JPS62168970A - Power generation device utilizing kinetic energy of water current - Google Patents

Power generation device utilizing kinetic energy of water current

Info

Publication number
JPS62168970A
JPS62168970A JP61000123A JP12386A JPS62168970A JP S62168970 A JPS62168970 A JP S62168970A JP 61000123 A JP61000123 A JP 61000123A JP 12386 A JP12386 A JP 12386A JP S62168970 A JPS62168970 A JP S62168970A
Authority
JP
Japan
Prior art keywords
water
kinetic energy
water flow
power generation
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61000123A
Other languages
Japanese (ja)
Inventor
Naozo Kato
直三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61000123A priority Critical patent/JPS62168970A/en
Publication of JPS62168970A publication Critical patent/JPS62168970A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To prevent a water turbine from rotating by itself while improve a flowing direction following property by providing two impellers in parallel and giving consideration to fixed vanes in a Voith Schneider propeller method vertical shaft type water turbine. CONSTITUTION:Two impellers 2a, 2b are provided with their rotary shafts in parallel. These impellers 2a, 2b are arranged to rotate mutually in the opposite directions to prevent a water turbine from rotating by itself. Further, two fixed vanes 1, 1 are provided on both outsides of the impellers 2a, 2b. And, in order to improve a flowing direction following property, these fixed vanes 1, 1 are symmetrically provided in such a way that the flow-in area for water current of the fixed vanes 1, 1 is smaller than the flow-out area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は河川流、潮流又は海流の水流のもつ運動エネル
ギーを利用して、動力を発生させる装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device that generates power by utilizing the kinetic energy of river currents, tidal currents, or ocean currents.

従来の技術 水流の運動エネルギーを機械運動に換える動力変換表は
は回転軸について分類すると A、水平軸型 流れの方向と水車回転軸のそれとが一敗したもので、オ
ーブンプロペラ水車方式、ダクト内力ブラン水車方式、
ダクト内変形買付き水車方式(特公昭57−16263
号公報記載)などがあげられる。
Conventional technology The power conversion table for converting the kinetic energy of water flow into mechanical motion is categorized into rotating shafts. Blanc water wheel system,
Deformed water turbine system in the duct (Special Public Interest Publication Showa 57-16263
(mentioned in the publication).

B、垂直軸型 流れに直角な水車回転軸をもった方式で、フォイトシュ
ナイダープロペラ方式、倉掛方式(特公昭52−144
548号公報記載)、サーボニアスロータ一方式(この
方式を用いたものとして例えば特公昭55−69768
号公報記載のもの)、パドル付き水車方式、ダリウスロ
ータ一方式などがあげられる。
B. Vertical shaft type A system with a water wheel rotation axis perpendicular to the flow, Voith-Schneider propeller system, Kurakake system (Special Publication Publication No. 52-144)
No. 548), servonia rotor one type (for example, Japanese Patent Publication No. 55-69768 using this method)
Examples include the one described in the publication), the paddle-equipped water turbine system, and the Darius rotor one-way system.

その他、環状のロープに多数のパラシュートをつないだ
セール・キャノピ一方式、流れの中で翼を振動させる方
式などがあげられる。
Other methods include a sail canopy system in which multiple parachutes are connected to a ring-shaped rope, and a system in which the wings vibrate in the flow.

発明が解決しようとする問題点 河川流、潮流、海流の有する運動エネルギーの総量は真
人である。しかし、河川流においては季節および年によ
り流量が変動する。潮流においてはしかも流れの向きが
周期的に逆転する。また海流においては季節および年に
より、また冷水塊の存在によりその流軸および流速を変
え、しかも流速は比較的遅くエネルギー密度は低い、ま
た河川流、lWI流、trB流の鉛直方向の速度分布は
一様ではない。
Problem to be solved by the invention The total amount of kinetic energy possessed by river currents, tidal currents, and ocean currents is true. However, the flow rate of rivers fluctuates depending on the season and year. In tidal currents, the direction of the current reverses periodically. In addition, the axis and velocity of ocean currents change depending on the season and year, and depending on the presence of cold water masses.Moreover, the current velocity is relatively slow and the energy density is low.Furthermore, the vertical velocity distribution of river currents, IWI currents, and trB flows is It's not uniform.

上記の問題点を整理すると下記の如く分類される。The above problems can be categorized as follows.

(イ)流速の変動 (ロ)流軸の変動 (ハ)低いエネルギー密度 (ニ)鉛直方向の速度分布の非一様性 水平軸型の動力変換装置では、(イ)の問題に対してζ
可変ピッチ翼の採用によって常に水車の最大効率が狙え
、(ロ)の問題に対して方向安定板の採用によって回転
軸を常に主流方向に向けることができ、(ハ)の問題に
対してディフューザーの採用によって空間的に水流のエ
ネルギー密度を高めることができるが、(ニ)の問題に
対しては水車直径が大型化するにつれ水車の効率低下が
起きる。
(a) Fluctuation in flow velocity (b) Fluctuation in flow axis (c) Low energy density (d) Non-uniformity in vertical velocity distribution In horizontal axis type power converters, problem (a) can be solved by
By adopting variable pitch blades, we can always aim for the maximum efficiency of the water turbine, and by using a directional stabilizer to solve problem (b), we can always point the rotating shaft in the mainstream direction, and to solve problem (c), we can always aim for the maximum efficiency of the water turbine. By adopting this method, the energy density of the water flow can be spatially increased, but regarding problem (d), the efficiency of the water wheel decreases as the diameter of the water wheel increases.

一方1重直軸型の動力変換装置では、(イ)の問題に対
してフオイトシュナイダープロペラ方式は翼ピツチを変
えることができる機構をもっているが、その他の方式は
持っていない、(ロ)の問題に対してフオイトシュナイ
ダープロペラ方式以外は無方向性で特別の装置を必要と
しない、(ハ)の問題に対してこれまで全ての方式にわ
たって装置は考えられていない、(ニ)の問題に対して
ダリウスロータ一方式やフォイトシュナイダープロペラ
方式は深度方向の速度分布に応じて深度方向の翼形状を
設計することが可能である。
On the other hand, in the case of a single straight shaft type power converter, the Feutschneider propeller system has a mechanism that can change the blade pitch to solve the problem (a), but the other systems do not, and (b) For the problem, all systems except the Feutschneider propeller system are non-directional and do not require any special equipment; for the problem (c), no equipment has been considered for all systems so far; for the problem (d), On the other hand, with the Darius rotor single type and Voith-Schneider propeller type, it is possible to design the blade shape in the depth direction according to the velocity distribution in the depth direction.

本発明は(イ)、(ロ)、(ハ)、(ニ)のすべての問
題を解決する装置の開発を目的として、前記各種水車の
中から垂直軸型水車のうちフォイトシュナイダープロペ
ラ方式を採用する。しかし、その方式は(ロ)と(ハ)
に関して問題点を有している。
The present invention adopts the Voith-Schneider propeller system among the vertical shaft type water turbines from among the various water turbines mentioned above, with the aim of developing a device that solves all of the problems (a), (b), (c), and (d). do. However, the method is (b) and (c)
There are problems with this.

問題点を解決するための手段 前記問題点を解決するための手段を、実施例に対応する
第1〜4図を用いて以下に説明する。
Means for Solving the Problems Means for solving the problems described above will be explained below using FIGS. 1 to 4 corresponding to the embodiments.

一回転する毎に一往復のピッチング運動する複数の羽根
(3)を持ち、羽根のピッチ角を水流の流入方向に直角
に配置した偏心軸(奪)によって設定するフォイトシュ
ナイダープロペラ方式垂直軸型水車を用いて、 A、各々の偏心軸(会)が相向かい合うように二台配置
し。
Voith-Schneider propeller type vertical shaft type water turbine that has multiple blades (3) that make one reciprocating pitching motion each time it rotates, and the pitch angle of the blades is set by an eccentric shaft placed perpendicular to the inflow direction of the water flow. A. Arrange two units so that their eccentric shafts face each other.

B、二台の水車(2a)、(2b)の周外側に二枚の固
定R(1)をその間の水流の流入面積が流出面積より小
さくなるように対称に配置する。
B. Two fixed plates R (1) are arranged symmetrically on the outside of the periphery of the two water turbines (2a) and (2b) so that the inflow area of the water flow between them is smaller than the outflow area.

という技術的手段を講じている。We are taking technical measures.

作用 上記Aの技術的手段によって水車一台の場合に有してい
た装置の自己回転性がなくなり、上記Bの技術的手段に
よって流向追従性が得られ、かつ流入流速が増加する。
Effect: The technical means A above eliminates the self-rotating property of the device that is present in the case of a single water turbine, and the technical means B above provides flow direction followability and increases the inflow velocity.

いま二二で水車一台当りの出力係数cpと周速比τSR
の関係をみる。ここで。
Now, output coefficient cp and circumferential speed ratio τSR per water turbine
Look at the relationship between here.

Cp  =  2z  nQ/ 0.5p  1sDT
SR= *nD/V        トする。ただし、
πは円周率、nは水車の回転(r、p、s、)、Qは水
車一台当りに作用するトルク、pは流体密度、Sは水面
下の羽根の長さ、Vは水流の流速、0は水車直径である
0図5に出力係数と周速比の関係図を示す、ここで、実
線(14)は水車一台のみの場合。
Cp = 2z nQ/ 0.5p 1sDT
SR= *nD/V. however,
π is pi, n is the rotation of the water wheel (r, p, s,), Q is the torque acting on each water wheel, p is the fluid density, S is the length of the blades below the water surface, and V is the water flow. Flow velocity, 0 is the diameter of the water turbine. Figure 5 shows the relationship between the output coefficient and the circumferential speed ratio. Here, the solid line (14) is for the case of only one water turbine.

点線(15)は水車二台の場合、一点鎖線(16)は二
台の水車に固定翼が付いた場合である。
The dotted line (15) shows the case of two water turbines, and the dashed line (16) shows the case of two water turbines with fixed blades.

技術的手段Aによって1図5に示すように出力係数の最
大値はほとんど変わらないが出力係数が最大となる周速
比の値が大きくなり水流の運動エネルギーを吸収可能な
周速比領域が広がる。
With technical measure A, as shown in Figure 1, the maximum value of the output coefficient hardly changes, but the value of the circumferential speed ratio at which the output coefficient becomes maximum increases, and the circumferential speed ratio range in which the kinetic energy of water flow can be absorbed expands. .

技術的手段Bによって、水流の運動エネルギーを吸収可
能な周速比領域がさらに広がるばかりでなく、出力係数
の最大値が増大する。言い換えれば、水流のエネルギー
密度が高められたということになる。
Technical means B not only further expands the circumferential speed ratio range in which the kinetic energy of the water flow can be absorbed, but also increases the maximum value of the output coefficient. In other words, the energy density of the water flow has been increased.

これらは水槽実験および海上実験によって確かめられて
いる。これらの技術的手段によって、フオイトシュナイ
ダープロペラ方式垂直軸型水車の欠点である(口)と(
ハ)の問題が解決されるに至るのである。
These have been confirmed by aquarium experiments and sea experiments. Through these technical measures, the disadvantages of the Feutschneider propeller type vertical shaft water turbine, (mouth) and (
Problem c) will be resolved.

実施例 以下、図面に基づいて本発明について更に詳しく説明す
る。
EXAMPLES The present invention will be explained in more detail below based on the drawings.

第1図は本発明による水流の運動エネルギーを利用した
動力発生装置の平面図を示す、第2図はその立面図を示
す、第3図は水車の羽根のピッチ制御部の平面図を、第
4図はその立面図を示す。
Fig. 1 shows a plan view of a power generation device using the kinetic energy of water flow according to the present invention, Fig. 2 shows an elevational view thereof, and Fig. 3 shows a plan view of a pitch control section of a water turbine blade. Figure 4 shows its elevation.

二台の水車(2a)、(2b)の面外側に、二枚の固定
1 (1)が対称に配置されている。しかも、固定翼(
1)回りに失速が起こらない程度に、固定翼(1)の間
の水流の流入面積を流出面積より小さくなるように固定
翼(1)に迎角を付けている。
Two fixed pieces 1 (1) are arranged symmetrically on the outside of the two water turbines (2a) and (2b). Moreover, fixed wing (
1) The fixed blades (1) are set at an angle of attack so that the inflow area of the water flow between the fixed blades (1) is smaller than the outflow area to the extent that stall does not occur around the fixed blades (1).

固定#(4)によって空間的に固定される二台の水車の
偏心軸(13)は、水流の流入方向に直角に、しかも相
向かい合うように配置されている。
The eccentric shafts (13) of the two water turbines, which are spatially fixed by the fixing # (4), are arranged perpendicularly to the inflow direction of the water flow and facing each other.

水車の羽根(3)の回転軸(11)は連結棒(12)に
よって偏心軸(13)と連結されており、水車の半径方
向の偏心軸(13)の位置によって羽根(3)のピッチ
角の大きさが決まる1羽根(3)は連結棒(12)に直
角に設定される。
The rotating shaft (11) of the blades (3) of the water turbine is connected to the eccentric shaft (13) by a connecting rod (12), and the pitch angle of the blades (3) depends on the position of the eccentric shaft (13) in the radial direction of the water turbine. One blade (3) whose size is determined is set perpendicular to the connecting rod (12).

次にこの実施例の動作を説明する。水流がこの装置に流
入すると、下流に向かって左の水車(2a)は反時計回
りに右の水車(2b)は時計回りに、起動トルクを必要
とせず回転する。水車のそれぞれの羽根(3)は、水車
(2m)、(2b)が一回転する毎に一往復のピッチン
グ運動をする。
Next, the operation of this embodiment will be explained. When water flows into the device, downstream the left water wheel (2a) rotates counterclockwise and the right water wheel (2b) rotates clockwise without the need for starting torque. Each blade (3) of the water wheel makes one reciprocating pitching motion every time the water wheel (2m), (2b) rotates once.

各々の水車(2a)、(2b)の羽根(3)に加わる回
転トルクがかさ歯車(5)に伝達され、連結軸(7)を
通して二台の水車からの回転トルクが合成されて外部へ
動力が伝達される。
The rotational torque applied to the blades (3) of each waterwheel (2a), (2b) is transmitted to the bevel gear (5), and the rotational torque from the two waterwheels is combined through the connection shaft (7) to generate power to the outside. is transmitted.

図6、図7およびIi!i8は本発明による水流の運動
エネルギーを利用した動力発生装置の使用例を示してい
る。
Figures 6, 7 and Ii! i8 shows an example of the use of the power generation device that utilizes the kinetic energy of water flow according to the present invention.

図6は水車の回転軸を海面或は水面の鉛直方向にとり本
発明装置を海面或は河川の水面上に浮遊させ、海底或は
河川の水底に係留した場合を示す。
FIG. 6 shows a case where the rotating shaft of the water turbine is set in the vertical direction of the sea surface or the water surface, and the device of the present invention is floated on the sea surface or the water surface of a river, and is moored to the seabed or the bottom of the river.

これは固定翼(1)に浮力を持たせ装置全体の重量と釣
り合わせ、しかも装置全体の重心を下げメタセンターを
重心より高い位1;持ってくることによって可能となる
This is made possible by giving the fixed wing (1) buoyancy to balance the weight of the entire device, and by lowering the center of gravity of the entire device and bringing the metacenter to a level higher than the center of gravity.

図7は装置を海面下或は水面下に没水させ、海底或は河
川の水底に係留する場合を示す0図5と違って水車の回
転軸は海面或は水面に平行に設置しである。この場合は
、水車を波浪の影響から避ける時や船舶の航行の障害と
なる時有効である。
Figure 7 shows a case in which the equipment is submerged under the sea surface or moored to the seabed or the bottom of a river. Unlike Figure 5, the rotation axis of the water turbine is installed at the sea surface or parallel to the water surface. . In this case, it is effective when the water turbine is to be avoided from the influence of waves or when it becomes an obstacle to the navigation of ships.

図8は海底或は河川の水底に固定した場合を示す、この
場合は、水深が浅い場合や船舶の航行の障害となる時有
効である。
FIG. 8 shows a case where the device is fixed to the seabed or the bottom of a river. In this case, it is effective when the water depth is shallow or when the navigation of a ship is obstructed.

発明の効果 本発明装置は河川流、潮流、海流の持つ自然エネルギー
を効率よくしかもそれらのエネルギー密度を高くして、
浮遊又は固定の状態で設置して発電装置として或は回転
トルクを必要とする流体機械一般として使用されうる。
Effects of the Invention The device of the present invention efficiently utilizes the natural energy of river currents, tidal currents, and ocean currents, and increases their energy density.
It can be installed in a floating or fixed state and used as a power generation device or as a general fluid machine that requires rotational torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す水流の運動エネルギーを
利用した動力発生装置の平面図、第2図はその立面図で
ある。第3図はフォイトシュナイダープロペラ方式垂直
軸型水車の羽根のピッチ制御機構部の平面図、第4図は
その立面図である。 第5図は本発明における装置の水流の運動エネルギーの
吸収効果を説明するための出力係数と周速比の関係図で
ある。第6〜8図は本発明の使用例を示す図である。
FIG. 1 is a plan view of a power generation device using the kinetic energy of water flow, showing an embodiment of the present invention, and FIG. 2 is an elevational view thereof. FIG. 3 is a plan view of a blade pitch control mechanism of a Voith-Schneider propeller type vertical shaft water turbine, and FIG. 4 is an elevational view thereof. FIG. 5 is a diagram showing the relationship between the output coefficient and the circumferential speed ratio for explaining the effect of absorbing the kinetic energy of water flow in the device according to the present invention. 6 to 8 are diagrams showing examples of use of the present invention.

Claims (1)

【特許請求の範囲】 水流の流入方向に垂直な回転軸を有し、一回転する毎に
一往復のピッチング運動する複数の羽根を持ち、羽根の
ピッチ角を水流の流入方向に直角に配置した偏心軸によ
って設定するフォイトシュナイダープロペラ方式垂直軸
型水車において、(1)各々の偏心軸が相向かい合うよ
うに二台の前記水車を配置し、それらの両外側に対称に
二枚の固定翼を配置したことを特徴とする水流の運動エ
ネルギーを利用した動力発生装置。 (2)前記の二枚の固定翼の間の水流の流入面積をその
流出面積より狭く設けてなる特許請求範囲第一項に記載
の水流の運動エネルギーを利用した動力発生装置。
[Claims] The device has a rotation axis perpendicular to the inflow direction of the water flow, has a plurality of blades that make one reciprocating pitching motion with each rotation, and the pitch angle of the blades is arranged at right angles to the inflow direction of the water flow. In a Voith-Schneider propeller type vertical shaft water turbine set by an eccentric shaft, (1) the two water turbines are arranged so that their eccentric shafts face each other, and two fixed blades are arranged symmetrically on both outsides of them. A power generation device that uses the kinetic energy of water flow. (2) A power generation device using the kinetic energy of a water flow according to claim 1, wherein the inflow area of the water flow between the two fixed blades is narrower than the outflow area thereof.
JP61000123A 1986-01-04 1986-01-04 Power generation device utilizing kinetic energy of water current Pending JPS62168970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000123A JPS62168970A (en) 1986-01-04 1986-01-04 Power generation device utilizing kinetic energy of water current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000123A JPS62168970A (en) 1986-01-04 1986-01-04 Power generation device utilizing kinetic energy of water current

Publications (1)

Publication Number Publication Date
JPS62168970A true JPS62168970A (en) 1987-07-25

Family

ID=11465258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000123A Pending JPS62168970A (en) 1986-01-04 1986-01-04 Power generation device utilizing kinetic energy of water current

Country Status (1)

Country Link
JP (1) JPS62168970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500561A (en) * 2005-07-15 2009-01-08 サンダーマン,フレデリック・ハーマン Power generation equipment that generates electricity by water flow such as tidal currents, river flows, etc.
WO2010064770A1 (en) * 2008-12-01 2010-06-10 Huo Jung Tidal power generation apparatus
JP2012241613A (en) * 2011-05-19 2012-12-10 Bellsion:Kk Wave motion hydraulic turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224643A (en) * 1975-04-25 1977-02-24 Chiyuuka Nougen Kaihatsu Kofun Energy convertor for wave * ocean current or tide and the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224643A (en) * 1975-04-25 1977-02-24 Chiyuuka Nougen Kaihatsu Kofun Energy convertor for wave * ocean current or tide and the like

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500561A (en) * 2005-07-15 2009-01-08 サンダーマン,フレデリック・ハーマン Power generation equipment that generates electricity by water flow such as tidal currents, river flows, etc.
US8197206B2 (en) 2005-07-15 2012-06-12 Sundermann Water Power Ltd Apparatus for generating electricity from a flow of water such as a tide, river or the like
WO2010064770A1 (en) * 2008-12-01 2010-06-10 Huo Jung Tidal power generation apparatus
KR101026196B1 (en) * 2008-12-01 2011-03-31 허정 Tidal power generating apparatus
JP2012241613A (en) * 2011-05-19 2012-12-10 Bellsion:Kk Wave motion hydraulic turbine

Similar Documents

Publication Publication Date Title
US4313711A (en) Turbine and like rotary machines
US6109863A (en) Submersible appartus for generating electricity and associated method
US5642984A (en) Helical turbine assembly operable under multidirectional fluid flow for power and propulsion systems
BR112013018127B1 (en) rotor apparatus
EP0272319A4 (en) A fluid powered motor-generator apparatus.
JP3530871B2 (en) Hydro, wave and wind energy converters
GB2452484A (en) Swinging flap type turbine with Savonius turbine for stall prevention
JP2002310054A (en) Tidal current power generator
CN101265865A (en) Sea hydraulic drive apparatus
JPS62168970A (en) Power generation device utilizing kinetic energy of water current
JP2001248532A (en) Hydraulic energy converting method and its device
JP2002202042A (en) Hydraulic power device
EP2896822B1 (en) Submersible generator
SK50582009A3 (en) Flow turbine with pivoted blades
JPS6140464A (en) Undershot water wheel
KR101774217B1 (en) Multi-rotor installed on boat using auxiliary boats
JPS5862381A (en) Hydraulic power generator with floating lower driving water-wheel
GB2281761A (en) Wind or water turbine having feathering vanes.
JP2012241702A (en) Underwater power generating device
JPH08109865A (en) Automatic omnidirectional type natural water flow generating water turbine
CA3096958C (en) Hydrostatic pressure turbines and turbine runners therefor
KR101116408B1 (en) Current Power Generation System
JPH04137270U (en) Variable blade type and rotating blades for wind and hydroelectric generators
JPH0521663Y2 (en)
KR101183378B1 (en) Multy Screw Type Hydraulic Turbine