JPS62168525A - Method for separating and purifying carbon monoxide by adsorption - Google Patents

Method for separating and purifying carbon monoxide by adsorption

Info

Publication number
JPS62168525A
JPS62168525A JP61009467A JP946786A JPS62168525A JP S62168525 A JPS62168525 A JP S62168525A JP 61009467 A JP61009467 A JP 61009467A JP 946786 A JP946786 A JP 946786A JP S62168525 A JPS62168525 A JP S62168525A
Authority
JP
Japan
Prior art keywords
gas
adsorption
tower
pressure
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61009467A
Other languages
Japanese (ja)
Other versions
JPH0221285B2 (en
Inventor
Kazuhisa Sugiyama
杉山 和央
Mitsuru Arai
充 新井
Hiroharu Inoue
博晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP61009467A priority Critical patent/JPS62168525A/en
Publication of JPS62168525A publication Critical patent/JPS62168525A/en
Publication of JPH0221285B2 publication Critical patent/JPH0221285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain high purity product carbon monoxide at a high recovery ratio, by first introducing the outflow gas at the time of a process for purging other tower and subsequently introducing the outflow gas at the time of a pressure reducing process to the direction opposite to a stock gas flow direction to perform a pressure raising process. CONSTITUTION:An A-tower is raised in pressure by supplying stock gas by opening a valve 1 and the desorption of product gas is performed in a B-tower with a vacuum pump 11 by opening a valve 5. After the pressure of the A-tower is raised, valves 7, 10 are opened to perform an adsorbing process by the flow of the stock gas and outflow gas is discharged. After adsorption up to a breakthrough point, valves 1, 10 are closed and a valve 9 is opened to reduce the pressure of the A-tower and the outflow gas discharged from said A-tower is taken in a buffer tank 13. Next, valves 9, 5 are closed to finish the desorption of the B-tower. Subsequently, valves 3, 8 are opened to purge the A-tower with the product gas from a product gas intermediate tank 12 and the outflow gas from the A-tower is introduced into the B-tower. Next, valves 3, 7 are closed and the valve 9 is opened to introduce the pressure reduced discharge gas of the A-tower and, after the leveling of pressure, valves 9, 8 are closed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一酸化炭素ガスに対して選択枝層性ケ有する
吸着剤を用いたP8A法(圧力変動式吸着分離法)によ
って、転炉ガス及び高炉ガス等の、少なくとも一酸化炭
素ガス及び窒素ガスを含む原料ガスηλら高純度の一酸
化炭素ガスを高贋回収率で分離する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method for converting carbon monoxide gas into converter furnaces using the P8A method (pressure fluctuation type adsorption separation method) using an adsorbent having selective layer properties for carbon monoxide gas. The present invention relates to a method for separating high-purity carbon monoxide gas from raw material gas ηλ containing at least carbon monoxide gas and nitrogen gas, such as gas and blast furnace gas, with a high recovery rate from counterfeiting.

(従来の技術) 製鉄所で副生される転炉ガス及び、高炉ガスは表IVc
示す様な成分を含む。
(Prior art) Converter gas and blast furnace gas by-produced in steel plants are shown in Table IVc.
Contains the ingredients shown.

表  1 一酸化炭素は、有機合成用原料として、また冶金反応等
に非常に有用である。一酸化炭素ガスを多(含む製鉄副
生ガスヲrヒ学分野で有効利用する為には、上記成分の
ままでは用いることができず、一酸化炭素以外の成分を
除去する必要があることが多い。
Table 1 Carbon monoxide is very useful as a raw material for organic synthesis and in metallurgical reactions. In order to effectively utilize carbon monoxide gas in the field of steel manufacturing by-product gas, it cannot be used as is, and it is often necessary to remove components other than carbon monoxide. .

転炉ガス及び高炉ガスのような混合ガスから、一酸化炭
素ガスを濃縮分離する方法には、深冷分離法と溶液吸収
法及び吸着分離法がある。
Methods for concentrating and separating carbon monoxide gas from a mixed gas such as converter gas and blast furnace gas include a cryogenic separation method, a solution absorption method, and an adsorption separation method.

深冷分離法では一酸fヒ炭素の沸点と非常に近い沸点の
窒素が多く含捷れる場合は、一酸化炭素の分S精製が困
難であり、低温と高圧操作を必要として設備が高価にな
る。
In the cryogenic separation method, it is difficult to purify carbon monoxide when it contains a large amount of nitrogen, which has a boiling point very close to that of carbon monoxide, and requires low-temperature and high-pressure operation, making equipment expensive. Become.

溶液吸収法の調液吸収法は20℃% 150〜200 
kg/m−Gの高い圧力が必要であり。
Solution absorption method: 20℃% 150-200
A high pressure of kg/m-G is required.

C080RB 法は原料ガス中の水分klppm以下に
する前処理工程が必要となり%装置が複雑で設備が高価
になる。
The C080RB method requires a pretreatment step to reduce the water content in the raw material gas to less than klppm, making the equipment complex and expensive.

吸着による方法は、一酸化炭素ガス選択吸N注?示す吸
着剤を用いfcPSA法が知られている(特開昭58−
104009号、特開昭59−22625号、特開昭5
9−26121号、特開昭59−49818号各公報等
)。
Is there a method of adsorption using selective inhalation of carbon monoxide gas? The fcPSA method using the adsorbent shown is known (Japanese Unexamined Patent Publication No. 1983-1999).
No. 104009, JP-A-59-22625, JP-A-5
9-26121, Japanese Unexamined Patent Publication No. 59-49818, etc.).

(発明が解決しようとする問題点) PSA法による一酸化炭素ガスの分離は、装置が簡単で
あり運転コストも少なくて済むので、他の方法に比べて
非常に優れた方法である。し〃為し従来の方法では、廃
棄ガス中にかなりの一酸化炭素ガスが混入してしまうた
め、回収率が悪く、高純度の製品一酸化炭素ガス全回収
する場合はど、その傾向は顕著である。
(Problems to be Solved by the Invention) The separation of carbon monoxide gas by the PSA method is an extremely superior method compared to other methods because the equipment is simple and the operating cost is low. However, in the conventional method, a considerable amount of carbon monoxide gas is mixed into the waste gas, resulting in a poor recovery rate. It is.

本発明は、高純度の製品一酸化炭素ガスを高い回収率で
得ることのできる分離精製法全提供するもので、しかも
新たな大規模な設備投資などケ行なうことな〈実施する
ことができる経済的な方法である。
The present invention provides an entire separation and purification method that can obtain high-purity product carbon monoxide gas with a high recovery rate, and can be carried out economically without any new large-scale capital investment. This is a typical method.

(問題点全解決するための手段) 上記の工つな問題を解決するため鋭意検豹した結果、P
SA法に裏、る一酸化炭素ガス分離精製において、高純
度の一酸化炭素製品ガスを高回収率で分離する方法を発
明した。
(Means for solving all the problems) As a result of intensive investigation to solve the above difficult problems, P.
In carbon monoxide gas separation and purification behind the SA method, we have invented a method for separating high-purity carbon monoxide product gas with a high recovery rate.

即ち1本発明は、一酸化炭素及び窒素を含む原料ガス中
の一酸化炭素全吸着法により分離精製する方法において
、該原料ガス中の一酸化炭素に対して選択吸N注?有す
る吸着剤を充填した2つ以上の吸着塔を使用して、 ((I)原料ガス?吸着塔に導入して所定の圧力まで昇
圧させた後、原料ガスを流通させて一酸化炭素を吸着さ
せる散層工程。
Namely, the present invention provides a method for separating and purifying a raw material gas containing carbon monoxide and nitrogen by total adsorption of carbon monoxide, in which carbon monoxide in the raw material gas is selectively adsorbed with nitrogen. Using two or more adsorption towers filled with an adsorbent containing ((I) Raw material gas? After introducing the raw material gas into the adsorption tower and increasing the pressure to a predetermined pressure, the raw material gas is passed through to adsorb carbon monoxide. dispersion process.

(bl  吸着工程終了後、吸着塔内のガスを放出させ
て吸着塔の圧力を降下きせる減圧工程、fcl  減圧
工程終了後、製品一酸化炭素ガスを吸着工程時の原料ガ
ス流通方向と同じ方向に導入して、難吸着成分全ノージ
する洗浄工程、fd)  洗浄工程終了後、吸着塔の原
料ガス入口側から大気圧以下に排気して吸着剤に吸着し
ている一酸化炭素を脱着させ、製品一酸化炭素ガスを回
収する製品ガス回収工程、 (e)  製品ガス回収工程終了後の吸着塔へ、(c)
の洗浄工程の吸着塔力1ら流出するガスを吸着工程時の
原料ガス流通方向と逆の方向に導入して、前者の吸着塔
内を昇圧する昇圧(I)工程。
(bl) After the adsorption process is completed, the pressure reduction process is to release the gas in the adsorption tower to lower the pressure in the adsorption tower; (fd) After the cleaning process, the adsorption tower is evacuated to below atmospheric pressure from the raw gas inlet side to desorb carbon monoxide adsorbed on the adsorbent, and the product Product gas recovery process for recovering carbon monoxide gas, (e) To the adsorption tower after the product gas recovery process, (c)
A pressurization (I) step in which the gas flowing out from the adsorption tower 1 in the cleaning step is introduced in a direction opposite to the flow direction of the raw material gas in the adsorption step to raise the pressure inside the former adsorption tower.

(f)  昇圧71)工程終了後の吸着塔へ、(b)の
減圧工程時の吸着塔からの放出ガスを吸着工程時の原料
ガス流通方向と逆の方向に導入して、前者の吸着塔内を
昇圧する昇圧flu)工程 たらなる操作ケ、定期的に吸着塔間の流れ全かえて繰り
返すこと’に%徴とする一酸化炭素ガスの分離精製法で
ある。
(f) Pressurization 71) After the completion of the step, the gas released from the adsorption tower during the pressure reduction step of (b) is introduced into the adsorption tower in the opposite direction to the flow direction of the raw material gas during the adsorption step, and the former adsorption tower is This is a method for separating and purifying carbon monoxide gas, which consists of a step of increasing the pressure inside the adsorption column (flu), and periodically changing the flow between the adsorption towers and repeating the process.

本発明では、使用する原料ガスは一酸化炭素及び窒素を
含むガスであり、高炉ガス、転炉ガス、水性ガス、石炭
ガス化ガス等である。好ましくは、原料ガスは事前に二
酸化炭素、水を除去しておく、。
In the present invention, the raw material gas used is a gas containing carbon monoxide and nitrogen, such as blast furnace gas, converter gas, water gas, coal gasification gas, etc. Preferably, carbon dioxide and water are removed from the raw material gas in advance.

水素ガス等の難吸着成分の存在は、一酸化炭素の精製と
いう面からは差し支えない。
The presence of a component that is difficult to adsorb, such as hydrogen gas, does not pose a problem from the viewpoint of purifying carbon monoxide.

吸着剤は一酸化炭素に対して選択吸着注ケ有するもので
あって、窒素に対して吸着音の少ないものを使用する。
The adsorbent used is one that selectively adsorbs carbon monoxide and produces less adsorption noise for nitrogen.

この様な吸着剤としては、モレキュラーシープタイプの
ゼオライト、活性炭等の他、前記各公報に例示されたも
のがある。
Examples of such adsorbents include molecular sheep type zeolite, activated carbon, and the like, as well as those exemplified in the above-mentioned publications.

吸着剤は吸着塔に充填して使用する一吸N塔は複数本必
要であって、2塔でもよいが、3塔あれば原料ガスの連
続導入処理が可能であり、容易に効率良く操業すること
が出来る。4塔以上でもさしつかえはないが、バルブの
切り替えなどの操作が繁雑となり、捷た設備費が高くな
る傾向がある。
The adsorbent is used by filling the adsorption tower with a plurality of N towers, and two towers may be sufficient, but three towers allow for continuous introduction of raw material gas and facilitate efficient operation. I can do it. There is no problem with four or more towers, but operations such as switching valves become complicated and equipment costs tend to increase.

2塔式でも後述する工うに本発明の方法を実施すること
はできるが、この場合には吸着塔以外にバッファタンク
が必要となる他、原料ガスを連続導入処理することが難
しくなるi1向がある。
Although it is possible to carry out the method of the present invention in a two-column type as described later, in this case, a buffer tank is required in addition to the adsorption column, and it is difficult to continuously introduce and process the raw material gas. be.

(a)の吸着工程は、吸着塔に原料ガス全導入して吸着
塔の昇圧を行ない、所定の圧力で原料ガス全流通させて
一酸化炭素含南量の少ない廃棄ガスを流出させ、吸着剤
の破過点までまたは破過点に達する少し前まで原料ガス
の導入を行う。ここで破過点とは吸着剤の吸着量が飽和
に達して吸着が行なわれなくなり、塔の出口〃)ら原料
ガス組成と同じガスが流出して来ることをいう。本発明
では回収すべきガスは易吸着成分であるので高い圧力は
必要ではなく、10 kg/ i、G以下で充分であり
、好ましくは3 kg/ d、G程度の吸着圧力、また
それより低い圧力であってもLい。
In the adsorption step (a), all of the raw material gas is introduced into the adsorption tower, the pressure of the adsorption tower is increased, and all of the raw material gas is circulated at a predetermined pressure to allow waste gas with a low carbon monoxide content to flow out. The raw material gas is introduced until the breakthrough point or slightly before reaching the breakthrough point. Here, the breakthrough point refers to the point where the amount of adsorption of the adsorbent reaches saturation and adsorption is no longer performed, and a gas having the same composition as the raw material gas flows out from the outlet of the column. In the present invention, since the gas to be recovered is an easily adsorbed component, a high pressure is not necessary, and an adsorption pressure of 10 kg/i, G or less is sufficient, and preferably an adsorption pressure of about 3 kg/d, G, or lower. Even pressure is low.

(b)の減圧工程では、吸着の終わった吸着塔から。In the pressure reduction step (b), from the adsorption tower after adsorption.

塔内の吸着剤間の空隙中のガス(一酸化炭素濃度が原料
ガスと同じあるいは原料ガスより低いガス)が放出され
、昇圧(I)工程が終わった他の吸着塔に、両方の塔が
均圧になるまでもしくは近い圧力になるまで導入される
Gas in the voids between the adsorbents in the tower (gas whose carbon monoxide concentration is the same as or lower than the raw material gas) is released, and both towers are transferred to the other adsorption tower that has completed the pressurization (I) step. The pressure is introduced until the pressure is equalized or close to it.

(c)の洗浄工程では、減圧の終わった吸着塔に製品ガ
ス全原料ガス流通方向と同じ方向に導入して吸着塔内に
若干残っている難吸着成分をパージする。ノぐ−ジガス
は他塔の昇圧(I)工程に利用する。
In the cleaning step (c), the product gas is introduced into the adsorption tower after depressurization in the same direction as the flow direction of all the raw material gases to purge the slightly remaining difficult-to-adsorb components in the adsorption tower. The nozzle gas is used for the pressurization (I) step in another column.

cd)の製品回収工程では、ノクージ工程の終わった塔
から真空ポンプ等を用いて真空度300 Torr以下
に、好ましくは50 Torr以下[まで排気して。
cd) In the product recovery step, the column after the Nokoji step is evacuated to a vacuum of 300 Torr or less, preferably 50 Torr or less, using a vacuum pump or the like.

吸着剤に吸着されていた成分(一酸化炭素等)を脱N−
Jせ、製品ガスとして回収する。
De-N- removes components (carbon monoxide, etc.) that have been adsorbed on the adsorbent.
It is recovered as a product gas.

(e)の昇圧(1)工程では%製品回収が終わった塔に
、他塔のノクージ工程の一酸化炭素ケ多く含んだ流出ガ
スを吸着工程時の原料ガス流通方向と逆の方向に導入し
て塔内?昇圧するとともに、 −e(ヒ炭素を塔内に吸
着させる。ここで逆の方向とけ、原料ガスを吸着塔の塔
底から導入する場合は、塔頂から導入すること全意味す
る。
In step (e), pressurization (1), the effluent gas containing a large amount of carbon monoxide from the Nokuji process in another column is introduced into the column after % product recovery in the opposite direction to the feed gas flow direction during the adsorption step. Inside the tower? While raising the pressure, -e(arsenic carbon is adsorbed in the column.If the direction is reversed and the raw material gas is introduced from the bottom of the adsorption column, it means that it is introduced from the top of the column.

(f)の昇圧(ID工程では、パージ工程の流出ガスを
導入して昇圧(f)工程が終了した吸着塔に1吸着工程
が終わった吸着塔の波圧放圧ガスを吸着工程時の原料ガ
ス流通方向と逆の方向に導入する。この時に導入するガ
スの一酸化炭素ガス濃度はパージ工程の流出ガスよりも
低いため、吸着工程時の排ガス出口側は一酸化炭素ガス
濃度の低いガスで満たされ、塔内部に一酸化炭素が濃縮
される。昇圧fll)工程の終わった吸着塔はfalの
吸着工程の吸着塔として使用される。
(f) Pressurization (In the ID process, the effluent gas from the purge process is introduced and the wave pressure release gas from the adsorption tower that has completed one adsorption process is transferred to the adsorption tower where the pressure increase (f) process has been completed.) The carbon monoxide gas concentration of the gas introduced at this time is lower than the outflow gas of the purge process, so the exhaust gas outlet side during the adsorption process is a gas with a low carbon monoxide gas concentration. The adsorption tower after the pressurization fll) step is used as an adsorption tower for the fal adsorption step.

第2図に2本の吸着塔を用いて本発明の分離精製操作を
行う場合の装置の1例を示す。第1図にはその時のサイ
クルの1例を示す。
FIG. 2 shows an example of an apparatus for carrying out the separation and purification operation of the present invention using two adsorption towers. FIG. 1 shows an example of the cycle at that time.

A塔は1のバルブが開けられて原料供給による昇圧が行
われる。この時B塔は5のバルブが開けられ11の真空
ポンプにより製品ガスの脱着が行われる。また、2 、
3 、4 、6 、7 、8 、9.10のバルブは閉
である。
In tower A, valve 1 is opened to increase the pressure by supplying raw materials. At this time, valve 5 in tower B is opened and product gas is desorbed by vacuum pump 11. Also, 2,
Valves 3, 4, 6, 7, 8, 9.10 are closed.

A塔は所定の圧まで昇圧された後、7.10のバルブを
開として原料ガスの流通による吸着工程全行い、流出ガ
スは廃棄される。破過点あるいはその前まで原料ガスを
流通させた後に、1.10のバルブを閉%9のノ々ルブ
を開とし、A基金減圧放圧させて13のバッファタンク
にその流出ガスを取込む、、A塔を所定の圧まで減圧し
た後、9のバルブを閉とする。又、B塔は5のノ々ルブ
を閉にして脱着を終了する。
After the pressure in tower A is increased to a predetermined pressure, valve 7.10 is opened to perform the entire adsorption process by flowing the raw material gas, and the outflow gas is discarded. After flowing the raw material gas to or before the breakthrough point, close the valve 1.10 and open the nonoru valve %9 to depressurize the A fund and take the outflow gas into the buffer tank 13. ,, After reducing the pressure in tower A to a predetermined pressure, valve 9 is closed. Also, in tower B, the nodal valve 5 is closed to complete the desorption.

次に3.8のノ々ルブ全開にし、12の製品ガス中間タ
ンクから製品ガスをA塔に導入してパージを行い、その
時の流出ガスをB塔へ導入する。ノクージ後、3,7の
バルブを閉にし1次に9のバルブi開にして先にノ々ツ
ファタンク13に取込んだA塔の減圧放出ガスをB塔へ
導入する。均圧した後、9.8のバルブは閉とする。
Next, the No. 3.8 nozzle is fully opened, and the product gas is introduced from the 12 product gas intermediate tanks into the A tower for purging, and the effluent gas at that time is introduced into the B tower. After the discharge, the valves 3 and 7 are closed, and the valve i, 9 is first opened to introduce the depressurized discharged gas from the A column, which was taken into the nototsufa tank 13, into the B column. After equalizing the pressure, valve 9.8 is closed.

次にA塔は上記B塔のように脱Nvhら昇圧まで行い、
B塔は上記A塔のように原料ガスによる昇圧から洗浄工
程までを行い、これら操作?繰り返すことにより易吸着
成分である一酸化炭素ガスを分離精製する。
Next, Column A performs de-Nvh and pressurization like the above-mentioned Column B.
Column B performs the steps from pressurization using raw material gas to cleaning process like the above-mentioned column A, and performs these operations. By repeating this process, carbon monoxide gas, which is an easily adsorbed component, is separated and purified.

第4図に3本の吸着塔を用いて本発明の分離精製操作全
行う場合の装置の1例を示す。第3図にはその時のサイ
クルの1例を示す、 A塔は41のバルブが開けられて原料供給による昇圧が
行われる。C塔は、49.55のバルブが開けられて製
品ガスvCLる洗浄が行われ、B塔1l−iC塔から流
出するガスを55のバルブを通して導入し昇圧される。
FIG. 4 shows an example of an apparatus in which all the separation and purification operations of the present invention are carried out using three adsorption towers. Figure 3 shows an example of the cycle at that time. In tower A, 41 valves are opened and the pressure is increased by supplying raw materials. In the C column, the valve 49.55 is opened to wash the product gas vCL, and the gas flowing out from the B column 1l-iC column is introduced through the valve 55 and the pressure is increased.

、42,43.44.45゜46.47.48.50,
51.52.53゜54のバルブは閉である。C塔の洗
浄工程が終了した後に、49.55のノ々ルブを閉とし
、B塔の昇圧(1)工程も終了する。C塔は直ちに48
のノ々ルブを開として11の真空ポンッにて製品ガスの
脱着が行われるーA塔は所定の圧まで昇圧された後、5
0のバルブを開として原料ガスの流通による吸着工程を
行り、流出ガスは廃棄される。破過点あるいはその前ま
で原料ガスを流通させた後に、41.50のノ々ルブを
閉とする。次にb54のノ々ルブを開としてA塔は減圧
放圧を行い、その時の流出ガスを昇圧fI)がおわった
B塔に導入してB塔は昇圧(If)工程を行う。両方の
塔が均圧化された後に54のバルブを閉としてA塔の減
圧工程およびB塔の昇圧(■)工程が終了する。同時に
48のノ々ルブも閉としC塔の脱着工程が終了する。
,42,43.44.45゜46.47.48.50,
The valves at 51, 52, 53 and 54 are closed. After the cleaning step of the C column is completed, the 49.55-hole valve is closed, and the pressurization (1) step of the B column is also completed. C tower immediately 48
The nozzle of the column A is opened, and the product gas is desorbed with 11 vacuum pumps.
The adsorption process is performed by opening the valve 0 and flowing the raw material gas, and the outflow gas is discarded. After flowing the raw material gas to or before the breakthrough point, the 41.50 nozzle valve is closed. Next, the nozzle of b54 is opened to perform depressurization of the A column, and the outflow gas at that time is introduced into the B column where the pressurization fI) has finished, and the B column performs the pressurization (If) step. After the pressures of both columns are equalized, valve 54 is closed, and the pressure reduction step of the A column and the pressure increase (■) step of the B column are completed. At the same time, No. 48 knob is also closed, and the desorption process of the C tower is completed.

次icA塔は洗浄、脱着工程を行い、B塔は原料ガスに
よる昇圧、吸着、及び減圧工程ksc塔は昇圧(1)及
び(II)’を行う。この時C塔はA塔からの流出ガス
に工り昇圧flli、tたB塔〃\らの流出ガスにより
昇圧(■)?行う。
Next, the icA column performs washing and desorption steps, the B column performs pressurization, adsorption, and depressurization using the raw material gas, and the ksc column performs pressurization (1) and (II)'. At this time, the C tower uses the outflow gas from the A tower to raise the pressure, and the B tower uses the outflow gas from the B tower to raise the pressure (■)? conduct.

次Kk塔は昇圧(I)及びfIIl工程を行い%B塔は
洗#1脱着工程i C塔は原料ガスによる昇圧、吸着、
及び減圧工程全行う。この時A塔はB塔からの流出ガス
により昇圧(11k 、またC塔7O3らの流出ガスに
より昇圧(ml 全行う。これら操作を繰り返すことに
より易吸着成分である一酸化炭素ガス全分離精製する。
Next, the Kk column performs pressurization (I) and fIIl steps, the %B column performs washing #1 desorption step i, and the C column performs pressurization, adsorption, and
and perform the entire decompression process. At this time, the A tower is pressurized (11k) by the outflow gas from the B tower, and the pressure is increased (ml) by the outflow gas from the C tower 7O3. By repeating these operations, the carbon monoxide gas, which is an easily adsorbed component, is completely separated and purified. .

(作用) 本発明では、他塔の排出ガスを成層工程時の原料ガス流
通方向と逆の方向に、しかも洗浄工程時の流出ガス全最
初に、次に減圧放圧時の流出ガスの順に導入することに
エリ、−酸fヒ炭素の回収率を高めることができる、こ
れはこの操作にエリ吸着工程時の廃棄ガス中に含まれる
一酸fヒ炭素ガス量がおさえられたためと思われる。
(Function) In the present invention, the exhaust gases from other towers are introduced in the opposite direction to the flow direction of the raw material gas during the stratification process, and moreover, all the outflow gas during the cleaning process is introduced first, and then the outflow gas during depressurization is introduced in this order. In particular, it is possible to increase the recovery rate of monoacid f arsenic carbon, which is thought to be because this operation suppresses the amount of monoacid f arsenic gas contained in the waste gas during the eli adsorption step.

(実施例) 一酸化炭素及び窒素ガスの混合ガス(ガス組成CO= 
7 (1,5%、N2= 29.5%)〃\ら一酸fヒ
炭素ガスの分離精製を行った。
(Example) Mixed gas of carbon monoxide and nitrogen gas (gas composition CO=
7 (1.5%, N2 = 29.5%) Separation and purification of carbon gas was carried out.

第4図に示した70−において吸着塔(276關φX8
00m+、3本)A、B、Cにそれぞれ350℃で焼成
した合成ゼオライト(昭和ユニオン製モレキュラシーブ
5Ali3309ずつ収納して連続運転を行った。運転
時の気温は21℃であった。
At 70- shown in Figure 4, the adsorption tower (276 mm φX8
Synthetic zeolite (Molecular Sieve 5Ali3309 manufactured by Showa Union Co., Ltd., manufactured by Showa Union) was stored in A, B, and C, respectively, and was operated continuously.The temperature during operation was 21°C.

A塔における操作は、41のバルブ全開にして混合ガス
k 3.5 N#/minで導入して塔内の圧力を3、
0 kg/ cm、Gまで昇圧した後に、更に混合ガス
を導入して塔内の圧力’k 3.0 kg/7.0に保
つ様に50のパルプ全開とする。この時に流出するガス
は廃棄する。破過する前に41.50のバルブを閉にし
て吸着工程?終了し%54のバルブをA塔内圧力が1.
4kg/〜、Gになるまで開にして、昇圧(n)工程の
終わったB塔へその流出ガス全導入させ一 減圧放置する。次に43.53のノ々ルブ會開にして製
品中間タンクから製品ガス金導入して洗浄を行か、その
流出ガスは製品回収工程の終わつycc塔へ導入させる
。43.53の/々ルブを閉にして洗浄工程全終了させ
几後、42のバルブを開にして真空ポンプ11に工り−
酸rヒ炭素を脱着ζせて製品ガス2回収する。この脱着
操作はA塔内正方が100 Torrになる捷で行った
。脱着終了後、42のバルブを閉にし、次に54のバル
ブ全開にして、洗浄工程のB塔から洗浄時の流出ガス全
導入きせ(1,4kg/ crd、()まで昇圧した後
54のバルブ全開とする。次に5,3のバルブを開にし
てC塔の減圧放圧時の流出ガスを導入して1.6 kq
’/ cnf、Gまで昇圧させる。この後、混合ガスを
前述と同様に吸着塔に導入して吸着工程以下の操作を繰
り返した。
The operation in column A is to fully open valve 41 and introduce a mixed gas k at a rate of 3.5 N#/min to reduce the pressure inside the column to 3.5 N#/min.
After increasing the pressure to 0 kg/cm, G, a mixed gas is further introduced and the 50 pulp is fully opened to maintain the pressure inside the column at 3.0 kg/7.0. The gas that flows out at this time is discarded. Close the 41.50 valve before the breakthrough and adsorption process? When the valve at %54 was closed, the pressure inside the A column was 1.
It was opened until the pressure reached 4 kg/~G, and all of the effluent gas was introduced into the B column where the pressure increase (n) step had been completed, and the pressure was left to be reduced. Next, at the 43.53 nonorubu meeting, the product gas is introduced from the product intermediate tank for cleaning, and the effluent gas is introduced into the YCC tower at the end of the product recovery process. 43. After the entire cleaning process is completed by closing the 53/3 valve, open the 42 valve and start the vacuum pump 11.
The product gas 2 is recovered by desorbing the acid and arsenic carbon. This desorption operation was carried out at a pressure of 100 Torr inside the A tower. After the desorption is completed, the valve 42 is closed, then the valve 54 is fully opened, and all the effluent gas during cleaning is introduced from the B tower in the cleaning process (1.4 kg/crd, after increasing the pressure to Fully open.Next, open valves 5 and 3 to introduce the outflow gas from the C tower during depressurization and release to 1.6 kq.
'/cnf, raise the pressure to G. Thereafter, the mixed gas was introduced into the adsorption tower in the same manner as described above, and the operations following the adsorption step were repeated.

B塔及びC塔も同じ条件とがる様に、定期的に吸着塔1
17)流れをかえて操作金繰り返した。1サイクル6分
で行い2時間運転した。
Adsorption tower 1 is periodically removed so that the B tower and C tower are under the same conditions.
17) Changed the flow and repeated the operation. One cycle was performed for 6 minutes and the operation was for 2 hours.

運転開始後1時間30分から2時間着での30分間のガ
ス量は、混合ガスの供給量がJO5N#で、流出廃棄ガ
ス量は4.5 M%そのCa2度は32.9%、捷た回
収ガス量は60 N#、 CO濃度は99.0%であっ
た。この時00回収率は80.0%であった。
The amount of gas for 30 minutes from 1 hour and 30 minutes after the start of operation to 2 hours after the start of operation was JO5N#, the amount of waste gas flowing out was 4.5 M%, the Ca2 degree was 32.9%, and the amount of mixed gas was JO5N#. The amount of recovered gas was 60 N#, and the CO concentration was 99.0%. At this time, the 00 recovery rate was 80.0%.

(比較例) 従来の一酸化炭素分離PSA法金用込て前述の実施例と
同じ混合ガスから一酸化炭素ガスの分離精製を行った。
(Comparative Example) Using the conventional carbon monoxide separation PSA method, carbon monoxide gas was separated and purified from the same mixed gas as in the previous example.

吸着剤と吸着塔は実施例と同じ物を用いた。第6図に装
置図を、第5図にサイクルを示した。運転時の気温は2
1℃であった。
The same adsorbent and adsorption tower as in the example were used. FIG. 6 shows an apparatus diagram, and FIG. 5 shows a cycle. The temperature when driving is 2
The temperature was 1°C.

A塔における操作は、61のバルブを開にして混合ガス
f 3.5 N#/minで導入して塔内の圧力を3、
0 ky / d、Gまで昇圧した後に、更に混合ガス
を導入して塔内の圧力k 3.0 kz/ cm、Gに
保つ様に70のバルブを開とする。この時に流出するガ
スは廃棄する。破過する前[61,7Qのバルブを閉に
して吸着工程を終了し、73のバルブlrA塔内圧力が
(1,1吟/ crl、Gになるまで開にして、製品回
収工程の終わったC塔へその流出ガスを導入させ減圧放
圧する。次に63のバルブを開にして製品中間タンク刀
\ら製品ガス全導入して洗浄を行い、その流出ガスは昇
圧(I)工程の終わったC塔へひき続き導入させる。6
3.73のバルブ全開にシテ洗浄工程を終了させた後%
 62のノ々ルブを開にして真空ポンプ11に工り一酸
化炭素ゲ脱着させて製品ガスを回収する。この脱着操作
はA塔内圧力が] 00 Tarrになるまで行った。
The operation in column A is to open the valve 61 and introduce a mixed gas f 3.5 N#/min to raise the pressure inside the column to 3.5 N#/min.
After increasing the pressure to 0 ky/d, G, the mixed gas is further introduced and valve 70 is opened so as to maintain the pressure in the column at k 3.0 kz/cm, G. The gas that flows out at this time is discarded. Before breakthrough [valve 61, 7Q was closed to complete the adsorption process, valve 73 was opened until the internal pressure of lrA reached (1,1 gin/crl, G), and the product recovery process was completed. The effluent gas is introduced into the C tower and depressurized.Next, valve 63 is opened and all the product gas is introduced from the product intermediate tank for cleaning. Continue to introduce it into C tower.6
3.73% after finishing the shite cleaning process with the valve fully open
The nozzle 62 is opened and the vacuum pump 11 is operated to desorb carbon monoxide and recover the product gas. This desorption operation was carried out until the pressure inside the A tower reached ] 00 Tarr.

脱着終了後62のバルブを閉にし、次に74のバルブ全
開にしてB塔の減圧放圧時の流出ガス全導入してolk
p /ff1.Gまで昇圧し、次にB塔の洗浄工程時の
流出ガスをひき続き導入して11.8 kz / (y
d、Gまで昇圧させる。この後、混合ガスを前述と同様
に吸着塔に導入して吸着工程以下の操作金繰り返した。
After the desorption is completed, close the valve 62, then fully open the valve 74, and introduce all the effluent gas from the B column during depressurization and release.
p/ff1. The pressure was increased to 11.8 kz/(y
d, raise the pressure to G. Thereafter, the mixed gas was introduced into the adsorption tower in the same manner as described above, and the operations following the adsorption step were repeated.

B塔及びC塔も同じ条件となる様[、定期的に吸着塔間
の流れをたえて操作を繰り返した。1サイクル6分で行
い2時間運転した。
The operation was repeated by periodically increasing the flow between the adsorption towers so that the conditions were the same for the B tower and the C tower. One cycle was performed for 6 minutes and the operation was for 2 hours.

運転開始後1時間30分から2時間までの30分間のガ
ス量は、混合ガスの供給量が105 N#で、流出廃棄
ガス量は51NI!/、そのCO換度は40.5%、ま
た回収ガス量は55 N#%CO洟度は99.0%であ
ったが、この時00回収率は720%であった。
The amount of gas supplied for 30 minutes from 1 hour 30 minutes to 2 hours after the start of operation was 105 N# of mixed gas, and the amount of waste gas flowing out was 51 NI! /, the CO exchange rate was 40.5%, the amount of recovered gas was 55 N#%, the CO concentration was 99.0%, and the 00 recovery rate was 720%.

(発明の効果) 本発明は、少な(とも−酸fヒ炭素及び窒業を含む原料
ガス〃1ら、純度99%以上の一酸化炭素ガスを分離精
製する際に、従来の吸着法に比べて80%と込う高い回
収率で製品一酸化炭素ガスを回収することができる。本
発明によるPSA法では、2本あるいは3本という少な
い吸着塔数で製品ガスの連続生産が可能であり、設備コ
ストがかからず、またバルブ等の操作が簡単であるため
容易に自動化することができる。それ換え従来のPSA
法による一酸化炭素分離精製法に比べより安価に高純K
M品ガスが得られる方法であり、転煩ガス及び高炉ガス
から有機合成用原料として、また冶金反応等に非常に有
用である一酸化炭素ガスを安価に供給する事が可能とな
る。
(Effects of the Invention) The present invention is effective in separating and refining carbon monoxide gas with a purity of 99% or higher, compared to conventional adsorption methods. Product carbon monoxide gas can be recovered with a high recovery rate of 80%.The PSA method according to the present invention allows continuous production of product gas with as few as two or three adsorption towers. It can be easily automated because there is no equipment cost and the operation of valves etc. is simple.Instead, conventional PSA
Highly pure K at a lower cost than carbon monoxide separation and purification methods
This is a method for obtaining M-product gas, and it becomes possible to supply carbon monoxide gas, which is very useful as a raw material for organic synthesis and in metallurgical reactions, at a low cost from gas and blast furnace gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2塔弐PEA装置において本発明を実施するサ
イクルタイムシステムの一例を示す図、第2図は本発明
を実施する友めの2塔式PSA装置の一例を示す図。 第3図は3塔式PS&装置において本発明を実施するサ
イクルタイムシステムの一例を示す図。 第4図は本発明を実施するための3塔式PEA装誼の一
例を示す図、 第5図は従来の方法による3塔式PSA装置のサイクル
タイムシステムの一例を示す図、第6図は従来の方法を
実施する3塔弐PSA装置の一例を示す図である。 】〜10・・・バルブ、11・・−真空ポンプ、12・
・・製品ガス中間タンク、13・・・パン7アタンク、
41〜55.6]〜75・・・バルブ。 代理人 弁理士  秋 沢 政 光 信2名 7i2図 1/′) 井1図 肚過茜鼎
FIG. 1 is a diagram showing an example of a cycle time system implementing the present invention in a two-column PEA device, and FIG. 2 is a diagram showing an example of a companion two-column PSA device implementing the present invention. FIG. 3 is a diagram showing an example of a cycle time system for implementing the present invention in a three-column PS& device. FIG. 4 is a diagram showing an example of a three-column type PEA equipment for carrying out the present invention, FIG. 5 is a diagram showing an example of a cycle time system of a three-column type PSA device using a conventional method, and FIG. FIG. 2 is a diagram showing an example of a three-tower PSA device implementing a conventional method. ] ~10...Valve, 11...-Vacuum pump, 12...
...Product gas intermediate tank, 13...Pan 7 tank,
41-55.6]-75...Valve. Agent Patent Attorney Masaaki Aki Sawa Mitsunobu 2 people 7i2 Figure 1/') Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)一酸化炭素及び窒素を含む原料ガス中の一酸化炭
素を吸着法により分離精製する方法において、該原料ガ
ス中の一酸化炭素に対して選択吸着性を有する吸着剤を
充填した2つ以上の吸着塔を使用して、 (a)原料ガスを吸着塔に導入して所定の圧力まで昇圧
させた後、原料ガスを流通させて一酸化炭素を吸着させ
る吸着工程、 (b)吸着工程終了後、吸着塔内のガスを放出させて吸
着塔の圧力を降下させる減圧工程。 (c)減圧工程終了後、製品一酸化炭素ガスを吸着工程
時の原料ガス流通方向と同じ方向に導入して、難吸着成
分をパージする洗浄工程、 (d)洗浄工程終了後、吸着塔の原料ガス入口側から大
気圧以下に排気して吸着剤に吸着している一酸化炭素を
脱着させ、製品一酸化炭素ガスを回収する製品ガス回収
工程、 (e)製品ガス回収工程終了後の吸着塔へ、(c)の洗
浄工程の吸着塔から流出するガスを吸着工程時の原料ガ
ス流通方向と逆の方向に導入して、前者の吸着塔内を昇
圧する昇圧( I )工程、 (f)昇圧( I )工程終了後の吸着塔へ、(b)の減
圧工程時の吸着塔からの放出ガスを吸着工程時の原料ガ
ス流通方向と逆の方向に導入して、前者の吸着塔内を昇
圧する昇圧(II)工程、 からなる操作を定期的に吸着塔間の流れをかえて繰り返
すことを特徴とする一酸化炭素ガスの分離精製法。
(1) In a method for separating and refining carbon monoxide in a raw material gas containing carbon monoxide and nitrogen by an adsorption method, two types are filled with an adsorbent that has selective adsorption properties for carbon monoxide in the raw material gas. Using the above adsorption tower, (a) an adsorption step in which the raw material gas is introduced into the adsorption tower, the pressure is increased to a predetermined pressure, and then the raw material gas is circulated to adsorb carbon monoxide; (b) an adsorption step After completion of the depressurization process, the gas inside the adsorption tower is released to lower the pressure of the adsorption tower. (c) After the decompression process, a cleaning process in which the product carbon monoxide gas is introduced in the same direction as the flow direction of the raw material gas during the adsorption process to purge difficult-to-adsorb components; (d) After the cleaning process, the adsorption tower A product gas recovery process in which carbon monoxide adsorbed on an adsorbent is desorbed by exhausting the source gas to below atmospheric pressure from the inlet side and product carbon monoxide gas is recovered; (e) Adsorption after the product gas recovery process is completed; a pressurization (I) step in which the gas flowing out from the adsorption tower in the cleaning step of (c) is introduced into the tower in a direction opposite to the flow direction of the raw material gas during the adsorption step to raise the pressure inside the former adsorption tower; ) After the pressurization (I) step, the gas released from the adsorption tower during the pressure reduction step in (b) is introduced into the adsorption tower in the opposite direction to the flow direction of the raw material gas during the adsorption step, and the gas released into the adsorption tower is A method for separating and purifying carbon monoxide gas, which is characterized by repeating the following steps by periodically changing the flow between adsorption towers:
JP61009467A 1986-01-20 1986-01-20 Method for separating and purifying carbon monoxide by adsorption Granted JPS62168525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009467A JPS62168525A (en) 1986-01-20 1986-01-20 Method for separating and purifying carbon monoxide by adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009467A JPS62168525A (en) 1986-01-20 1986-01-20 Method for separating and purifying carbon monoxide by adsorption

Publications (2)

Publication Number Publication Date
JPS62168525A true JPS62168525A (en) 1987-07-24
JPH0221285B2 JPH0221285B2 (en) 1990-05-14

Family

ID=11721081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009467A Granted JPS62168525A (en) 1986-01-20 1986-01-20 Method for separating and purifying carbon monoxide by adsorption

Country Status (1)

Country Link
JP (1) JPS62168525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397213A (en) * 1986-10-15 1988-04-27 Mitsui Eng & Shipbuild Co Ltd Pressure-swinging adsorption and separation method
JP2008152383A (en) * 2006-12-14 2008-07-03 Fuji Electric Systems Co Ltd Cleaning work allocation device, cleaning work allocation method, and cleaning work allocation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397213A (en) * 1986-10-15 1988-04-27 Mitsui Eng & Shipbuild Co Ltd Pressure-swinging adsorption and separation method
JPH0478324B2 (en) * 1986-10-15 1992-12-10 Mitsui Shipbuilding Eng
JP2008152383A (en) * 2006-12-14 2008-07-03 Fuji Electric Systems Co Ltd Cleaning work allocation device, cleaning work allocation method, and cleaning work allocation program

Also Published As

Publication number Publication date
JPH0221285B2 (en) 1990-05-14

Similar Documents

Publication Publication Date Title
CA1304699C (en) Preparation of high purity oxygen
AU662267B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
EP0008512B1 (en) Separation of multicomponent gas mixtures
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
JPH0798645B2 (en) Co-production of hydrogen and carbon dioxide
JPS6137968B2 (en)
CA1238868A (en) Method for obtaining high-purity carbon monoxide
JPS61176540A (en) Collection of gaseous mixture of methane and carbon dioxide
US5547492A (en) Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JPH02198610A (en) Pressure fluctuation type adsorption method
JPS6137970B2 (en)
JPS62168525A (en) Method for separating and purifying carbon monoxide by adsorption
JPH0459358B2 (en)
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPH0112529B2 (en)
JP7207284B2 (en) Gas separation and recovery equipment and gas separation and recovery method
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH03242313A (en) Purification of carbon monoxide
JPH01234313A (en) Production of carbon dioxide having high purity
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method