JPS62168987A - Screw type vacuum pump - Google Patents

Screw type vacuum pump

Info

Publication number
JPS62168987A
JPS62168987A JP1054686A JP1054686A JPS62168987A JP S62168987 A JPS62168987 A JP S62168987A JP 1054686 A JP1054686 A JP 1054686A JP 1054686 A JP1054686 A JP 1054686A JP S62168987 A JPS62168987 A JP S62168987A
Authority
JP
Japan
Prior art keywords
stage
suction port
vacuum
discharge port
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054686A
Other languages
Japanese (ja)
Inventor
Itsuro Nomura
逸郎 野村
Kunihiko Nishitani
西谷 邦彦
Masaki Matsukuma
正樹 松隈
Noboru Tsuboi
壺井 昇
Kazuo Kubo
和夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1054686A priority Critical patent/JPS62168987A/en
Publication of JPS62168987A publication Critical patent/JPS62168987A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the leakage of a gas from the shaft seal means of a first stage suction port by positioning the suction port of each stage of pump body on the other pump body side, while connecting the discharge port of a first stage pump body to the suction port of a second stage pump body. CONSTITUTION:The suction port 8 of each of pumps 1, 2 is positioned on the other pump body side, placing a first stage suction port 8 on the left side in the figure on the right side while a second stage suction port 8 on the right side in the figure on the left side, while a first stage discharge port 9 is connected to the second stage suction port 8 by means of a pipe 10. And, the first stage suction port 8 is connected to a place to be sucked by vacuum, e.g., a vacuum tank, and a gas which is sucked here is sent out to a second stage discharge port 9 via the first stage discharge port 9 and the second stage suction port 8 to make the inside of the tank vacuum. By this structure, the quantity of gas leaking from the shaft seal means 7 of the first stage suction port 8 which greatly affects the degree of vacuum of the vacuum tank can be reduced, improving the ultimate vacuum at the first stage suction port.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスクリュロータを用いたスクリュ式真空ポンプ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a screw type vacuum pump using a screw rotor.

(従来の技術) 従来、真空ポンプとして、例えば水封式真空ポンプ、油
回転式真空ポンプ、ルーツ式真空ポンプ等、種々の形式
のものが使用されている。
(Prior Art) Conventionally, various types of vacuum pumps have been used, such as water ring vacuum pumps, oil rotary vacuum pumps, Roots vacuum pumps, and the like.

ところが、水封式あるいは油回転式真空ポンプでは、水
あるいは油により装置および吸込みガスを冷却している
ため、この水、油の分子が装置の吸込側に漏れ易い。特
に、停電時等のように装置が急に停止した場合には、水
、油が吸込側に逆流する事態も起り得るため、不純物の
混入を許さない半導体の製造部門や、さらに匂いの発生
を嫌う食品産業部門においては、これらのポンプは適し
ていない。
However, in a water ring type or oil rotary vacuum pump, since the device and the suction gas are cooled with water or oil, molecules of this water or oil tend to leak to the suction side of the device. In particular, if equipment suddenly stops, such as during a power outage, water or oil may flow back into the suction side. These pumps are not suitable for the food industry sector.

また、ルーツ式真空ポンプは中真空領域(10−’〜I
 Torr)では有効に作動するが、低真空領域(1〜
760 Torr)のガスを真空引きしても、ロータ間
からのガス漏れが増大して、ガス温度の上昇が著しくな
るので、この領域での使用には適していない。
Roots-type vacuum pumps are also used in the medium vacuum region (10-' to I
Torr), it operates effectively in the low vacuum region (1 to
Even if the gas is evacuated (760 Torr), gas leakage from between the rotors will increase and the gas temperature will rise significantly, so it is not suitable for use in this area.

このため、本願発明者は第2図に示すように、広範囲の
真空領域での使用に適した真空ポンプとしてスクリュ式
真空ポンプの使用を種々試みた。
Therefore, as shown in FIG. 2, the inventors of the present invention have attempted various uses of screw-type vacuum pumps as vacuum pumps suitable for use in a wide range of vacuum regions.

このスクリュ式真空ポンプは、基本的にはスクリュ式圧
縮機と同一構造で、ガスを吸込んで吸込みガスより高圧
のガスを吐出するという点で同種の機能を有するもので
ある。すなわち、このポンプは一方に吸込口8を、他方
に吐出口9を備えたケーシング3内に、互いに噛み合う
雌雄一対のスクリュロータ(以下ロータという。)4を
両側の軸受5を介して、回転可能に支持し、かつ両軸受
5とロータ4との間に適宜軸封手段7を設けて形成しで
ある。
This screw type vacuum pump basically has the same structure as a screw type compressor, and has the same function in that it sucks in gas and discharges gas at a higher pressure than the sucked gas. That is, this pump has a pair of male and female screw rotors (hereinafter referred to as rotors) 4 that are engaged with each other and can be rotated through bearings 5 on both sides in a casing 3 that has a suction port 8 on one side and a discharge port 9 on the other side. The rotor 4 is supported by a shaft sealing means 7 between both bearings 5 and the rotor 4 as appropriate.

そして、吸込口8側を図示しない真空引きする箇所に接
続して、ここからガスを吸込み、吐出口9よりこのガス
を吐出することにより吸込口8側に真空領域を形成する
ようになっている。
The suction port 8 side is connected to a vacuum point (not shown), gas is sucked in from here, and this gas is discharged from the discharge port 9, thereby forming a vacuum area on the suction port 8 side. .

(発明が解決しようとする問題点) 第2図の真空ポンプの軸封手段7のロータ4から遠のき
側の部分は一般的には大気圧(760Torr)であり
、また、現実には軸封手段7とロータ4の軸との間の隙
間をなくすことは不可能であるので、軸封手段7の部分
を通って大気側からロータ4側、特に、大気側から真空
領域の吸込口8(約10Torr)側へのガス漏れが生
じる。
(Problems to be Solved by the Invention) The part of the shaft sealing means 7 of the vacuum pump shown in FIG. 2 on the side far from the rotor 4 is generally at atmospheric pressure (760 Torr), and in reality 7 and the shaft of the rotor 4, it is impossible to eliminate the gap between the shaft sealing means 7 and the rotor 4 from the atmosphere side, in particular, from the atmosphere side to the vacuum area suction port 8 (approximately Gas leaks to the 10 Torr) side.

圧縮機の場合と異なり、真空ポンプの場合、吸込口8の
部分の圧力は大気圧に比べて非常に低いため、軸封手段
7の軸受側と吸込口8内との間の圧力差が非常に大きく
なり、ガス漏れが生じ易く、しかも、吸込口8内へ漏れ
たガスの膨張率ら非常に大きくなる。このため、第2図
に示す真空ポンプでは、あまり高い到達真空度を得るこ
とは出来ず、単段では約10Torr、2台を直列に連
結(第1段目の吐出口9と第2段目の吸込口8のみ連結
)した2段の場合でも約I Torrが限度で、中真空
領域にまで達しないという問題があった。
Unlike in the case of a compressor, in the case of a vacuum pump, the pressure at the suction port 8 is very low compared to atmospheric pressure, so the pressure difference between the bearing side of the shaft sealing means 7 and the inside of the suction port 8 is very large. This makes it easy for gas leakage to occur, and furthermore, the expansion rate of the gas leaking into the suction port 8 becomes extremely large. For this reason, with the vacuum pump shown in Figure 2, it is not possible to obtain a very high degree of ultimate vacuum, and the vacuum pump in a single stage is approximately 10 Torr. Even in the case of two stages in which only the suction port 8 is connected, the limit is about I Torr, and there is a problem that it cannot reach the medium vacuum region.

例えば、単段の場合で吸込圧がl0Torrとすると、
吐出圧(大気圧)が760 Torrであるから、漏れ
たガスの総量が512/a+inとしても、大気圧から
吸込圧まで膨張するため、吸込口部分での上記ガスの総
量は、 5 x(760/ I 0)=38012/minとな
る。
For example, if the suction pressure is 10 Torr in the case of a single stage,
Since the discharge pressure (atmospheric pressure) is 760 Torr, even if the total amount of leaked gas is 512/a+in, it expands from atmospheric pressure to suction pressure, so the total amount of gas at the suction port is 5 x (760 Torr). /I0)=38012/min.

したがって、この分だけ排気量の減少、到達真空度の低
下を招くこととなる。
Therefore, this causes a decrease in the displacement amount and a decrease in the ultimate degree of vacuum.

本発明は、断る従来の問題点に鑑みてなされたもので、
その目的は到達真空度を向上させることを可能としたス
クリュ式真空ポンプを提供することにある。
The present invention has been made in view of the problems of the conventional art.
The purpose is to provide a screw-type vacuum pump that makes it possible to improve the ultimate degree of vacuum.

(発明の構成) 上記問題点を解決するために、本発明は、一方に吸込口
を、他方に吐出口を有するケーシング内に、互いに噛み
合う雌雄一対のスクリュロータを、その両側に適宜軸封
手段を配して回転可能に収納してなるポンプ本体を2段
に設け、両本体のケーシングを一体化して、2段の雌雄
ロータを同軸上、一体回転可能に設けるとともに、各段
のポンプ本体の吸込口を他方のポンプ本体側に位置させ
、かつ1段目のポンプ本体の吐出口と2段目のポンプ本
体の吸込口を連通させて形成した。
(Structure of the Invention) In order to solve the above-mentioned problems, the present invention provides a pair of male and female screw rotors that mesh with each other in a casing having a suction port on one side and a discharge port on the other side, and appropriate shaft sealing means on both sides of the screw rotors. The casings of both bodies are integrated, and the male and female rotors of the two stages are installed coaxially and rotatably. The suction port was located on the other pump main body side, and the discharge port of the first pump main body and the suction port of the second pump main body were formed in communication with each other.

(実施例) 次に、本発明の一実施例を図面にしたがって説n日マヒ
ス 第1図は、本発明に係るスクリュ式真空ポンプを示し、
第2図に示すスクリュ式真空ポンプとは、その軸受5を
除いて、他は実質的に同一構造のポンプ本体1.2を直
結したもので、互いに対応する部分には同一番号を付し
て説明を省略する。
(Example) Next, an example of the present invention will be explained according to the drawings. Fig. 1 shows a screw type vacuum pump according to the present invention.
The screw-type vacuum pump shown in Fig. 2 is a pump body 1.2 that has substantially the same structure except for the bearing 5, which is directly connected to each other, and corresponding parts are given the same numbers. The explanation will be omitted.

すなわち、本スクリュ式真空ポンプは、ケーシング3を
共用する2段に設けたポンプ本体1.2を備え、その各
ロータ4は両端を軸受5により回転可能に支持した軸6
上に設けてあり、一体回転するように形成するとともに
、両ロータ4間には軸封手段7を介在させである。
That is, the present screw type vacuum pump includes a pump main body 1.2 provided in two stages that share a casing 3, and each rotor 4 has a shaft 6 rotatably supported by bearings 5 at both ends.
The shaft sealing means 7 is provided between the two rotors 4 and is formed so as to rotate together.

また、ポンプ本体1.2の吸込口8を他方のポンプ本体
側に位置させ、第1図中左側の第1段目の吸込口8は右
側に、右側の第2段目の吸込口8は左側になるように配
置すビとともに、第1段目の吐出口9と第2段目の吸込
口8とを管10により連通させである。
In addition, the suction port 8 of the pump body 1.2 is located on the other pump body side, the first stage suction port 8 on the left side in FIG. 1 is on the right side, and the second stage suction port 8 on the right side is located on the right side. The first stage discharge port 9 and the second stage suction port 8 are communicated with each other through a pipe 10 along with a pipe arranged on the left side.

そして、第1段目の吸込口8を真空引きする箇所、例え
ば真空タンクに接続して、ここから吸込んだガスを第1
段目の吐出口9から第2段目の吸通口8を経て第2段目
の吐出口9へ送り出すことによりタンク内を真空にする
ようにしである。
Then, the suction port 8 of the first stage is connected to a place to be evacuated, for example, a vacuum tank, and the gas sucked from here is transferred to the first stage.
The inside of the tank is evacuated by sending the liquid from the discharge port 9 of the first stage to the second stage discharge port 9 via the second stage suction port 8.

このように構成することにより、上記真空タンクの真空
度、したがって第1段目の吸込口8の部分の真空度、お
よび排気速度に大きな影響を及ぼす第1段目の吸込口8
の軸封手段7側から漏れるガスの量を少なくしである。
With this configuration, the first stage suction port 8 has a large influence on the degree of vacuum of the vacuum tank, and hence the vacuum degree of the first stage suction port 8, and the pumping speed.
This is to reduce the amount of gas leaking from the shaft sealing means 7 side.

すなわち、第2段目の吸込口8の部分は、真空領域にあ
る第1段目の吸込口8と大気圧状態にある第2段目の吐
出口9の画部分の中間圧力状態にあり、両眼通口8.8
間の圧力差を小さくして、中間の軸封手段7から漏れる
ガスの総量を少なくするとともに、両側の圧力比を小さ
くすることによる漏れたガスの膨張率を小さくすること
により、第1段目の吸込口8での到達真空度を向上させ
るようにしである。
That is, the second-stage suction port 8 is at an intermediate pressure between the first-stage suction port 8 in the vacuum region and the second-stage discharge port 9 in the atmospheric pressure state. Binocular port 8.8
The first stage This is to improve the degree of vacuum achieved at the suction port 8.

例えば、第2図に示す真空ポンプを2台接続しただけ、
したがって、1段目の吐出口と2段目の吸込口を接続し
ただけの、上記従来の例の数値を単純にそのまま使って
、第1段目の吸込口8で1Torrs第1段目の吐出口
9および第2段目の吸込口8の中間段で20 Torr
、第2段目の吐出口9て大気圧(760Torr)とす
る。そして、中間の軸封手段7から漏れるガス量を上記
と同じ5fJ/minとしても、 膨張i1に= 5 x(20/ ] )= 10 H/
minとなり、上記の計算結果よりかなり小さくなる。
For example, if you just connect two vacuum pumps as shown in Figure 2,
Therefore, by simply using the numerical values of the above conventional example in which the first-stage discharge port and the second-stage suction port are connected, the first-stage suction port 8 is 1 Torrs. 20 Torr at the intermediate stage between the outlet 9 and the second stage suction port 8
, the second stage discharge port 9 is set to atmospheric pressure (760 Torr). Even if the amount of gas leaking from the intermediate shaft sealing means 7 is the same as above, 5 fJ/min, the expansion i1 = 5 x (20/ ] ) = 10 H/
min, which is considerably smaller than the above calculation result.

さらに、実際には、軸封手段7からのガス漏れが少なく
なるので、第1段目の吸込口8での到達真空度および排
気速度は向上する。
Furthermore, since gas leakage from the shaft sealing means 7 is actually reduced, the degree of vacuum achieved at the suction port 8 of the first stage and the exhaust speed are improved.

ところで、第1段目の吸込口8での到達真空度゛を低下
させる原因として、上述したガス漏れ以外に、同じポン
プ本体lの吐出口9側のロータ4の端面部の隙間から、
吸込口8に連通するロータ4の歯溝部の空間からのガス
漏れがある。すなわち、上記ポンプ本体lはロータ4の
回転に伴い、第1の状態として吸込口8に開口したロー
タ4の歯溝部にガスを吸込み、第2の状態として、上記
歯溝部を吸込口8側のロータ室の端面で閉じることによ
りガスを歯溝内に閉込める。ついで第3の状態として歯
溝部の吐出口9側をロータ室の端面で閉じつつ、歯溝部
の両側の歯のうち、吸込口8側の歯の稜線に沿って形成
されるシール線がロータ4の回転とともに吐出口9側に
移動することによりガス圧縮を行う。そして、第4の状
態として歯溝部の吐出口9側のロータ室の端面(アキシ
ャルボート)および径方向の壁面(ラジアルボート)を
開くことにより圧縮したガスを吐出口9に吐出する。
By the way, in addition to the above-mentioned gas leakage, the cause of the decrease in the ultimate vacuum degree at the suction port 8 of the first stage is that from the gap in the end surface of the rotor 4 on the discharge port 9 side of the same pump body 1,
There is gas leakage from the tooth groove space of the rotor 4 that communicates with the suction port 8. That is, as the rotor 4 rotates, the pump main body l sucks gas into the tooth groove portion of the rotor 4 that is open to the suction port 8 in a first state, and in a second state, the gas is sucked into the tooth groove portion of the rotor 4 on the suction port 8 side. By closing at the end face of the rotor chamber, the gas is trapped in the tooth groove. Then, in a third state, the discharge port 9 side of the tooth groove is closed with the end face of the rotor chamber, and the seal line formed along the ridgeline of the tooth on the suction port 8 side among the teeth on both sides of the tooth groove is closed to the rotor 4. Gas compression is performed by moving toward the discharge port 9 side with the rotation of. Then, as a fourth state, compressed gas is discharged to the discharge port 9 by opening the end surface (axial boat) and the radial wall surface (radial boat) of the rotor chamber on the discharge port 9 side of the tooth groove portion.

さらに、この歯溝部は回転とともに、その吐出口9側を
ロータ室の端面により閉じられるとともに、吸込口8側
が吸込口8に連通して上記第1の状態となり、以後上記
同様の状態を繰返す。
Further, as the tooth groove rotates, its discharge port 9 side is closed by the end face of the rotor chamber, and its suction port 8 side is communicated with the suction port 8 to be in the first state, and the same state as described above is repeated thereafter.

以上は、一つの歯溝についてのロータ4の回転に伴う経
時的な状態変化であるのに対して、ロータ4の吐出口9
側の端面では、常にロータ4の回転角度、すなわち場所
毎に上記第1〜第4の状態の歯溝部の断面が生じる。こ
の任意の瞬間において場所毎に形成される異なる状態の
うち、特に第!の状態の断面と第4の状態の断面とは本
来完全7−路に七も1八・多プkf   l  よ、1
 七匈占I、1  正中1−はロータ4とロータ室の壁
面(端面も含む。)との間の隙間をなくすことは不可能
であるため、ポンプ本体1の最も圧力の高い第4の状態
の部分から最も圧力の低い第1の状態の部分へ直接ガス
漏れが生じる。このため、吸込口8での真空度の低下に
大きな影響を与え、到達真空度の向上を妨げることにな
る。
The above is a change in state over time as the rotor 4 rotates for one tooth space, whereas the discharge port 9 of the rotor 4
On the side end face, cross sections of the tooth groove portions in the first to fourth states are always generated at each rotation angle of the rotor 4, that is, at each location. Among the different states that are formed in different places at any given moment, especially the first one! The cross section of the state of
Seven quarters I, 1 The median 1- is the fourth state in which the pump body 1 has the highest pressure because it is impossible to eliminate the gap between the rotor 4 and the wall surface (including the end surface) of the rotor chamber. Direct gas leakage occurs from the part in the first state where the pressure is lowest. For this reason, this has a large effect on the decrease in the degree of vacuum at the suction port 8, and prevents an improvement in the ultimate degree of vacuum.

このような現象は、第1の状態において歯溝部の吐出口
9側の端面をロータ室の端面で閉じるようにしているた
めに起こるのであり、換言すればロータ4の長さの短い
ことが原因となっている。
This phenomenon occurs because the end face of the tooth groove portion on the discharge port 9 side is closed with the end face of the rotor chamber in the first state. In other words, it is caused by the short length of the rotor 4. It becomes.

ロータ4が短い場合は、この第1の状態の歯溝部の空間
はロータ4の壁面と隣接する2つのロータ4の歯によっ
て形成されるが、ロータ4をある程度長くすると雌雄ロ
ータの歯溝部同志が各ロータ4の回りを一周して吐出口
9側で再度通じ合うようになる。この状態では、もはや
第1の状態の歯溝部の吐出口9側の面に関する限りはロ
ータ室の壁面によることなく、ロータ4の歯のみにより
形成される。
When the rotor 4 is short, the tooth space in the first state is formed by the wall surface of the rotor 4 and the teeth of the two adjacent rotors 4, but if the rotor 4 is lengthened to a certain extent, the tooth space between the male and female rotors becomes smaller. They go around each rotor 4 once and come into communication again on the discharge port 9 side. In this state, the surface of the tooth groove in the first state on the discharge port 9 side is no longer formed by the wall surface of the rotor chamber, but is formed only by the teeth of the rotor 4.

したがって、上記のようにロータ4、特に第1段目のロ
ータ4をある程度長くすることにより、第1段目の高い
圧力状態にある吐出口9から、真空度を上げるべき吸込
口8へ直接ガスが漏れるのを防止することが出来る。
Therefore, by increasing the length of the rotor 4, especially the rotor 4 of the first stage, as described above, the gas can be directly transferred from the discharge port 9 in the high pressure state of the first stage to the suction port 8 where the degree of vacuum should be increased. can be prevented from leaking.

また、隣接し合う歯溝部の双方が吐出口9に連通してい
ない状態にある場合を考えると、吐出口9側の歯溝部が
いくらか高い圧力状態にある。上記のように、ロータ4
とロータ室壁面との間の隙間はなくせないため、隣接す
る吐出口9側の歯溝部から吸込口8側へのガス漏れが生
じ得るが、この場合ガスは吐出口9(ポンプ本体1の最
高圧力部分)のように圧力は高くなく、吸込口8の隣接
部分であるため若干高い圧力にあるに過ぎず、ガス漏れ
の影響は小さい。
Furthermore, considering the case where both adjacent tooth grooves are not communicating with the discharge port 9, the tooth groove on the discharge port 9 side is under a somewhat higher pressure state. As mentioned above, rotor 4
Since the gap between the space and the rotor chamber wall surface cannot be eliminated, gas may leak from the tooth groove on the adjacent discharge port 9 side to the suction port 8 side. The pressure is not as high as in the pressure part), but since it is adjacent to the suction port 8, the pressure is only slightly high, and the influence of gas leakage is small.

このように、上記実施例において少な(とも第1段目の
ロータ4の長さを長くすることにより、ロータ室の吐出
口9側の端面部からのガス漏れを防止し、上記軸封手段
部分からのガス漏れ防止と相俟って、さらに到達真空度
を向上させることが出来る。
In this way, in the above embodiment, by increasing the length of the rotor 4 in the first stage, gas leakage from the end surface of the rotor chamber on the discharge port 9 side can be prevented, and the shaft sealing means can be prevented from leaking. Together with the prevention of gas leakage, the ultimate degree of vacuum can be further improved.

なお、上記実施例の同軸上に一体回転可能に設けた2段
のロータ4は軸6と同じ材料から形成してもよく、別の
材料から形成してもよい。すなわち、1本の軸6と2つ
のロータ4を嵌合させて固定してもよく、1本の丸棒を
旋削して軸6および両ロータ4を形成してもよく、本発
明はいずれかに限定するものではない。
Note that the two-stage rotor 4 provided coaxially and integrally rotatably in the above embodiment may be formed from the same material as the shaft 6, or may be formed from a different material. That is, one shaft 6 and two rotors 4 may be fitted and fixed, or one round bar may be turned to form the shaft 6 and both rotors 4. It is not limited to.

(発明の効果) 以上の説明より明らかなように、本発明によれば、一方
に吸込口を、他方に吐出口を有するケーシング内に、互
いに噛み合う雌雄一対のスクリュロータを、その両側に
適宜軸封手段を配して回転可能に収納してなるポンプ本
体を2段に設け、両本体のケーシングを一体化して、2
段の雌雄ロータを同軸上、一体回転可能に設けるととも
に、各段のポンプ本体の吸込口を他方のポンプ本体側に
位置させ、かつ1段目のポンプ本体の吐出口と2段目の
ポンプ本体の吸込口を連通させて形成しである。
(Effects of the Invention) As is clear from the above description, according to the present invention, a pair of male and female screw rotors that mesh with each other are provided in a casing having a suction port on one side and a discharge port on the other side. The pump body, which is rotatably housed with a sealing means, is provided in two stages, and the casings of both bodies are integrated.
The male and female rotors of the stages are coaxially arranged so that they can rotate together, and the suction port of the pump main body of each stage is located on the side of the other pump main body, and the discharge port of the first stage pump main body and the second stage pump main body are arranged. The suction ports are connected to each other.

このため、中間部分の軸封手段の後段側の圧力が低くな
るため、この軸封手段の部分から真空領域にある第1段
目の吸込口側へのガス漏れ奄は少なくなるとともに、漏
れたガスの膨張率ら小さくなる。この結果、第1段目の
吸込口からの排気は促進され、高い到達真空度を得るこ
とが可能になるという効果を奏する。
For this reason, the pressure on the rear stage side of the shaft sealing means in the intermediate portion is lowered, so the amount of gas leaking from this shaft sealing means to the suction port side of the first stage in the vacuum area is reduced, and the amount of gas leaking is reduced. The expansion rate of gas becomes smaller. As a result, the exhaust from the first stage suction port is promoted, and a high ultimate vacuum degree can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るスクリュ式真空ポンプの概略断
面図、第2図は従来のスクリュ式真空ポンプの概略断面
図である。 1.2・・・ポンプ本体、3・・・ケーシング、4・・
・ロータ(スクリュロータ)、7・・・軸封手段、訃・
・吸込口、9・・・吐出口、10・・・管。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  青白 葆 ほか2名第1図 第夕図
FIG. 1 is a schematic sectional view of a screw type vacuum pump according to the present invention, and FIG. 2 is a schematic sectional view of a conventional screw type vacuum pump. 1.2...Pump body, 3...Casing, 4...
・Rotor (screw rotor), 7... Shaft sealing means, end ・
- Suction port, 9...discharge port, 10...pipe. Patent applicant: Kobe Steel, Ltd. Agent: Patent attorney: Aohaku Ao and two others Figure 1: Evening figure

Claims (1)

【特許請求の範囲】[Claims] (1)一方に吸込口を、他方に吐出口を有するケーシン
グ内に、互いに噛み合う雌雄一対のスクリュロータを、
その両側に適宜軸封手段を配して回転可能に収納してな
るポンプ本体を2段に設け、両本体のケーシングを一体
化して、2段の雌雄ロータを同軸上、一体回転可能に設
けるとともに、各段のポンプ本体の吸込口を他方のポン
プ本体側に位置させ、かつ1段目のポンプ本体の吐出口
と2段目のポンプ本体の吸込口を連通させたことを特徴
とするスクリュ式真空ポンプ。
(1) A pair of male and female screw rotors that mesh with each other are placed inside a casing that has a suction port on one side and a discharge port on the other side.
The pump body is rotatably housed with appropriate shaft sealing means arranged on both sides, and the casings of both bodies are integrated, and the male and female rotors of the two stages are coaxially rotatable. , a screw type characterized in that the suction port of the pump main body of each stage is located on the side of the other pump main body, and the discharge port of the first stage pump main body is communicated with the suction port of the second stage pump main body. Vacuum pump.
JP1054686A 1986-01-20 1986-01-20 Screw type vacuum pump Pending JPS62168987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054686A JPS62168987A (en) 1986-01-20 1986-01-20 Screw type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054686A JPS62168987A (en) 1986-01-20 1986-01-20 Screw type vacuum pump

Publications (1)

Publication Number Publication Date
JPS62168987A true JPS62168987A (en) 1987-07-25

Family

ID=11753257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054686A Pending JPS62168987A (en) 1986-01-20 1986-01-20 Screw type vacuum pump

Country Status (1)

Country Link
JP (1) JPS62168987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162046A1 (en) * 2019-02-06 2020-08-13 株式会社日立産機システム Multi-stage screw compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162046A1 (en) * 2019-02-06 2020-08-13 株式会社日立産機システム Multi-stage screw compressor
TWI728677B (en) * 2019-02-06 2021-05-21 日商日立產機系統股份有限公司 Multi-stage screw compressor
CN113383163A (en) * 2019-02-06 2021-09-10 株式会社日立产机系统 Multistage screw compressor
JPWO2020162046A1 (en) * 2019-02-06 2021-12-02 株式会社日立産機システム Multi-stage screw compressor
CN113383163B (en) * 2019-02-06 2023-05-16 株式会社日立产机系统 Multistage screw compressor
US11773853B2 (en) 2019-02-06 2023-10-03 Hitachi Industrial Equipment Systems Co., Ltd. Multi-stage screw compressor

Similar Documents

Publication Publication Date Title
US4797068A (en) Vacuum evacuation system
US4781553A (en) Screw vacuum pump with lubricated bearings and a plurality of shaft sealing means
JPS62243982A (en) 2-stage vacuum pump and operating method thereof
US3677664A (en) Rotary mechanical pumps of the screw type
JP2001207984A (en) Evacuation device
JPH08512379A (en) Rotary screw compressor
JP2697893B2 (en) Vacuum pump device
JPH079239B2 (en) Screw vacuum pump
JPS6217389A (en) Machine pump
JPS62168987A (en) Screw type vacuum pump
US3057543A (en) Axial flow compressor
JPS61152990A (en) Screw vacuum pump
JP3112490B2 (en) Mechanical vacuum pump
JPS61123777A (en) Vacuum pump
EP0793021B1 (en) Vacuum pumps
JPS63285279A (en) Shaft seal device for vacuum pump
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
JP2933352B2 (en) Multi-stage roots type vacuum pump
JPS62261689A (en) Screw type vacuum pump
JPH03242489A (en) Oilless screw type fluid machine
JP2007263122A (en) Evacuating apparatus
JPS62174592A (en) Screw type vacuum pump
JPS62197685A (en) Shaft seal device of screw vacuum pump
JPS62168988A (en) Screw type vacuum pump
JPS6285190A (en) Screw type vacuum pump