JPS62168706A - Air-conditioning provided with solar radiation sensor for vehicle - Google Patents

Air-conditioning provided with solar radiation sensor for vehicle

Info

Publication number
JPS62168706A
JPS62168706A JP1240186A JP1240186A JPS62168706A JP S62168706 A JPS62168706 A JP S62168706A JP 1240186 A JP1240186 A JP 1240186A JP 1240186 A JP1240186 A JP 1240186A JP S62168706 A JPS62168706 A JP S62168706A
Authority
JP
Japan
Prior art keywords
solar radiation
radiation sensor
output
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1240186A
Other languages
Japanese (ja)
Other versions
JPH0696366B2 (en
Inventor
Shigenori Doi
重紀 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1240186A priority Critical patent/JPH0696366B2/en
Publication of JPS62168706A publication Critical patent/JPS62168706A/en
Publication of JPH0696366B2 publication Critical patent/JPH0696366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To aim at optimizing the control of air-condition without being restrained by the characteristic of a solar radiation sensor, by compensating the output characteristic of the solar radiation sensor which is specified only by the incidence angle of sunlight in relation to the actual quantity of solar radiation to the driver. CONSTITUTION:A solar radiation sensor 1 is disposed in the vicinity of the driver's seat in an automobile with the sensing surface of the sensor 1 being laid in the substantially horizontal direction, and a vehicle air-conditioning device 2 is controlled in accordance with the output of the sensor 1. In the above-mentioned arrangement, an output compensating circuit 3 increases the output level of the solar radiation sensor 1 in accordance with a predetermined coefficient value. Further, an output limit means 5 compares the compensating value from the circuit 3 with a predetermined set value from a set value memory means 4, and if the compensating value exceeds the set value, the air-conditioning device 2 is controlled in accordance with the set value by means of a switch means 6. With this arrangement, the output characteristic of the solar radiation sensor 1 which is specified only by the incidence angle of the sunlight is compensated in relation to the actual quantity of solar radiation to the driver.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、運転時の日射量に応じて空気調和装置の化1
山状f屯の制御をマ〒なう白面l市のRQ&セソ廿付窓
付空気調和装置するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides an air conditioner with a
This is an air conditioner with an RQ and a window attached to the city of Hakumen which controls the mountain-shaped air conditioner.

(従来技術) 一般に、自動車には、気候(特に気温)や走行条件に関
係なく乗員に対して快適な乗車環境をもたらし、また窓
の曇りや霜の付着を防いで運転者の視界を確保して安全
で快適な運転を保証するために空気調和装置が設置され
ている。ところで、最近のこのような空気調和装置(以
下、空調装置と略称する)では、外気温や日射量の変化
に応じて当該空調装置の空調能力を自動的にコントロー
ルする自動制御機能を有するもの(通称、オートエアコ
ンと呼ばれる)が多くなりつつある。この種の空調装置
として、従来例えば実開昭60−85208号公報に記
載されたものがある。
(Prior art) In general, automobiles provide a comfortable riding environment for passengers regardless of the climate (especially temperature) and driving conditions, and also ensure the driver's visibility by preventing fogging and frost on the windows. Air conditioning equipment is installed to ensure safe and comfortable driving. By the way, recent air conditioners (hereinafter referred to as air conditioners) have an automatic control function that automatically controls the air conditioning capacity of the air conditioner according to changes in outside temperature and solar radiation. (commonly known as automatic air conditioners) are becoming more common. This type of air conditioner is conventionally described in, for example, Japanese Utility Model Application Publication No. 60-85208.

この公報に記載された従来技術は、先ず当該自動車の車
室内空気の温度(内気温)を検出して空調装置の基本的
な空調能力を制御する一方、これに併せて例えば自動車
のルーフ部に赤外線セ〕ノザを設け、この赤外線センサ
で日射量を検出して上記温度のみによる基本的な空調能
力の制御をさらに所定の関係で補正することにより、実
際の車室内空気の温度だけでなく日射mによる実際の体
感温度をも考慮した高精度な温湿度、風量コントロール
を行なうように意図したものである。
The conventional technology described in this publication first detects the temperature of the air inside the vehicle (interior temperature) and controls the basic air conditioning capacity of the air conditioner. An infrared sensor is installed, and this infrared sensor detects the amount of solar radiation.By further correcting the basic air conditioning capacity control based only on the temperature described above based on a predetermined relationship, it is possible to monitor not only the actual temperature of the air inside the vehicle but also the amount of solar radiation. It is intended to perform highly accurate temperature, humidity, and airflow control taking into account the actual sensible temperature.

(発明が解決しようとする問題点) ところで、上記の従来技術における日射センサとしての
上記赤外線センサは、ルーフ部に設置されているために
太陽に対して自動車自体がどのような方向に走行してい
てもそれが1日の内の特定の時間帯である限り、はぼ一
定の入射角で太陽光(その赤外線)を受光することがで
きる。従って、その出力値も日射mに応じてほぼ一定に
維持されることになる。
(Problems to be Solved by the Invention) By the way, since the infrared sensor as a solar radiation sensor in the above-mentioned prior art is installed on the roof, it cannot be used to detect the direction in which the vehicle itself is traveling with respect to the sun. However, as long as it is at a certain time of the day, sunlight (its infrared rays) can be received at a more or less constant angle of incidence. Therefore, the output value is also maintained substantially constant depending on the solar radiation m.

しかし、このことは反面次のような点で問題がある。す
なわち、上述のように体感温度をも考慮するのであれば
、ドライバー(原則として本発明では運転者を中心とし
て考える)に直射日光が全面的に照射される朝駆または
夕陽の状態で太陽方向に走行する場合とその逆方向への
走行の場合、あるいはまた正午時のように太陽が自動車
の略真上に位置する場合t5どの各場合によって、仮に
日射センサに入射する入射光量が一定であっても実際に
ドライバーに照射される照射mは自動車のルーフ位置と
の関係で大きく異なることになる。従って、上記従来技
術のようにルーフ部に日射センサを設けたのでは、その
本来の効果を余り期待することはできない。
However, this has the following problems. In other words, if the sensible temperature is also taken into account as mentioned above, the driver (in principle, in this invention, we will mainly consider the driver) is facing the sun when driving in the morning or at sunset, when the driver is fully exposed to direct sunlight. If the amount of incident light that enters the solar sensor is constant in each case, such as when the vehicle is driving and when the vehicle is traveling in the opposite direction, or when the sun is located almost directly above the vehicle such as at noon, The irradiation m actually irradiated to the driver differs greatly depending on the position of the roof of the automobile. Therefore, if the solar radiation sensor is provided in the roof portion as in the above-mentioned prior art, the original effect cannot be expected much.

そこで、例えば第4図に示すように上記日射センサ3を
運転席近傍の例えばダツシュボード■上、特にそのクラ
スタスイッチカバー2上に水平に設置し、ドライバーに
対する太陽光の照射状態と等しい状態での日射量を検出
するようにすることが考えられている。
Therefore, as shown in FIG. 4, for example, the solar radiation sensor 3 is horizontally installed near the driver's seat, for example, on the dash board (2), especially on the cluster switch cover 2, and the solar radiation sensor 3 is installed horizontally on the driver's seat, for example, on the cluster switch cover 2. It is being considered to detect the amount.

しかし、この場合にも上述の問題とは別に、さらに次の
点が問題とされる。すなわち、上記のような日射センサ
3は、一般にホトダイオードなどの接合型半導体光電素
子が多く採用されるが、このような光電索子の受光面は
通常平面的に形成されており、その特性上同一放射強度
(照度)の光であっても当該光の入射角θによって出力
特性(光起電力特性)を異にする。つまり、受光面(こ
対する光の入射角θが大きい(90°に近い)はど起電
力(出力)が大きく、入射角0が小さくなるほど起電力
も小さくなる特性を有している(第5図参照)。
However, in this case as well, in addition to the above-mentioned problems, the following points arise. In other words, the solar radiation sensor 3 described above generally employs a junction type semiconductor photoelectric element such as a photodiode, but the light-receiving surface of such a photoelectric element is usually formed flat, and its characteristics are the same. Even if the light has a radiant intensity (illuminance), its output characteristics (photovoltaic force characteristics) differ depending on the incident angle θ of the light. In other words, the electromotive force (output) is large when the incident angle θ of light to the light receiving surface is large (close to 90°), and the electromotive force is small as the incident angle 0 becomes small (fifth (see figure).

従って、運転席と車両ルーフとの位置関係から見て、日
射センサ3に対する太陽光の入射角θが最大(90°)
の時はドライバー自体には殆ど太陽光が照射されないに
も拘わらず日射センサ3の出力が最大となって空調能力
が最も増大側に制御される一方、上記入射角θがそれよ
りも小さくなってドライバーに太陽光が全面的に照射さ
れる第5図の日射角0=20°〜60°の範囲になると
今度は逆に日射センサ3の出力が小さくなる結果、空調
能力が縮少側に制御されることになり、実際の要求と矛
盾した制御を行なうことになる。
Therefore, in view of the positional relationship between the driver's seat and the vehicle roof, the incident angle θ of sunlight on the solar radiation sensor 3 is the maximum (90°).
At this time, even though the driver itself is hardly irradiated with sunlight, the output of the solar radiation sensor 3 is maximized and the air conditioning capacity is controlled to the maximum increase side, while the incident angle θ is smaller than that. When the solar radiation angle 0 in Figure 5 reaches the range of 20° to 60°, where the driver is fully irradiated with sunlight, the output of the solar radiation sensor 3 decreases, and the air conditioning capacity is controlled to the reduced side. This results in control inconsistent with actual requirements.

(問題点を解決するための手段) 本発明は、上記のような問題点を解決することを目的と
してなされたもので、自動車の運転席近傍にセンサ面を
略水平にして日射センサを設け、この日射センサの出力
に応じて車両用空気調和装置を制御するようにした自動
車の日射センサ付空気調和装置において、上記日射セン
サの出力レベルを所定の係数値に基づいて増大させる出
力補正回路と、この出力補正回路の補正値を所定の設定
値と比較し、上記補正値が上記設定値以上の場合には当
該設定値で上記空気調和装置を制御する出力制限手段と
を設けてなるものである。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and includes providing a solar radiation sensor near the driver's seat of an automobile with the sensor surface substantially horizontal. In an air conditioner with a solar radiation sensor for a vehicle that controls a vehicle air conditioner according to the output of the solar radiation sensor, an output correction circuit that increases the output level of the solar radiation sensor based on a predetermined coefficient value; and output limiting means for comparing the correction value of the output correction circuit with a predetermined set value and controlling the air conditioner with the set value when the correction value is greater than or equal to the set value. .

(作 用) 上記の手段によると、本来太陽光の入射角のみによって
特定される日射センサの出力特性が、実際の運転者に対
する日射■との関係でhli正されるようになる結果、
日射センサの出力特性に拘束されることなく、運転者を
中心とした最適な空調能力の制御を実現することができ
る。
(Function) According to the above means, as a result, the output characteristic of the solar radiation sensor, which is originally specified only by the incident angle of sunlight, is corrected in relation to the actual solar radiation to the driver.
Optimal control of air conditioning capacity can be achieved centering on the driver without being restricted by the output characteristics of the solar radiation sensor.

(実施例) 第2図及び第3図は、本発明の実施例に係る自動車の日
射センサ付空気調和装置を示している。
(Example) FIGS. 2 and 3 show an air conditioner with a solar radiation sensor for an automobile according to an example of the present invention.

先ず第2図は、当該日射センサを備えた空調装置のハー
ド部の構成の概略を示すものであり、該空調装置は、先
ず冷媒配管によって相互に接続されたコンプレッサ(圧
縮機)10.コンデンサ(凝縮器)ILエバポレータ(
蒸発器)12等によって構成される冷房系装−と、温水
配管(エンジン冷却水配管に接続)によって相互に接続
された温水バルブ20、ヒータコア21等からなる暖房
系装置と、プロワユニット30、内外気切替モータ31
、送風ダクト32等からなる送風系装置と、温度設定器
、操作スイッチ等からなる操作系装置40と、マイクロ
コンピュータによって形成された空調コントロールユニ
ット50.外気温センサ51、内気温センサ52、水温
センサ53、ダクトセンサ54、日射センサ3、各種制
御モータ(モード切替モータ61.エアミックスダンパ
制御モータ62)等からなる制御系装置とから構成され
ている。そして、上記冷房系装置の上記エバポレータ1
2と上記暖房系装置のヒータコア2Iとは、例えばダッ
シュパネル下方に位置して設けられた各ユニットケース
6.7内に設置されており、ダクト部5を介して当該各
ユニットケース6.7が相互に接続されている。上記ユ
ニットケース6側には、また上記送風系のブロワユニツ
′1ニー30の送風ダクト32が接続されている。また
、上記ユニットケース7側には、暖房用のヒートグクト
15および換気並びに冷房用のベントダクト16がそれ
ぞれ設けられている。さらに、符号17は、上記ヒータ
コア21の一端に回動可能に枢岩され上記ダクト部5内
に位置して当該通路を開閉するように設けられたエアミ
ックスダンパーであり、このエアミックスダンパー17
は、上記制御モータ62によって開度制御されるととも
にその実開度はポテンショメータ63によって検出され
、該検出値は上記空調コントロールユニット50に入力
されるようになっている。また、符号Eは、エン・ブン
を示し、上記冷房系のコンプレッサ10はこのエンジン
Eによって駆動されるようになっている。
First, FIG. 2 schematically shows the configuration of the hardware part of an air conditioner equipped with the solar radiation sensor, and the air conditioner consists of compressors 10. Condenser (condenser) IL evaporator (
evaporator) 12, etc., a heating system consisting of a hot water valve 20, a heater core 21, etc. connected to each other by a hot water pipe (connected to an engine cooling water pipe), a blower unit 30, Inside/outside air switching motor 31
, a ventilation system device including a ventilation duct 32, an operation system device 40 including a temperature setting device, operation switches, etc., and an air conditioning control unit 50 formed by a microcomputer. It is composed of a control system device including an outside temperature sensor 51, an inside temperature sensor 52, a water temperature sensor 53, a duct sensor 54, a solar radiation sensor 3, various control motors (mode switching motor 61, air mix damper control motor 62), etc. . and the evaporator 1 of the cooling system device.
2 and the heater core 2I of the heating system device are installed, for example, in each unit case 6.7 provided below the dash panel, and each unit case 6.7 is connected to the unit case 6.7 through the duct part 5. interconnected. A blower duct 32 of the blower unit '1 knee 30 of the blower system is also connected to the unit case 6 side. Further, on the side of the unit case 7, a heat duct 15 for heating and a vent duct 16 for ventilation and cooling are provided. Further, reference numeral 17 denotes an air mix damper rotatably mounted on one end of the heater core 21 and located within the duct portion 5 to open and close the passage.
The opening is controlled by the control motor 62, and the actual opening is detected by the potentiometer 63, and the detected value is input to the air conditioning control unit 50. Further, the symbol E indicates an engine, and the compressor 10 of the cooling system is driven by this engine E.

次に、第3図は上記第2図の空調コントロールユニット
50の空調能力制御動作を示している。
Next, FIG. 3 shows the air conditioning capacity control operation of the air conditioning control unit 50 shown in FIG. 2 above.

先ずステップS1で、日射センサ3の出力を除く外気温
、内気温等の一般的な温度調整用のデータ信号を人力し
、ステップS、で温度調整に必要な総合信号(空調装置
の各部制御信号)TFを演算する。
First, in step S1, data signals for general temperature adjustment such as outside temperature and inside temperature, excluding the output of the solar radiation sensor 3, are manually input, and in step S, a comprehensive signal (control signal for each part of the air conditioner) necessary for temperature adjustment is input. ) Calculate TF.

次に、ステップS3に進み、上述の日射センサ3の出力
Voを入力し、さらにステップS4に進んで当該日射セ
ンサ3の出力VOに所定の係数(0よりも大)Kを乗じ
ることにより当該日射センサ3の出力を増大させるべく
補正する。この補正は、例えば具体的には日射センサの
出力を増幅する増幅回路のゲインを大きくすることなど
によって行なわれる。そして、この場合の上記係数値に
の決定は、すでに述べたように実際の運転者に対する日
射量と日射センサ3の出力とが相異することによるセン
サの出力特性の補正を目的としてなされるしのであるか
ら、当該特性の太陽光の入射角θとの関係を充分に実測
検討した上でなされる。
Next, the process proceeds to step S3, where the output Vo of the solar radiation sensor 3 described above is input, and the process further proceeds to step S4, where the output VO of the solar radiation sensor 3 is multiplied by a predetermined coefficient (larger than 0) K, thereby obtaining the solar radiation. Correction is made to increase the output of sensor 3. This correction is performed, for example, by specifically increasing the gain of an amplifier circuit that amplifies the output of the solar radiation sensor. In this case, the above coefficient value is determined for the purpose of correcting the output characteristics of the sensor due to the difference between the actual amount of solar radiation for the driver and the output of the solar radiation sensor 3, as described above. Therefore, the relationship between the characteristic and the incident angle θ of sunlight should be thoroughly measured and studied.

さらに、その上でステップS5に進み、上記ステップS
4における補正値(Vo・+<)が所定の設定値VO3
(第5図参照)よりも大であるか否かを判断する。その
結果、YESの場合にはステップS7に進み当該設定値
Vo、(この値は、当該日射センサ3の本来の出力特性
上の最大値)で上記総合信号TFを修正する一方、他方
NOの場合にはステップS6に進み、上記補正値Vo−
Kで上記総合信号T「を修正する。
Furthermore, the process proceeds to step S5, and the step S
The correction value (Vo・+<) at 4 is the predetermined setting value VO3
(See FIG. 5). As a result, in the case of YES, the process proceeds to step S7 and the above-mentioned comprehensive signal TF is corrected by the set value Vo, (this value is the maximum value based on the original output characteristics of the solar radiation sensor 3), while on the other hand, in the case of NO In step S6, the correction value Vo-
K modifies the above-mentioned general signal T.

そして、以後当該修正された総合信号TF  ″によっ
て、エアミックス制御(エアミックスダンパコントロー
ル:ステップSa)、風m制御(ステップSS)、コン
ブレッザ制御(ステップS+O)、吹き出しモード制御
(ステップS、、)、内外気導入制御(ステップ5I2
)等の通常の空調装置制御が順次行なわれる。
Thereafter, based on the modified general signal TF'', air mix control (air mix damper control: step Sa), wind m control (step SS), compressor control (step S+O), blowout mode control (steps S, . . . ) , inside/outside air introduction control (step 5I2
), etc., are performed in sequence.

以上のようにすると、例えば第5図に示すように日射角
θが20°〜60°の範囲の本来日射センサ3の出力が
小さいにも拘わらず実際には運転者に対する日射量が多
いような場合にもその範囲において所定の係数値に基づ
いて出力が増大するように補正されるから、はぼ実際の
日射量に応じた空調能力の制御が行なわれるようになる
By doing the above, for example, as shown in FIG. 5, even though the output of the solar radiation sensor 3 is originally small in the range of solar radiation angle θ of 20° to 60°, the amount of solar radiation to the driver is actually large. Even in this case, the output is corrected to increase based on a predetermined coefficient value within that range, so that the air conditioning capacity is controlled in accordance with the actual amount of solar radiation.

なお、上記のように日射センサに対する太陽光の入射角
に対応して当該日射センサ自体の出力特性を補正する補
正手段としては、上述の実施例のごとく増幅回路のゲイ
ンを特に大きく設定して所定レベルで出力を飽和させる
手段の他に、例えば空調コントロールユニット自体に入
力レベルの判定機能を付加し一定の入力レベル以上の場
合を飽和値として判定処理するようにしてもよい。
As described above, as a correction means for correcting the output characteristics of the solar radiation sensor itself in accordance with the angle of incidence of sunlight on the solar radiation sensor, the gain of the amplifier circuit is set particularly large as in the above-mentioned embodiment. In addition to means for saturating the output at the level, for example, an input level determination function may be added to the air conditioning control unit itself, and the case where the input level is equal to or higher than a certain level may be determined as a saturation value.

(発明の効果) 本発明は、以上に説明したように、自動車の運転席近傍
にセンサ面を略水平にして日射センサを設け、この日射
センサの出力に応じて車両用空気調和装置を制御するよ
うにした自動車の日射センサ付空気調和装置において、
上記日射センサの出力レベルを所定の係数値に基づいて
増大させる出力補正回路と、この出力補正回路の補正値
を所定の設定値と比較し、上記補正値が上記設定値以上
の場合には当該設定値で上記空気調和装置を制御する出
力制限手段とを設けてなるものである。
(Effects of the Invention) As explained above, the present invention provides a solar radiation sensor near the driver's seat of an automobile with the sensor surface substantially horizontal, and controls a vehicle air conditioner according to the output of this solar radiation sensor. In an air conditioner equipped with a solar radiation sensor for a car,
An output correction circuit that increases the output level of the solar radiation sensor based on a predetermined coefficient value, and a correction value of this output correction circuit is compared with a predetermined setting value, and if the correction value is greater than or equal to the setting value, the corresponding and output limiting means for controlling the air conditioner with a set value.

従って、本発明によると、本来太陽光の入射角のみによ
って特定される日射センサの出力特性が、実際の運転者
に対する日射mとの関係で補正されるようになる結果、
日射センサの出力特性に拘束されることなく、運転台を
中心とした最適な空調能力の制御を実現することができ
る。
Therefore, according to the present invention, the output characteristic of the solar radiation sensor, which is originally specified only by the incident angle of sunlight, is corrected in relation to the actual solar radiation m to the driver.
Optimal control of air conditioning capacity centered on the driver's cab can be achieved without being restricted by the output characteristics of the solar radiation sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のクレーム対応図、第2図は、本発明
の実施例に係る自動車の日射センサ付空気調和装置のシ
ステム構成図、第3図は、同装置の空調コントロールユ
ニットの制御動作を示すフローヂャート、第4図は、同
実施例装置における日射センサの取付状態を示す斜視図
、第5図は、日射センサの出力特性を示すグラフである
。 3 ・・・・・日射センサ 10・・・・・コンプレツサ II・・・・・コンデンサ I2・・・・・エバボレ〜り 21・・・・・ヒータコア 30・・・・・プロワユニット 50−−−・拳空調コントロールユニットを 第4図 第5図
Fig. 1 is a diagram corresponding to claims of the present invention, Fig. 2 is a system configuration diagram of an air conditioner equipped with a solar radiation sensor for an automobile according to an embodiment of the present invention, and Fig. 3 is a control diagram of an air conditioning control unit of the same device. FIG. 4 is a flowchart showing the operation, FIG. 4 is a perspective view showing the installation state of the solar radiation sensor in the device of the same embodiment, and FIG. 5 is a graph showing the output characteristics of the solar radiation sensor. 3 ... Solar radiation sensor 10 ... Compressor II ... Capacitor I2 ... Everbore 21 ... Heater core 30 ... Prower unit 50 -- -・Fist air conditioning control unit as shown in Figure 4 and Figure 5.

Claims (1)

【特許請求の範囲】[Claims] 1. 自動車の運転席近傍にセンサ面を略水平にして日
射センサを設け、この日射センサの出力に応じて車両用
空気調和装置を制御するようにした自動車の日射センサ
付空気調和装置において、上記日射センサの出力レベル
を所定の係数値に基づいて増大させる出力補正回路と、
この出力補正回路の補正値を所定の設定値と比較し、上
記補正値が上記設定値以上の場合には当該設定値で上記
空気調和装置を制御する出力制限手段とを設けてなるこ
とを特徴とする自動車の日射センサ付空気調和装置。
1. In an air conditioner with a solar radiation sensor for an automobile, a solar radiation sensor is provided near the driver's seat of the automobile with a sensor surface substantially horizontal, and the vehicle air conditioner is controlled according to the output of the solar radiation sensor, the solar radiation sensor as described above. an output correction circuit that increases the output level of the output based on a predetermined coefficient value;
It is characterized by being provided with output limiting means for comparing the correction value of the output correction circuit with a predetermined set value, and controlling the air conditioner with the set value when the correction value is greater than or equal to the set value. An air conditioner equipped with a solar radiation sensor for automobiles.
JP1240186A 1986-01-22 1986-01-22 Air conditioner with solar radiation sensor for automobile Expired - Lifetime JPH0696366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240186A JPH0696366B2 (en) 1986-01-22 1986-01-22 Air conditioner with solar radiation sensor for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240186A JPH0696366B2 (en) 1986-01-22 1986-01-22 Air conditioner with solar radiation sensor for automobile

Publications (2)

Publication Number Publication Date
JPS62168706A true JPS62168706A (en) 1987-07-25
JPH0696366B2 JPH0696366B2 (en) 1994-11-30

Family

ID=11804240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240186A Expired - Lifetime JPH0696366B2 (en) 1986-01-22 1986-01-22 Air conditioner with solar radiation sensor for automobile

Country Status (1)

Country Link
JP (1) JPH0696366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342323A (en) * 1989-07-06 1991-02-22 Zexel Corp Air conditioner for vehicle
JP2009202632A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Cabin temperature control device
US8011597B2 (en) 2007-09-20 2011-09-06 Honda Motor Co., Ltd. Auto A/C solar compensation control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513439B2 (en) 2005-09-15 2009-04-07 Nissan Technical Center North America, Inc. Automatic climate control system for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342323A (en) * 1989-07-06 1991-02-22 Zexel Corp Air conditioner for vehicle
US8011597B2 (en) 2007-09-20 2011-09-06 Honda Motor Co., Ltd. Auto A/C solar compensation control
JP2009202632A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Cabin temperature control device

Also Published As

Publication number Publication date
JPH0696366B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US5518176A (en) Automotive climate control with infra-red sensing
US20060001546A1 (en) Sensor for determining measured variables which are suitable for controlling an air-conditioning system and other apparatuses which influence the climate of an area
JPS62168706A (en) Air-conditioning provided with solar radiation sensor for vehicle
JPH0615288B2 (en) Vehicle air conditioner
KR100645154B1 (en) Method for controling air conditioner of vehicle used photo sensor
KR101401312B1 (en) Controller of air conditioning system for automotive vehicles
US6341495B1 (en) Method for automatically controlling the temperature of the interior of motor vehicles
JPS5959517A (en) Air conditioning device for automobile
JPS5819484B2 (en) Vehicle air conditioning control device
JPH01136811A (en) Air conditioning device for vehicle
JP3203693B2 (en) Vehicle air conditioner
JPS6218483Y2 (en)
JPS619322A (en) Inside and outside air control device in automobile air-conditioning system
JPS6229243B2 (en)
JP3239339B2 (en) Vehicle air conditioner
KR0135549B1 (en) Airconditioner control device for a vehicle
JPH09220922A (en) Air conditioner
JP2946067B2 (en) Vehicle air conditioning controller
JP2879968B2 (en) Vehicle air conditioning controller
JP3024189B2 (en) Automotive air conditioners
JP3312378B2 (en) Solar radiation sensor for car air conditioners
JPH05402Y2 (en)
JP2787614B2 (en) Ventilation mode control device for automotive air conditioner
JPS62194925A (en) Air-conditioning device for automobile
JPS62184913A (en) Vehicle air-conditioning device provided with solar radiation sensor