (SiCウィスカ/A
6061 )のキャビテーションエロージョン試験前後
のマクロ外観状況を示している。
Also, Figures 3 and 4 show F RM (SiC whisker/A
6061) shows the macroscopic appearance before and after the cavitation erosion test.

更に第5図と第6図はそれぞれM合金A6061及びF
 RM (SiCウィスカ/A6061 )について、
キャビテーションエロージョン試験後の各供試材のエロ
ージョン面のSEM(走査型電子顕微鏡)によるミクロ
外観状況を示している。
Furthermore, Figures 5 and 6 show M alloys A6061 and F, respectively.
Regarding RM (SiC whisker/A6061),
The figure shows the microscopic appearance of the erosion surface of each sample material after the cavitation erosion test using an SEM (scanning electron microscope).

これらの図から判るように、FRMは、母材と比較して
損傷が著しく少なく、耐エロージヨン性が向上している
のが確認された。
As can be seen from these figures, it was confirmed that FRM had significantly less damage and improved erosion resistance compared to the base material.

以上のことにより、金属材料をセラミックス繊維で強化
しFRM化することにより耐エロージヨン性が向上する
ことが認められた。
From the above, it has been confirmed that erosion resistance is improved by reinforcing a metal material with ceramic fibers and making it FRM.

〔発明の効果〕〔Effect of the invention〕

タービン翼材料あるいはステライトをマトリックスとし
、セラミックスウィスカまたは、セラミックス短繊維を
強化繊維とし繊維強化金属(FRM)の薄板をタービン
翼の被覆材として用いることにより、耐食・耐エロージ
ヨン性が改善され、翼の寿命が向上する等本発明は産業
の発達に寄与するところが大きい。
By using turbine blade material or stellite as a matrix, ceramic whiskers or ceramic short fibers as reinforcing fibers, and fiber reinforced metal (FRM) thin plates as coating materials for turbine blades, corrosion and erosion resistance are improved, and the blades are The present invention greatly contributes to the development of industry, such as by improving the lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図はキャビテーションエロージョン試験
前後のマクロ外観状況を示す比較図で、第1図と第2図
はM合金A6061について、第3図から第4図はF 
RM (SiCウィスカ/A6061)について試験前
後の比較図である。第5図は第2図と、第6図は第4図
とにそれぞれ相当するキャビテーションエロージョン試
験後のM合金A6061とF RM (SiCウィスカ
/A6061 )の各供試材のエロージョン面のSEM
(走査型電子顕微鏡)によるミクロ外観状況を示す比較
図である。 第 S図 1.明細書第7頁第4行目から第13行目の[第事件の
表示 昭和 61年    特 許 願第   13337 
   号発明の名称 タービン翼 補正をする者 事件との関係 特許出願人 住  所    東京都千代田区丸の1二丁目5番1号
名 称(620)三菱重工業株式会社 代  理  人 ら第4図はキャビテーションエロージョン試験前後の供
試材エロージョン面を比較して示す金属組織の写真で、
第1図と第2図はA1合金A6061供試材について、
第3図と第4図はFRM(sicウィスカ/A6061
)供試材についてそれぞれ金属組織を示している。 第5図は第2図)こ、第6図は第5図にそれぞれ相当す
るキャビテーションエロージョン試験後のA6合金A6
061供試材とFRM(sicウィスカ/A6061)
供試材のエロージョン面の金属組織を示すSEM(走査
型電子顕微鏡)写真で、いずれも10倍の拡大写真であ
る。」と訂正する。 2、 図面全面(第1図から第6図)を、添付の第1図
から第6図と差し替える。
Figures 1 to 4 are comparative diagrams showing the macroscopic appearance before and after the cavitation erosion test. Figures 1 and 2 are for M alloy A6061, and Figures 3 to 4 are for F alloy.
It is a comparison diagram of RM (SiC whisker/A6061) before and after the test. Figure 5 is a SEM of the erosion surface of M alloy A6061 and F RM (SiC whisker/A6061) specimens after the cavitation erosion test, which corresponds to Figure 2 and Figure 6 to Figure 4, respectively.
FIG. 2 is a comparative diagram showing the microscopic appearance under a scanning electron microscope (scanning electron microscope). Figure S 1. [Indication of the 1986 Patent Application No. 13337 from page 7, line 4 to line 13 of the specification]
Name of the No. Invention Relationship with the Case of Person Amending Turbine Blades Patent Applicant Address 12-5-1 Maruno, Chiyoda-ku, Tokyo Name (620) Representatives of Mitsubishi Heavy Industries, Ltd. Figure 4 shows cavitation A photo of the metal structure comparing the erosion surface of the specimen before and after the erosion test.
Figures 1 and 2 are for the A1 alloy A6061 test material.
Figures 3 and 4 are FRM (sic whisker/A6061
) The metallographic structure of each sample material is shown. Figure 5 shows the A6 alloy A6 after the cavitation erosion test, which corresponds to Figure 2), and Figure 6 corresponds to Figure 5.
061 test material and FRM (SIC whisker/A6061)
These are SEM (scanning electron microscope) photographs showing the metal structure of the eroded surface of the sample material, and all photographs are 10 times enlarged. ” he corrected. 2. The entire drawings (Figures 1 to 6) are replaced with the attached Figures 1 to 6.

Claims (1)

【特許請求の範囲】[Claims] 一般タービン翼材料又はステライトをマトリックスとし
セラミックスウィスカまたはセラミックス短繊維を強化
繊維として成る繊維強化金属の薄板をタービン翼面の一
部又は全部に被着して成ることを特徴とするタービン翼
A turbine blade characterized in that a thin plate of fiber-reinforced metal made of general turbine blade material or stellite as a matrix and ceramic whiskers or ceramic short fibers as reinforcing fibers is adhered to a part or all of the turbine blade surface.
JP1333786A 1986-01-24 1986-01-24 Turbine blade Pending JPS62170706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1333786A JPS62170706A (en) 1986-01-24 1986-01-24 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333786A JPS62170706A (en) 1986-01-24 1986-01-24 Turbine blade

Publications (1)

Publication Number Publication Date
JPS62170706A true JPS62170706A (en) 1987-07-27

Family

ID=11830312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333786A Pending JPS62170706A (en) 1986-01-24 1986-01-24 Turbine blade

Country Status (1)

Country Link
JP (1) JPS62170706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436501U (en) * 1987-08-29 1989-03-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436501U (en) * 1987-08-29 1989-03-06

Similar Documents

Publication Publication Date Title
JP4845140B2 (en) Heat resistant material
JP2001064783A (en) Ceramic superalloy article
JPH04285198A (en) Method for imparting polishing layer to metal substrate, particularly end of turbin blade
US4867812A (en) Fatigue crack resistant IN-100 type nickel base superalloys
EP0194391A1 (en) Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys
He et al. Manufacturing, structure and high temperature corrosion of palladium-modified aluminide coatings on nickel-base superalloy M38
Strang et al. Effect of coatings on the mechanical properties of superalloys
CN113512702B (en) Single-phase beta-NiAl bonding layer and preparation method thereof
Alam et al. Comparative tensile behavior of freestanding γ-γ′ and β-(Ni, Pt) Al bond coats and effect on tensile properties of coated superalloy
JPS62170706A (en) Turbine blade
JPH02504289A (en) Coated near-α titanium product
CN1198964C (en) High temp. protective coating
Mortensen et al. The status of metal-matrix composite research and development in Japan
Guo et al. Study on the friction and wear behavior of a TA15 alloy and its Ni-SiC composite coating
EP0194392B1 (en) Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superalloys
Kim et al. Effects of brazing time and temperature on the microstructure and mechanical properties of aluminum air brazed joints
US10844492B2 (en) Coating for a nickel-base superalloy
Oluwasegun et al. Hot corrosion performance of single-crystal CMSX-4 and CMSX-486 superalloys in the mixture of Na 2 SO 4-NaCl melts
Choy Functionally graded coatings on SiC fibers for protection in Ti-based metal matrix composites
Signorelli Metal matrix composites for aircraft propulsion systems
JPH0569891B2 (en)
Wang et al. Microstructure and wear resistance of laser cladding nano-Al2O3/MCrAlY composite graded coating on TiAl alloy
Farooq et al. Evaluation of nano mechanical
US3649226A (en) Oxidation-sulfidation resistant articles
Harrison et al. Static and cyclic creep properties of three forms of a cast nickel alloy