JPS62168105A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS62168105A
JPS62168105A JP893186A JP893186A JPS62168105A JP S62168105 A JPS62168105 A JP S62168105A JP 893186 A JP893186 A JP 893186A JP 893186 A JP893186 A JP 893186A JP S62168105 A JPS62168105 A JP S62168105A
Authority
JP
Japan
Prior art keywords
light
circuit
integration time
integration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP893186A
Other languages
Japanese (ja)
Inventor
Kiyobumi Idate
井立 清文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP893186A priority Critical patent/JPS62168105A/en
Publication of JPS62168105A publication Critical patent/JPS62168105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To perform smooth focusing control and to increase a dynamic range by varying the quantity of light emitted from a light emission part which projects infrared light as spot light stepwise with the integration time of an integration circuit which integrates the detection output of a photodetecting element. CONSTITUTION:Two output currents of a semiconductor position detector(PSD) are converted by current-voltage converters 1 and 1' into voltages, and signal voltages VA and VB generated by integration circuits 3 and 3' are converted into digital values by and A/D converter 4. Then, a logic circuit or microcomputer 5 performs arithmetic VA+VB corresponding to the quantity of photodetection of the PSD and controls an integration time and the quantity of light emission of a light emitting LED 7 with th arithmetic value. Pulse modulation is imposed upon the light emitted by the LED 7 and the integration time is controlled by controlling the number of pulses to be integrated by the microcomputer 5, etc. Thus, the smooth focusing control is performed and the dynamic range can be increased.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明はカメラ等の自動合焦装置、特に被写体に光を
投射するいわゆるアクティブ式の自動合焦装置に関する
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to an automatic focusing device such as a camera, and more particularly to a so-called active automatic focusing device that projects light onto a subject.

(従来技術) カメラ等の自動焦点装置のうち、カメラ等が光源を持ち
、被写体に光を投射し、反射光を検出して被写体までの
距離を検出するいわゆるアクティブ式の自動焦点装置に
おいては、被写体迄の距離や被写体の反射率によって受
光光量が大幅に変化し、受光素子或いは信号処理回路の
処理レベルを逸脱する場合が生じてくる。
(Prior Art) Among autofocus devices such as cameras, so-called active autofocus devices in which the camera has a light source, projects light onto the subject, and detects the reflected light to detect the distance to the subject. The amount of received light changes significantly depending on the distance to the subject and the reflectance of the subject, and may exceed the processing level of the light receiving element or signal processing circuit.

これに対する対策としては従来2つの対応策が試みられ
ている。
Conventionally, two countermeasures have been attempted as countermeasures against this problem.

その1は、第4図にその制御回路を示すように、半導体
装置検出器(PSD)11の出力電流Iい 工2を電流
−電圧変換回路12.13で電圧V工、v2に変換し、
積分回路14.15で積分時間コントロール回路18で
決定されろ時間だけ積分し、その積分値■8、Voを加
算回路16に入力してV^+Vaを得ると同時に減算回
路17に入力してV^−Veから被写体の位置情報を得
る。一方、V A + V aはPSDの受光量を示す
ので、この値を積分時間コントロール回路18に入力し
、この値が測距可能な所定レベルになるように積分時間
を決定する。(特開昭57−44809号) この方式は、 ■ 被写体が遠距離、低反射率の場合は積分時間が長く
なり、合焦までの制御時間が長くかかり合焦が円滑に行
われなくなる。
First, as shown in FIG. 4, the output current I2 of the semiconductor device detector (PSD) 11 is converted into a voltage V2 by a current-voltage conversion circuit 12.13.
The integration circuits 14 and 15 integrate the time determined by the integration time control circuit 18, and input the integrated value 8, Vo to the addition circuit 16 to obtain V^+Va, and at the same time input it to the subtraction circuit 17 to obtain V Obtain the position information of the subject from ^-Ve. On the other hand, since V A + V a indicates the amount of light received by the PSD, this value is input to the integration time control circuit 18, and the integration time is determined so that this value becomes a predetermined level that allows distance measurement. (Japanese Unexamined Patent Publication No. 57-44809) This method has the following features: (1) If the object is far away and has a low reflectance, the integration time becomes longer, and the control time required to achieve focusing becomes longer, making it difficult to achieve smooth focusing.

■ 積分時間が長い場合は、ノイズ光の影響も大きくな
り、正確、高精度の測距情報が得られなくなる。
■ If the integration time is long, the influence of noise light will increase, making it impossible to obtain accurate and highly accurate distance measurement information.

■ 積分時間を短かくするために投射光強度を大きくし
、反射光量を多くしようとすれば、近距離側で受光光景
が過大となり、受光素子もしくは回路系の能力を越えて
しまう場合がある。このような問題が生じない場合でも
、電池を電源とする場合には消費電力が大きすぎるとい
う問題が生ずる。
■ If an attempt is made to increase the intensity of the projected light and increase the amount of reflected light in order to shorten the integration time, the light-receiving scene will become excessive on the short-distance side and may exceed the capacity of the light-receiving element or circuit system. Even if such a problem does not occur, when a battery is used as a power source, the problem arises that power consumption is too large.

■ 積分時間が長くなると、積分回路のオフセットずれ
が測距情報に影響を与えるので高精度の調整が必要とな
る。
■ When the integration time becomes longer, the offset shift of the integration circuit affects the ranging information, so highly accurate adjustment is required.

という問題を有している。There is a problem.

他の方式は第5図に制御回路を示すように、PSD20
の出力電流工1、工2 を電流−電圧変換回路23.2
4で積分し、積分電圧V^、VBを減算回路25に入力
しV^−Vaから位置情報を得ると共に、加算回路26
に入力してVA十v8を得、この値を発光光量コントロ
ール回路27に入力し、測距可能な所定のレベルになる
ように発光光量を決定し1次回の発光を行う。
Another method is the PSD20, as shown in the control circuit in Figure 5.
The output currents 1 and 2 are converted into a current-voltage conversion circuit 23.2
4, and input the integrated voltages V^ and VB to the subtraction circuit 25 to obtain position information from V^-Va, and adder circuit 26
This value is input to the light emitting light amount control circuit 27, and the light emitting amount is determined to be at a predetermined level that allows distance measurement, and the first light is emitted.

(特開昭58−87543号) この方式は、 ■ 発光強度の変化のみの調節では、光源自体のみなら
ず、バッテリーを電源とする場合は消費電力の点からも
発光強度自体の変化量に限界があるため、測距範囲にも
制限が生じる。
(Japanese Unexamined Patent Publication No. 58-87543) This method has the following features: ■ Adjusting only the change in luminous intensity has a limit not only on the light source itself, but also in terms of power consumption when using a battery as a power source. Therefore, there are limits to the distance measurement range.

■ 入射強度をフィードバックして発光光強度を連続的
に変化させる装置は複雑でコストアップになる。
■ A device that feeds back the incident intensity to continuously change the emitted light intensity is complicated and increases cost.

■ 瞬間的に強い発光パルスを発生させると、それによ
るノイズがビデオカメラの信号処理系に侵入して画像に
影響を及ぼしたり、誤動作を生じる原因となる。
■ If a strong light emission pulse is generated momentarily, the resulting noise may enter the signal processing system of the video camera, affecting the image or causing malfunction.

等の問題を含んでいる。It includes problems such as.

(この発明が解決しようとする問題点)一般に、自動合
焦装置に必要な条件は ■ 合焦のための時間が短かく制御が円滑なこと ■ 測距システムが正確で高精度の距離情報が得られる
こと ■ 広い測距範囲を持つこと ■ 消費エネルギが少ないこと ■ 回路や制御方法が簡単であること ■ コストが安いこと ■ 調整が簡単なこと であるが、この発明は、いわゆるアクティブ方式の自動
焦点装置において、上記条件を満足できるものを得よう
とする。
(Problems to be Solved by this Invention) In general, the conditions required for an automatic focusing device are: ■ Short focusing time and smooth control; ■ Accurate distance measurement system and high-precision distance information. What can be achieved ■ Has a wide ranging range ■ Has low energy consumption ■ Has a simple circuit and control method ■ Has low cost ■ Can be easily adjusted. An attempt is made to obtain an automatic focusing device that satisfies the above conditions.

発明の構成 C問題点を解決するための手段) この発明の自動合焦装置は、特定周波数の赤外光を発光
する発光部、該赤外光をスポット光として投光する投光
光学系、該スポット光の被写体からの反射光を位置検出
素子上に結像させる受光系、該位置検出素子の2出力信
号を前記投光の特定周波数に同期してそれぞれ検波する
検波回路、該検波回路の出力を積分する積分回路、該積
分回路の出力を演算して前記被写体までの距朧に対応し
た前記位置検出素子上の結像位置を検出する演算部、該
演算部の検出情報に基いて合焦レンズの駆動を制御する
制御部とを有し、前記発光部分が前記積分回路の積分時
間によって多段階に発光光量を不連続に変化させられる
ことを特徴とする。
Structure of the Invention Means for Solving Problem C) The automatic focusing device of the present invention includes a light emitting section that emits infrared light of a specific frequency, a light projection optical system that projects the infrared light as a spot light, A light receiving system that forms an image of the reflected light from the subject of the spot light on a position detection element, a detection circuit that detects two output signals of the position detection element in synchronization with a specific frequency of the light projection, and a detection circuit of the detection circuit. an integrating circuit that integrates the output; a computing unit that computes the output of the integrating circuit to detect an imaging position on the position detection element corresponding to the blurred distance to the subject; and a control unit that controls driving of a focusing lens, and the light emitting portion is characterized in that the amount of light emitted by the light emitting portion can be changed discontinuously in multiple stages depending on the integration time of the integrating circuit.

より具体的には、受光光量によって積分時間を制御し、
受光光量の減少によって予め定めた最長の積分時間より
も積分時間が長くなった場合1発光光量を1段階明るく
変更すると共に積分時間を所定の最小時間に変更し、逆
に受光光量の増大により所定の最短積分時間よりも積分
時間が短くなった場合、発光光量を1段暗い発光光量に
変更すると共に積分時間を所定の最小時間に変更するよ
うに制御する。
More specifically, the integration time is controlled by the amount of received light,
If the integration time becomes longer than the predetermined longest integration time due to a decrease in the amount of received light, the amount of emitted light is changed to one step brighter and the integration time is changed to the predetermined minimum time. When the integration time becomes shorter than the shortest integration time, control is performed so that the amount of emitted light is changed to one step darker and the integration time is changed to a predetermined minimum time.

(実施例) この発明の自動合焦装置の制御回路の1実施例を第1図
に示す。
(Embodiment) FIG. 1 shows an embodiment of a control circuit for an automatic focusing device of the present invention.

PSDの2つの出力電流を電流−電圧変換器1.1′に
よって電圧に変換し、検波回路2.2′積分回路3.3
′によって成牛される信号電圧V^、VaをA/D変換
器4によってデジタル値に変換した後、論理回路もしく
はマイクロコンピュータ5によってPSDの受光光量に
相当するV A + V eの演算を行ない、この演算
値によって積分時間及び発光LED7の発光量を制御す
る。
The two output currents of the PSD are converted into voltage by the current-voltage converter 1.1', and the detection circuit 2.2' and the integrating circuit 3.3
After converting the signal voltages V^ and Va, which are generated by ', into digital values by the A/D converter 4, the logic circuit or microcomputer 5 calculates V A + Ve corresponding to the amount of light received by the PSD. , the integration time and the amount of light emitted from the light emitting LED 7 are controlled by this calculated value.

LED7の発光はパルス変調で行なわれ、積分時間は積
分するパルス数をマイコン5等で制御することによって
行なわれる。例えば、PSD受光光量が減少したとすれ
ば、V^+v8の値が小さくなる。このとき積分回路3
はマイコン5の指令により、積分するパルス数を増やし
The light emission of the LED 7 is performed by pulse modulation, and the integration time is determined by controlling the number of pulses to be integrated using a microcomputer 5 or the like. For example, if the amount of light received by the PSD decreases, the value of V^+v8 decreases. At this time, the integration circuit 3
increases the number of pulses to be integrated according to the command from microcomputer 5.

V^+VBの値を正確な測距を行なえる範囲に保つ。積
分時間、すなわちパルス数があらかじめセットされてい
る数をこえると、LEDの発光光量が1段階増加され、
あらかじめセットされているその発光光量に応じた最低
のパルス数だけの積分が行なわれる。これを第2図につ
いて説明する0図の縦軸はLEDの発光量を示し、発光
量はA、B、Cとあらかじめ定められた複数段階にわた
って不連続に制御される。横軸は積分するパルス数を示
し、各発光量に対応して最低数nいna、 n、及び最
大数がセットされている。今、点Pで測定し、V^+v
eの値が低ければ、積分するパルス数を増し、測定条件
は実線矢印に沿って水平に右に移動する。積分パルス数
がn4に達すると1発光光量はCの段階に変化し、同時
に積分パルス数はCの段階での最小パルス数n3とされ
る。このとき n4×b ≧ n、Xc に、また、同様に n4×a ≧ n、Xb に選ばれることは云うまでもない。
Keep the value of V^+VB within a range that allows accurate distance measurement. When the integration time, that is, the number of pulses exceeds a preset number, the amount of light emitted by the LED is increased by one step,
Integration is performed for the minimum number of pulses corresponding to the preset amount of emitted light. This will be explained with reference to FIG. 2. The vertical axis in FIG. 0 indicates the amount of light emitted from the LED, and the amount of light emitted is discontinuously controlled over a plurality of predetermined stages of A, B, and C. The horizontal axis indicates the number of pulses to be integrated, and a minimum number n, n, and a maximum number are set corresponding to each amount of light emission. Now, measure at point P, V^+v
If the value of e is low, the number of pulses to be integrated is increased and the measurement conditions are moved horizontally to the right along the solid arrow. When the number of integrated pulses reaches n4, the amount of one emitted light changes to step C, and at the same time, the number of integrated pulses is set to the minimum number of pulses n3 at step C. In this case, it goes without saying that n4×b ≧ n, Xc and similarly n4×a ≧ n, Xb are selected.

逆にPSDの受光光量が増加したとすれば、V^+Va
の値が大きくなる。このときは第2図上点線に沿って左
方に移動し、V^+VB値を減少させる。パルス数がセ
ットされた最小値n2より小さくなると、発光量を1段
階下のaに変更すると共に、段階aに対応する最小パル
ス数n1とされる。
Conversely, if the amount of light received by the PSD increases, V^+Va
The value of increases. In this case, move to the left along the dotted line in FIG. 2 and decrease the V^+VB value. When the number of pulses becomes smaller than the set minimum value n2, the amount of light emission is changed to a level one step lower, and the minimum number of pulses n1 corresponding to the level a is set.

この発光光量が3段階に制御される場合の発光光量とパ
ルス数のセットのフローチャートを第4図に示す。
FIG. 4 shows a flowchart for setting the amount of emitted light and the number of pulses when the amount of emitted light is controlled in three stages.

この自動合焦装置においては、ある段階の光量での最低
パルス数の設定は、その発光光量で受光光量がPSDの
能力もしくは回路系の能力を越えないように選ばれるこ
とは云う迄もない。
In this automatic focusing device, it goes without saying that the setting of the minimum number of pulses at a certain level of light intensity is selected so that the amount of received light does not exceed the ability of the PSD or the circuit system at that amount of emitted light.

発明の効果 この発明は上記の構成を有するので。Effect of the invention This invention has the above configuration.

■ 積分時間は設定された最大パルス数n、を越えず、
常にある幅の時間内で測距しているで制御が円滑である
■ The integration time does not exceed the set maximum number of pulses, n.
Control is smooth because the distance is always measured within a certain range of time.

■ 発光光量と積分時間の両方を変えているので、広い
測距範囲でPSDの受光光量が成る範囲内に収まり、シ
ステムとしてのダイナミックレンジが広くなっている。
- Since both the amount of emitted light and the integration time are changed, the amount of light received by the PSD is within the range within a wide distance measurement range, and the dynamic range of the system is widened.

[有] 多段階の発光光量制御をしているので、消費エ
ネルギーに無駄がない。
[Yes] Multi-stage light emission control allows no wastage of energy consumption.

■ A/D変換器、マイコン等を使用すれば制御が簡単
であり、発光量の制御も段階的であり、連続的に制御す
るものより回路構成が簡単でコストも安くなる。
■ Control is easy by using an A/D converter, a microcomputer, etc., and the amount of light emitted is also controlled in stages, making the circuit configuration simpler and cheaper than continuous control.

■ 積分時間が過大になるための悪影響、すなわち、オ
フセットによるずれ、ノイズユラギが除去出来るので、
高精度な調整が不要になる。
■ The negative effects of excessive integration time, such as deviations due to offset and noise fluctuations, can be removed.
High precision adjustment becomes unnecessary.

等の顕著な効果を奏する。It has remarkable effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の自動合焦装置の1実施例の構成を示
すフロック図、第2図は発光光量、積分時間の制御法を
示すグラフ、第3図はそのフローチャート、第4図、第
5図は従来例の構成を示すブロック図である。 11.20:PSD 1.12.13.21.22:電流−電圧変換器   
  2:検波回路 3.14.15.23,24:積分回路4 : A/D
変換器  5:マイコン16.25:加算回路 17.
26−減算回路6.27:発光、光量制御回路 18:積分時間コントロール回路 7.19.28:発光LED 特許出願人 小西六写真工業株式会社 出願人代理人  弁理士  佐藤文男 (ほか2名) 第   1   図 第   2   図
FIG. 1 is a block diagram showing the configuration of an embodiment of the automatic focusing device of the present invention, FIG. 2 is a graph showing a method of controlling the amount of emitted light and integration time, FIG. 3 is a flowchart thereof, and FIGS. FIG. 5 is a block diagram showing the configuration of a conventional example. 11.20: PSD 1.12.13.21.22: Current-voltage converter
2: Detection circuit 3.14.15.23, 24: Integrating circuit 4: A/D
Converter 5: Microcomputer 16.25: Adder circuit 17.
26-Subtraction circuit 6.27: Light emission, light amount control circuit 18: Integral time control circuit 7.19.28: Light emitting LED Patent applicant Konishiroku Photo Industry Co., Ltd. Applicant's agent Patent attorney Fumio Sato (and 2 others) No. 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 特定周波数の赤外光を発光する発光部、該赤外光をスポ
ット光として投光する投光光学系、該スポット光の被写
体からの反射光を位置検出素子上に結像させる受光系、
該位置検出素子の2出力信号を前記投光の特定周波数に
同期してそれぞれ検波する検波回路、該検波回路の出力
を積分する積分回路、該積分回路の出力を演算して前記
被写体までの距離に対応した前記位置検出素子上の結像
位置を検出する演算部、該演算部の検出情報に基いて合
焦レンズの駆動を制御する制御部とを有し、前記発光部
分が前記積分回路の積分時間によって多段階に発光光量
を不連続に変化させられることを特徴とする自動合焦装
a light emitting unit that emits infrared light of a specific frequency; a light projection optical system that projects the infrared light as a spot light; a light receiving system that forms an image of the reflected light from the subject on the position detection element;
a detection circuit that detects each of the two output signals of the position detection element in synchronization with a specific frequency of the light projection; an integration circuit that integrates the output of the detection circuit; and a distance to the object by calculating the output of the integration circuit. and a control section that controls driving of a focusing lens based on the detection information of the calculation section, and the light emitting section is connected to the integration circuit. An automatic focusing device characterized by being able to discontinuously change the amount of emitted light in multiple stages depending on the integration time.
JP893186A 1986-01-21 1986-01-21 Automatic focusing device Pending JPS62168105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP893186A JPS62168105A (en) 1986-01-21 1986-01-21 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP893186A JPS62168105A (en) 1986-01-21 1986-01-21 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS62168105A true JPS62168105A (en) 1987-07-24

Family

ID=11706405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP893186A Pending JPS62168105A (en) 1986-01-21 1986-01-21 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS62168105A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192215A (en) * 1983-04-15 1984-10-31 Matsushita Electric Ind Co Ltd Light emission controller for focusing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192215A (en) * 1983-04-15 1984-10-31 Matsushita Electric Ind Co Ltd Light emission controller for focusing device

Similar Documents

Publication Publication Date Title
EP0590036B1 (en) Time-multiplexed multi-zone rangefinder
JPWO2018211831A1 (en) Photodetectors and portable electronics
JPH0376722B2 (en)
US4758082A (en) Distance detection apparatus
US4768053A (en) Distance measuring apparatus
JPH0313565B2 (en)
JPH03200941A (en) Range finder for camera
JPS62168105A (en) Automatic focusing device
JPH08327890A (en) Range finder for camera
JP2731159B2 (en) Camera multipoint ranging device
JPH1096851A (en) Range finder for camera
JP2942593B2 (en) Subject distance detection device
KR100509362B1 (en) Passive focusing control device for digital camera thereof merhod
JPS60176009A (en) Autofocusing camera
JPS6262312A (en) Automatic focus adjusting device
US4586806A (en) Camera range finder
JP3332948B2 (en) camera
JP3236095B2 (en) Distance measuring device
JPH10197337A (en) Photoelectric conversion apparatus
JPH0517484B2 (en)
KR100420579B1 (en) focus adjusting system of the passive form and method thereof
JPS61240108A (en) Range finding device
JP3009513B2 (en) Distance measuring device for camera
JPH04369609A (en) Autofocusing device
JPH0576605B2 (en)