JPS62169041A - Physical property measuring apparatus for planar material - Google Patents

Physical property measuring apparatus for planar material

Info

Publication number
JPS62169041A
JPS62169041A JP1089786A JP1089786A JPS62169041A JP S62169041 A JPS62169041 A JP S62169041A JP 1089786 A JP1089786 A JP 1089786A JP 1089786 A JP1089786 A JP 1089786A JP S62169041 A JPS62169041 A JP S62169041A
Authority
JP
Japan
Prior art keywords
microwave
paper
measured
measurement
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1089786A
Other languages
Japanese (ja)
Other versions
JPH0663986B2 (en
Inventor
Yorihiko Maeno
前野 頼彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIPOOLE KK
Dipole Electronics Co Ltd
Original Assignee
DAIPOOLE KK
Dipole Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIPOOLE KK, Dipole Electronics Co Ltd filed Critical DAIPOOLE KK
Priority to JP61010897A priority Critical patent/JPH0663986B2/en
Publication of JPS62169041A publication Critical patent/JPS62169041A/en
Publication of JPH0663986B2 publication Critical patent/JPH0663986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To eliminate mechanically mobile parts of a microwave measuring sensor, by fixing a pair of microwave hollow resonators to be positioned on both sides of an planar object to be measured at more than one points to measure the amount of water. CONSTITUTION:A paper 1 as an object to be measured is supplied from a paper making machine and moves forward at a speed of about 1,000m per min as shown by the arrow. A pair of reentrant type microwave hollow resonators 2 as microwave measuring sensor are build as couple one on the upper surface and the other on the lower surface and in total, six microwave hollow resonators 2 are arranged in an array within one block (about 1m long). The block thus obtained is arranged securely across the width of the paper 1 in the number corresponding to the width of the paper 1. The microwave hollow resonator 2 is made up of a microwave transmitting/receiving section, a cylindrical hollow section provided with a cylindrical convex and a plate which covers it as opposed thereto with the paper 1 inserted thereinto.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロ波を利用して被測定物の化学的また
は物理的性質を点在固定された測定センサーのデータを
電子的に測定する装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses microwaves to electronically measure the chemical or physical properties of an object to be measured, by measuring data from measurement sensors fixed in spots. It is related to the device.

〔従来の技術〕[Conventional technology]

マイクロ波を利用した計測装置は、マイクロエレクトロ
ニクス分野におけるデータ処理技術及びデバイス技術の
進歩を反映して、近年層しい改良が加えられつつある。
Measuring devices using microwaves have been undergoing further improvements in recent years, reflecting advances in data processing technology and device technology in the field of microelectronics.

特に、製紙工程における紙の水分量、あるいは坪量(単
位面積当たりの重量)等をオンラインで計測する装置は
注目されている応用分野である。製紙工程においては、
これらのファクターをバルブ原材料の調整、乾燥制御等
の工程へオンラインでフィードバックすることにより、
紙の最終品質を一定に保つ工夫がなされている。また、
製紙工場における紙の値段は、出荷時の製品の単位当た
りの重量で決められるために、とりわけ水分量の性格な
オンライン計測は製紙工程の最重要課題のひとつとなっ
ている。
In particular, devices that online measure the moisture content or basis weight (weight per unit area) of paper during the papermaking process are an application field that is attracting attention. In the paper manufacturing process,
By feeding these factors online to processes such as valve raw material adjustment and drying control,
Efforts have been made to keep the final quality of the paper constant. Also,
Since the price of paper at a paper mill is determined by the weight per unit of the product at the time of shipment, online measurement of water content, in particular, is one of the most important issues in the paper manufacturing process.

マイクロ波を用いて水分量あるいは坪量等を計測する代
表的な技術は、第4図Aに示されるように、1個のマイ
クロ波測定センサー2をフレーム3上に搭載し、機械的
に往復させながら計測する方法である。この場合、紙の
流れ方向と紙の巾方向の相対関係から、実際には第4図
Bのように紙に対して斜め方向にジグザグ状に計測が行
われている。製紙工程における抄紙機は高速化が進み、
毎分1000mの抄紙スピードも実用化されている。
A typical technique for measuring water content, basis weight, etc. using microwaves is to mount one microwave measurement sensor 2 on a frame 3 and mechanically reciprocate it, as shown in Figure 4A. This is a method of measuring while moving. In this case, due to the relative relationship between the paper flow direction and the paper width direction, measurement is actually performed in a zigzag pattern diagonally with respect to the paper as shown in FIG. 4B. Paper machines in the paper manufacturing process are becoming faster and faster.
Paper making speeds of 1000 m/min have also been put into practical use.

これに対して第4図Aのマイクロ波測定センサーのフレ
ーム上の移動速度は、駆動系の限界から高々毎秒]、O
cm程度が一般的である。巾6m、抄紙スピード100
0mの場合、フレーム上をマイクロ波測定センサーが往
復するまでに約2分かかり、この間約2000m紙を斜
め方向に一往復計測することになる。
On the other hand, the moving speed on the frame of the microwave measurement sensor in FIG. 4A is at most [per second], O
It is generally about cm. Width 6m, paper making speed 100
In the case of 0 m, it takes about 2 minutes for the microwave measurement sensor to move back and forth over the frame, and during this time it measures about 2000 m of paper once in a diagonal direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のマイクロ波を用いた製紙工程における水分量ある
いは坪量の計測には、次のような問題点がある。
The conventional measurement of water content or basis weight in the papermaking process using microwaves has the following problems.

第1の問題点は、測定部位が紙に対して斜め方向にジグ
ザグ状となっており、紙の品質を一定に制御するために
必要不可欠な巾方向の任意の指定位置あるいは一定領域
の計測が事実上できない点にある。製紙工程においては
、紙のすべての面領域上の水分量あるいは坪量等に関す
るオンライン計測情報が必要とされているが、従来の技
術ではきわめて困難である。
The first problem is that the measurement area is diagonal to the paper in a zigzag pattern, making it impossible to measure any specified position or fixed area in the width direction, which is essential for controlling the quality of the paper. This is in fact impossible. In the paper manufacturing process, online measurement information regarding moisture content or basis weight on all surface areas of paper is required, but this is extremely difficult with conventional techniques.

第2の問題点は、従来の方法ではマイクロ波測定センサ
ーを精密に移動ないし走行させるためのフレームが不可
欠であるが、このフレームの構成が精度上極めて複雑で
あり、従ってコストが著しくかかり、保守点検上も手間
がかかり過ぎる欠点がある。マイクロ波測定センサーは
非接触かつ透過方式が一般的であるので、上下一対のマ
イクロ波測定センサーの相対距離ないし相対位置を常時
一定に保つ必要がある。このため、マイクロ波測定セン
サーの搭載フレームは、設計製作時点から精度を出すた
めに多くの工夫がなされており、極めて高価となってい
る。据付後も、精度を維持し、走行ベルト、走行ケーブ
ル等の機械的摩耗、あるいは劣化等の点検、保守は膨大
な作業となっているのが実情である。
The second problem is that the conventional method requires a frame to move or run the microwave measurement sensor precisely, but the structure of this frame is extremely complex in terms of accuracy, resulting in significant cost and maintenance. It also has the disadvantage that it takes too much time and effort for inspection. Since microwave measurement sensors are generally non-contact and transmission type, it is necessary to keep the relative distance or relative position of the pair of upper and lower microwave measurement sensors constant at all times. For this reason, the frame on which the microwave measurement sensor is mounted requires many efforts to improve accuracy from the time of design and manufacture, making it extremely expensive. The reality is that even after installation, it is a huge amount of work to maintain accuracy, check for mechanical wear or deterioration of running belts, running cables, etc., and maintain them.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、平面状測定物の両面に位置する一対のマイク
ロ波空洞共振器を、少なくとも2個所以上に設けて固定
する構成により、上記問題点を解決するものである。具
体的な構成の一例は第1図A、B、Cで示される様に、
抄紙機の紙の流れ方向に対向した紙の巾方向に、マイク
ロ波空洞共振器をアレイ状に一列に並べて固定した計測
装置である。各マイクロ波空洞共振器を用いて、紙の巾
方向の任意の指定位置あるいは一定領域の水分量あるい
は坪量等の計測をオンラインで電子的にスキャン制御し
て行う。
The present invention solves the above problems by using a configuration in which a pair of microwave cavity resonators located on both sides of a planar measurement object are provided and fixed at at least two locations. An example of a specific configuration is shown in FIG. 1 A, B, and C.
This is a measuring device in which microwave cavity resonators are arranged and fixed in an array in the width direction of the paper, which is opposite to the paper flow direction of the paper machine. Using each microwave cavity resonator, the moisture content, basis weight, etc. of any designated position or fixed area in the width direction of the paper are measured online by electronic scanning control.

〔作用〕[Effect]

本発明による測定装置は、少なくとも2個所以上のあら
かじめ必要とする被測定部位に対して、一対のマイクロ
波測定センサーをそれぞれ設けて固定したことを特徴と
しているため、マイクロ波測定センサーの機械的な可動
部がなくなり、オンライン計測上の精度も著しく高めら
れると同時に測定装置全体のコストも著しく低くおさえ
られる。
The measuring device according to the present invention is characterized in that a pair of microwave measurement sensors are provided and fixed to at least two or more required measurement sites in advance, so that the mechanical Since there are no moving parts, on-line measurement accuracy is significantly improved, and at the same time, the cost of the entire measuring device is significantly reduced.

従来の製紙工程における水分量あるいは坪量等のオンラ
イン計測においては、フレーム上に搭載した一対のマイ
クロ波測定センサーで、紙面に対して第4図Bの斜め方
向いジグザグ上に計測計測する方式が一般的であった。
In the conventional online measurement of water content or basis weight in the papermaking process, a pair of microwave measurement sensors mounted on a frame is used to measure in a diagonal zigzag pattern as shown in Figure 4B with respect to the paper surface. It was common.

マイクロ波測定センサーを2個以上設けて、固定式で計
測する方法は、理論上可能であったが、−個のマイクロ
波測定センサーが高価でかつ著しく容積が大きいために
、実用化が遅れていた。本発明による測定装置は、本出
願人が発明した第5図Aに示された直径5 cm、高さ
41の従来技術に比較して著しく小型で計量かつ簡易な
マイクロ波測定センサー〔特願昭60年−263874
号〕を使用することによるはじめて実用化が可能となっ
た。第5図Aに示されたマイクロ波空洞共振器はりエン
ドラント型空洞共振器として従来知られているものであ
る。空洞内部に凸部を設けたことにより、マイクロ波の
Q値が著しく高くなり、かつ局所的に電界密度が高くな
り、安定かつ小型で精度の高い計測装置が得られる。こ
の小型のマイクロ波測定センサーを、製紙工程における
紙の巾方向にアレイ状に並べて、電子的に各マイクロ波
測定センサーを制御することにより、オンラインで紙の
任意の位置の任意の時刻における水分量あるいは坪量等
の計測が可能となる。
Although it was theoretically possible to install two or more microwave measurement sensors and perform measurements in a fixed manner, practical implementation has been slow because - microwave measurement sensors are expensive and have a significantly large volume. Ta. The measuring device according to the present invention is a microwave measuring sensor which is significantly smaller, weighs and is simpler than the conventional technology which has a diameter of 5 cm and a height of 41 mm as shown in FIG. 60 years - 263874
It became possible to put it into practical use for the first time by using The microwave cavity resonator shown in FIG. 5A is conventionally known as an endrunt type cavity resonator. By providing the convex portion inside the cavity, the Q value of the microwave is significantly increased, and the electric field density is locally increased, resulting in a stable, compact, and highly accurate measuring device. These small microwave measurement sensors are arranged in an array in the paper width direction during the papermaking process, and by electronically controlling each microwave measurement sensor, the amount of moisture at any position on the paper at any time can be measured online. Alternatively, it becomes possible to measure basis weight, etc.

−例として、マイクロ波測定センサーを紙の巾方向全体
に必要個数だけ設けて、電子スキャンすることにより、
−瞬にして紙の巾方向の全データがオンラインで得られ
る。従来のフレーム移動式機械的作動によるデータ収集
では計測不可能であったデータが得られる。電子スキャ
ンの具体的な一方法としては、各マイクロ波空洞共振器
に取り付けられた各送信部に対して、1個の共通のマイ
クロは発信部から送られたマイクロ波を、各送信部のア
ッテネータの電圧制御により、順次第1の共振器から最
後の共振器まで、スキャン送受信する。あらかじめ被測
定物がない場合の各共振器の特性を、マイクロコンピュ
ータにより電圧制御等の方法で記憶調整し、ておけば、
各共振器による個別の緒特性を極めて容易に均一化でき
る。
- For example, by placing the required number of microwave measurement sensors across the width of the paper and scanning it electronically,
-In an instant, all data in the width direction of the paper can be obtained online. Data that could not be measured using conventional frame-moving mechanical actuation data collection is obtained. One specific method of electronic scanning is that for each transmitting section attached to each microwave cavity resonator, one common micro transmits the microwaves sent from the transmitting section to the attenuator of each transmitting section. By voltage control, scan transmission and reception is performed from the first resonator to the last resonator in order. If the characteristics of each resonator when there is no object to be measured are memorized and adjusted in advance using a method such as voltage control using a microcomputer, then
The individual characteristics of each resonator can be made uniform very easily.

本発明による測定装置は、マ・fクロ波空洞共振器を複
数個固定して、2あらかじめ計測tべき被測定物の測定
部位Gご設定する方式を採用し7た装置に関するもので
、特に、製紙工程における紙の水分量あるいは坪量等の
オンライン計測において、オンラインで連続的に紙の面
情報が得られる。
The measuring device according to the present invention is a device that adopts a method in which a plurality of macro-fine cavity resonators are fixed and a measurement part G of a measured object to be measured is set in advance, and in particular, In online measurement of paper moisture content, basis weight, etc. in the papermaking process, paper surface information can be obtained continuously online.

〔実施例〕〔Example〕

本発明の一実施例を図面によって説明する。第1図は、
本発明による代表的な平面状材料の固定式物性測定装置
の一実施例である。抄紙機上の紙1は矢印方向手前に毎
分1000m程度のスピードで移動する。抄紙スピード
は特に限定されず、充分遅くても、静止していても、ま
たより充分遅くても計測には影響を与えない。一対のり
エンドラント型マイクロ波空洞共振器2は祇1の上下に
固定されている。一対のりエンドラント型マイクロ波空
洞共振器2の具体的な形状は第5図Aに示しである。第
5図Aにおいて、1は被測定物1の一例として祇1を示
しである。また、下一対でひと一つのマイクロ波空洞共
振器2は上下一対で構成されており、第5図Aの下部に
円筒状の凸部を設けた円筒形空洞部が配置されている。
An embodiment of the present invention will be described with reference to the drawings. Figure 1 shows
1 is an embodiment of a typical fixed-type physical property measuring device for planar materials according to the present invention. Paper 1 on the paper machine moves forward in the direction of the arrow at a speed of about 1000 m/min. The papermaking speed is not particularly limited, and even if it is sufficiently slow, stationary, or sufficiently slower, the measurement will not be affected. A pair of glue-endrunt type microwave cavity resonators 2 are fixed to the top and bottom of the girder 1. The specific shape of the pair of glue-endrunt type microwave cavity resonators 2 is shown in FIG. 5A. In FIG. 5A, reference numeral 1 denotes a wire 1 as an example of the object 1 to be measured. Further, each microwave cavity resonator 2 in the lower pair is composed of an upper and lower pair, and a cylindrical cavity portion provided with a cylindrical convex portion is arranged at the lower part of FIG. 5A.

その上部は、下部空洞に対置して祇1を挿入する形で覆
う板を示している。具体的な形状の一例としてアルミニ
ウムを材料として、空洞円筒半径を2.54c3、空洞
円筒深さを2.99国、凸部円筒半径を0.90cm、
、凸部先端と上部板との距離を1.35cmとした。こ
の場合、マイクロ波共振周波数が2.7Gtlz、 Q
値は7097となり、Q値の半値中が2.7GHzをピ
ークとして380KHzと従来の173以上の著しく鋭
いQ値を持つ。従って、水分量あるいは坪量等の計測精
度が著しく向上している。
Its upper part shows a plate covering the lower cavity in the form of inserting the gill 1 oppositely. As an example of a specific shape, the material is aluminum, the radius of the hollow cylinder is 2.54c3, the depth of the hollow cylinder is 2.99cm, the radius of the convex cylinder is 0.90cm,
The distance between the tip of the convex portion and the upper plate was 1.35 cm. In this case, the microwave resonance frequency is 2.7Gtlz, Q
The value is 7097, and the half value of the Q value is 380 KHz with a peak at 2.7 GHz, which is significantly sharper than the conventional Q value of 173. Therefore, the accuracy of measuring moisture content, basis weight, etc. is significantly improved.

第1図の実施例においては、上記のりエンドラント型マ
イクロ波空洞教師器2を約1m長のブロック内に六個ア
レイ状に配置している。第1図においてマイクロ波空洞
共振器の空洞部は1mの長さのアルミ仮に共通に6個の
円筒状空洞とそれぞれの内部に円筒状凸部を持つように
構成されている。
In the embodiment shown in FIG. 1, six of the glue-endrant type microwave cavity teacher devices 2 are arranged in an array in a block about 1 m long. In FIG. 1, the cavity portion of the microwave cavity resonator is constructed of aluminum having a length of 1 m, and has six cylindrical cavities in common, each having a cylindrical convex portion inside.

一方、空洞部に対置する上部板は、各マイクロ波空洞共
振器に対して共通の長さ1mのアルミ板で構成されてい
る。この様に、6個程度のマイクロ波空洞共振器を長さ
1mのブロックごとに共通に配置することにより、全体
として被測定物の一例である紙中に対応した数個のブロ
ック構成による固定式計測が行われる。
On the other hand, the upper plate facing the cavity is composed of an aluminum plate having a length of 1 m and common to each microwave cavity resonator. In this way, by commonly arranging about 6 microwave cavity resonators in each 1 m long block, we can create a fixed system with several block configurations corresponding to the paper, which is an example of the object to be measured. Measurements are taken.

ここにあげた形状の大きさ、空洞の個数等の数値は特に
制約はなく、計測対象に依存して自由に選択して設計す
ればよい。また第1図の実施例においては、マイクロ波
の発信部は明記していないが、−例として、上記の各1
m長のブロックごとに一個のマイクロ波発信器を設けて
各マイクロ測定空洞共振器に共通にマイクロ波を供給す
る方式を用いることにより、コストは著しく低くなって
いる。各ブロックごとの各マイクロ波空洞共振器の個別
の計測上のオンライン電子スキャン制御、あるいはキャ
リブレーション等は、すでに存在する多くのエレクトロ
ニクス技術を利用して、測定の目的に応じて自由に構成
される。本発明による第1図の実施例は、被測定物に対
して、マイクロ波空洞共振器を必要個数だけアレイ」二
に配置して固定した装置の物理的配置構成を示している
。被測定物に対して、各マイクロ波空洞共振器を配置す
る方法は、第1図のように直線状に並べるだけでなく、
千鳥状に並べてもよいし、特定領域の計測を重点的に行
う場合には、数個を一個所周辺に点在させる方式のいず
れでもよい。いずれにしても、本発明の特徴は、マイク
ロ波空洞共振器を2個所以上に設けて固定し、計測に関
する機械的な可動をなくしたことにある。この種の方式
は、理輪状極めて自然で容易に想定されるものであるが
、従来の技術では個別のマイクロ波空洞共振器が、前記
のように小型軽量かつ安価にできないために、実用上設
計不可能であった。
There are no particular restrictions on the numerical values such as the size of the shape and the number of cavities listed here, and they may be freely selected and designed depending on the object to be measured. In the embodiment shown in FIG. 1, although the microwave transmitter is not specified, for example, each of the above
By using a scheme in which one microwave transmitter is provided for each m-long block to commonly supply microwaves to each micromeasuring cavity, costs are significantly reduced. Online electronic scan control or calibration for individual measurements of each microwave cavity in each block can be freely configured according to the measurement purpose using many existing electronic technologies. . The embodiment of the present invention shown in FIG. 1 shows the physical arrangement of an apparatus in which a required number of microwave resonators are arranged in an array and fixed to an object to be measured. The method of arranging each microwave cavity with respect to the object to be measured is not only by arranging them in a straight line as shown in Fig.
They may be arranged in a staggered manner, or if a specific area is to be measured intensively, several methods may be arranged around one location. In any case, the feature of the present invention is that the microwave cavity resonators are provided and fixed at two or more locations, thereby eliminating mechanical movement related to measurement. This type of system is extremely natural and easily envisioned, but with conventional technology, individual microwave cavity resonators cannot be made small, lightweight, and inexpensive as described above, so it is difficult to design in practical terms. It was impossible.

本発明の第2の実施例を第2図に示しである。A second embodiment of the invention is shown in FIG.

第2図は、各マイクロ波測定センサーが第5図Bに示し
た様に、凸部を持った空洞が被測定物をはさんで多方に
対置した構造を持つもので構成されており、全体として
、被測定物としての紙の巾はうこにアレイ上に配置しで
ある。第1図との違いは、個別のマイクロ波空洞共振器
を第5図Aから第5図Bに変更しただけである。
Figure 2 shows that, as shown in Figure 5B, each microwave measurement sensor has a structure in which cavities with convex portions are placed opposite each other on multiple sides with the object to be measured in between. As such, the width of the paper as the object to be measured is arranged on the array. The only difference from FIG. 1 is that the individual microwave cavity resonators have been changed from FIG. 5A to FIG. 5B.

本発明の第3の実施例を第3図に示しである。A third embodiment of the invention is shown in FIG.

第3図は、第2の前実施例と同様に、個別のマイクロ波
空洞共振器を第5図Aから第5図Cに変更したものから
構成されている。第5図Cは従来のボックス型マイクロ
波空洞共振器を示している。
FIG. 3, like the second previous embodiment, consists of individual microwave cavities modified from FIG. 5A to FIG. 5C. FIG. 5C shows a conventional box-type microwave cavity resonator.

いずれの実施例においても、個別のマイクロ波空洞共振
器はどのような形状でもよく被測定物に対して、少なく
とも2個所以上に配置して固定され、計測は既存の電子
制御スキャンで行うことも大きな特徴としている。
In any of the embodiments, the individual microwave cavity resonators may have any shape and are fixed to the object to be measured in at least two locations, and measurements may be performed using existing electronically controlled scanning. This is a major feature.

〔発明の効果〕〔Effect of the invention〕

本発明による平面材料の固定式物性測定装置の効果は次
の3項目に要約される。
The effects of the fixed physical property measuring device for flat materials according to the present invention can be summarized in the following three items.

(1)固定式トータルスキャン 被測定物は平面状材料、特に製紙工程における高速で動
く紙を対象としているので、すべての紙面の水分量ある
いは坪量等が、固定式で計測できるようになった。被測
定物の所定の領域にあらかじめマイクロ被想定センサー
を配置することにより、必要な領域の全情報がオンライ
ンで提供さえる。
(1) Fixed type total scan Since the object to be measured is a flat material, especially paper that moves at high speed in the paper manufacturing process, it is now possible to measure the moisture content or basis weight of all paper surfaces using a fixed method. . By placing micro-target sensors in advance in predetermined areas of the object to be measured, all necessary area information is provided online.

(2)測定精度の向上 固定式で計測するために、各マイクロ波測定センサーの
機械的あるいは物理的な可動部分がなくなり1.測定に
関する誤差が著しく少なくなり、製紙工程に必要充分な
水分量あるいは坪量等の精度の高いかつ信憑性のある計
測が可能となった。
(2) Improving measurement accuracy Due to fixed measurement, there are no mechanical or physical moving parts in each microwave measurement sensor.1. Errors related to measurement have been significantly reduced, and it has become possible to measure moisture content or basis weight, etc., which is necessary and sufficient for the papermaking process, with high accuracy and reliability.

(3)装置の設計及び製作費の低減 固定式であるため、機械的な可動部がなくなり、位置決
め等の精度を要求する手間が少なくなり、部品点数も減
らずことができる。従って、装置全体の設計も容易とな
り、さらには製造コスト並びに保守・点検費用も著しく
削減された。
(3) Reducing device design and manufacturing costs Since the device is of a fixed type, there are no mechanically moving parts, the effort required for accuracy such as positioning is reduced, and the number of parts can be reduced without reducing the number of parts. Therefore, the design of the entire device has become easier, and furthermore, manufacturing costs and maintenance and inspection costs have been significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の平面状材料の固定式物性測定装置を示
す図である。 第2図は本発明の他の実施例1を示す図である。 第3図は本発明の他の実施例2を示す図である。 第4図Aは従来例を示す図である。 第4図Bは第4図Aで計測される測定部位を示す図であ
る。 第5図Aは従来例及び本発明で用いられているマイクロ
波測定センサーの一対を示す図である。 第5図Bは第5図Aと同様に、他のマイクロ測定センサ
ーの一対を示す図である。 第5図Cは第5図Aと同様に、さらに別のマ・イクロ波
測定センサーの一対を示す図である。 1、−−1ffi   2.−一マイクロ波測定センサ
ー3、−一フレーム 4、−一測定部位 5、−一マイクロ波送受信部 特許出願人 株式会社ダイポール 代理人弁理士 沢田雅男 外1名 マイクロ波測定センサ 第5図C 1、紙 2、マイクロ波測定センサー −5,マイクロ波送受信部
FIG. 1 is a diagram showing a fixed type physical property measuring device for planar materials according to the present invention. FIG. 2 is a diagram showing another embodiment 1 of the present invention. FIG. 3 is a diagram showing another embodiment 2 of the present invention. FIG. 4A is a diagram showing a conventional example. FIG. 4B is a diagram showing the measurement site measured in FIG. 4A. FIG. 5A is a diagram showing a pair of microwave measurement sensors used in the conventional example and the present invention. FIG. 5B is a diagram similar to FIG. 5A showing another pair of micro-measuring sensors. Similar to FIG. 5A, FIG. 5C is a diagram showing yet another pair of micro-microwave measurement sensors. 1, --1ffi 2. -1 microwave measurement sensor 3, -1 frame 4, -1 measurement site 5, -1 microwave transmitting/receiving unit Patent applicant Masao Sawada, patent attorney representing Dipol Co., Ltd. Microwave measurement sensor Fig. 5 C 1, Paper 2, microwave measurement sensor-5, microwave transmitter/receiver

Claims (1)

【特許請求の範囲】[Claims] 平面状被測定物の両面に位置する一対のマイクロ波空洞
共振器を、少なくとも2個所以上の測定部位に固定した
平面状材料の物性測定装置。
An apparatus for measuring physical properties of a planar material, in which a pair of microwave cavity resonators located on both sides of a planar object to be measured are fixed to at least two measurement sites.
JP61010897A 1986-01-21 1986-01-21 Equipment for measuring physical properties of flat materials Expired - Lifetime JPH0663986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010897A JPH0663986B2 (en) 1986-01-21 1986-01-21 Equipment for measuring physical properties of flat materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010897A JPH0663986B2 (en) 1986-01-21 1986-01-21 Equipment for measuring physical properties of flat materials

Publications (2)

Publication Number Publication Date
JPS62169041A true JPS62169041A (en) 1987-07-25
JPH0663986B2 JPH0663986B2 (en) 1994-08-22

Family

ID=11763088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010897A Expired - Lifetime JPH0663986B2 (en) 1986-01-21 1986-01-21 Equipment for measuring physical properties of flat materials

Country Status (1)

Country Link
JP (1) JPH0663986B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004423A1 (en) * 1986-12-09 1988-06-16 Dipole Electronics Co. Ltd. Apparatus for measuring physical quantities and a method therefor
JPH0373832A (en) * 1989-08-15 1991-03-28 Daipoole:Kk Instrument for measuring water content of wood
EP0558759A1 (en) * 1991-09-20 1993-09-08 Dipole Electronics Co. Ltd. Equipment for measuring physical quantity
WO1995024000A1 (en) * 1994-03-04 1995-09-08 N.V. Bekaert S.A. Reproduction apparatus with microwave detection
US5763829A (en) * 1992-06-05 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Leadframe including frame-cutting slit for lead-on-chip (LOC) semiconductor device and semiconductor device incorporating the leadframe
JP2007218662A (en) * 2006-02-15 2007-08-30 Canon Inc Detector for detecting moisture content data of laminate
WO2019166870A1 (en) * 2018-02-28 2019-09-06 Saudi Arabian Oil Company Detecting saturation levels of a sample core using electromagnetic waves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373197A (en) * 1976-12-10 1978-06-29 Hoechst Ag Measuring device for moisture of plane sample

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373197A (en) * 1976-12-10 1978-06-29 Hoechst Ag Measuring device for moisture of plane sample

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004423A1 (en) * 1986-12-09 1988-06-16 Dipole Electronics Co. Ltd. Apparatus for measuring physical quantities and a method therefor
US4890054A (en) * 1986-12-09 1989-12-26 Dipole Electronics Co., Ltd. Apparatus and method for measuring physical quantities
JPH0373832A (en) * 1989-08-15 1991-03-28 Daipoole:Kk Instrument for measuring water content of wood
EP0558759A1 (en) * 1991-09-20 1993-09-08 Dipole Electronics Co. Ltd. Equipment for measuring physical quantity
EP0558759A4 (en) * 1991-09-20 1994-03-16 Dipole Electronics Co. Ltd.
US5763829A (en) * 1992-06-05 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Leadframe including frame-cutting slit for lead-on-chip (LOC) semiconductor device and semiconductor device incorporating the leadframe
WO1995024000A1 (en) * 1994-03-04 1995-09-08 N.V. Bekaert S.A. Reproduction apparatus with microwave detection
TR28571A (en) * 1994-03-04 1996-10-18 Bekaert Sa Nv Microwave detection / detection reproduction / amplification device.
AU691257B2 (en) * 1994-03-04 1998-05-14 N.V. Bekaert S.A. Reproduction apparatus with microwave detection
JP2007218662A (en) * 2006-02-15 2007-08-30 Canon Inc Detector for detecting moisture content data of laminate
WO2019166870A1 (en) * 2018-02-28 2019-09-06 Saudi Arabian Oil Company Detecting saturation levels of a sample core using electromagnetic waves
US10914688B2 (en) 2018-02-28 2021-02-09 Saudi Arabian Oil Company Detecting saturation levels of a sample core using electromagnetic waves

Also Published As

Publication number Publication date
JPH0663986B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US5492601A (en) Laser apparatus and method for monitoring the de-watering of stock on papermaking machines
US4623835A (en) Web thickness sensor using loop-gap resonator
US5892157A (en) Apparatus for measuring the flexural stiffness of moved laminar-shaped material
US5658432A (en) Apparatus and method of determining sheet shrinkage or expansion characteristics
US6441904B1 (en) Method and apparatus for measuring properties of a moving fiber web
JPS62169041A (en) Physical property measuring apparatus for planar material
CA2329935A1 (en) System and method for sheet measurement and control in papermaking machine
US5138878A (en) Fiber orientation sensor
EP0160895A3 (en) Method and apparatus for measuring continuously and without making contact the shrinkage of textiles
FI75052C (en) Radiation based inspection system for a material manufacturing device as well as a method using radiation meters.
JPS6488231A (en) Glossiness measuring apparatus
US3829764A (en) Method and apparatus for measuring physical and/or chemical properties of materials
CN104136884A (en) Measurement of object to be measured
US4739249A (en) Method and apparatus for the measurement of the properties of sheet- or foil-like materials of low electrical conductivity
US5587051A (en) Simplified laser apparatus and method for measuring stock thickness on papermaking machines
CA1252894A (en) System and process for measuring the strength of sheet material
CN1192806A (en) Method and apparatus for determination of fiber orientation in paper or paper board web
FI962296A (en) Method and apparatus for analyzing cross-sectional profile of a continuously producing web of materials
CA2376491A1 (en) Method and apparatus for measuring properties of paper web
DE69835146T2 (en) DEVICE FOR MEASURING THE ORIENTATION
EP2162731B1 (en) Paper making machine
US6929716B2 (en) Method for the manufacture or treatment of a material web
US20040069059A1 (en) Method and an apparatus for performing a measurement of a continuous sheet
EP0287725B1 (en) Method for measuring properties of sheet- or foil-like materials of low electrical conductivity
KR930003326B1 (en) System and process for controlling the formation of a sheet material