JPS62167532A - Heating type blood flowmeter - Google Patents

Heating type blood flowmeter

Info

Publication number
JPS62167532A
JPS62167532A JP61008561A JP856186A JPS62167532A JP S62167532 A JPS62167532 A JP S62167532A JP 61008561 A JP61008561 A JP 61008561A JP 856186 A JP856186 A JP 856186A JP S62167532 A JPS62167532 A JP S62167532A
Authority
JP
Japan
Prior art keywords
heating
temperature
blood flow
power
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008561A
Other languages
Japanese (ja)
Inventor
祇園 英則
久保田 謙治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61008561A priority Critical patent/JPS62167532A/en
Publication of JPS62167532A publication Critical patent/JPS62167532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、血管を流れる血液量を測定する血流計であ
って、一定温度に保持された加温部材を被験者の皮膚表
面に貼り付け、皮下の血流による冷却効果に抗して上記
加温部材を一定温度に保持するのに必要な加熱電力を測
定することにより、血流量を測定する加温式血流計に関
するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is a blood flow meter that measures the amount of blood flowing through blood vessels. , relates to a heating blood flow meter that measures blood flow by measuring the heating power necessary to maintain the heating member at a constant temperature against the cooling effect of subcutaneous blood flow.

[従来の技術] 患者の病態の診断に際して、患者の血管中を流れる血流
量を知ることは有意義である。
[Prior Art] When diagnosing a patient's pathological condition, it is meaningful to know the amount of blood flowing through the patient's blood vessels.

そこで、従来、血流量を測定する方法として、電磁誘導
法、核磁気共鳴法、加熱体冷却効果法などが用いられて
いるが、上記電磁誘導法は、斗ンサを血管中に侵入させ
る、いわゆる侵襲法であるうえに、装置が高価になる欠
点がある。また、核磁気共鳴法も装置が高価であり、加
熱体冷却効果法も侵襲法であるという欠点がある。
Conventionally, electromagnetic induction method, nuclear magnetic resonance method, heated body cooling effect method, etc. have been used as methods to measure blood flow. It is an invasive method and has the disadvantage that the equipment is expensive. Further, the nuclear magnetic resonance method also has disadvantages in that its equipment is expensive, and the heated body cooling effect method is also an invasive method.

これに対し、加温部材を被験者の皮膚表面に貼り付け、
皮下の血流による冷却効果に抗して上記加温部材を一定
温度に保持し、そのときに必要な加熱電力を測定するこ
とにより、血流部、詳しくは、特定部位の皮下の一定範
囲内の血流部の総和である局所循環血流量を測定する加
温式血流計が提案されている。この加温式血流計を用い
ると、無侵襲であるうえに、構造が簡単で安価になる。
In contrast, a heating member is attached to the subject's skin surface,
By maintaining the above-mentioned heating member at a constant temperature against the cooling effect of subcutaneous blood flow and measuring the heating power required at that time, the heating member can be heated within a certain range under the skin of a specific part of the bloodstream, more specifically, by measuring the heating power required at that time. A heating type blood flow meter has been proposed that measures the local circulating blood flow, which is the sum of the blood flow in the blood flow area. When this heating type blood flow meter is used, it is non-invasive, has a simple structure, and is inexpensive.

[発明が解決しようとする問題点] 上記加温式血流計で血流量、を測定する場合、皮膚表面
に装着される加温部材の冷却要因には、測定対象である
局部循環血流量のほかに、(イ)加温部材装着部付近の
人体組織への静的熱伝導による放熱、 (ロ)加温部材を含むセンサ部から空気中への放熱、 (ハ)センサ部と計測部とを接続するセンサリード線が
ら空気中への放熱 があり、これら3つの放熱による冷却効果が測定誤差と
なる。このうち、(イ)の静的熱伝導は個人差および測
定部位による差が小さく、末梢部位では結搾による血流
停止でその値を知ることができるので、補償が容易であ
る。これに対し、(ロ)、(ハ)のセンサ部およびセン
サリード線から空気中への放熱は、室内の温度や、空気
の流動により変動するので、補償が容易でない。
[Problems to be Solved by the Invention] When measuring blood flow with the above-mentioned heating type blood flow meter, the cooling factor of the heating member attached to the skin surface includes the local circulating blood flow to be measured. In addition, (a) heat dissipation by static heat conduction to human tissue near the heating member attachment part, (b) heat dissipation from the sensor part including the heating member into the air, and (c) heat dissipation between the sensor part and the measurement part. There is heat radiated into the air from the sensor lead wires that connect the two, and the cooling effect of these three types of heat radiation causes measurement errors. Among these, static heat conduction (a) has small differences between individuals and measurement sites, and its value can be determined by stopping blood flow at peripheral sites due to constriction, so it is easy to compensate. On the other hand, the heat dissipated into the air from the sensor parts and sensor lead wires in (b) and (c) fluctuates depending on the indoor temperature and air flow, and therefore is not easy to compensate for.

ところで、この加温式血流計の測定精度を向上させるた
めに、センサ部を断熱材で覆ったものが知られている(
特開昭55−88750号公報、特開昭55−1332
40号公報参照)が、これによっても、センサ部および
センサリード線から空気中への放熱は若干存在し、この
放熱量が周囲温度により変動するので、測定誤差が生じ
る。
By the way, in order to improve the measurement accuracy of this heating type blood flow meter, it is known that the sensor part is covered with a heat insulating material (
JP-A-55-88750, JP-A-55-1332
However, even with this, there is some heat radiated into the air from the sensor section and the sensor lead wire, and the amount of heat radiated varies depending on the ambient temperature, resulting in measurement errors.

また、センサ部を温度制御された金属外套で覆ったもの
も知られている(特開昭55−88749号公報、特開
昭55−88737号公報)が、これによれば、」−記
金属外套を加熱して温度制御する装置が必要になる分だ
け構造が複雑になるうえに、センサ部からの放熱量は一
定にできるが、センサリード線からの放熱量は一定にで
きないので、やはりA11I定誤差が残る。
There are also known sensors in which the sensor part is covered with a temperature-controlled metal jacket (Japanese Unexamined Patent Publication Nos. 55-88749 and 1988-88737); The structure is complicated by the need for a device to heat the jacket and control the temperature, and although the amount of heat radiated from the sensor part can be made constant, the amount of heat radiated from the sensor lead wire cannot be made constant. A constant error remains.

この発明は、上記従来の問題を解消するためになされた
もので、簡単な構造で、加温式血流計のセンサ部および
センサリード線から空気中への放熱量による測定誤差を
正確に補償することを目的とする。
This invention was made to solve the above-mentioned conventional problems, and has a simple structure that accurately compensates for measurement errors caused by the amount of heat radiated into the air from the sensor section and sensor lead wire of a heating blood flow meter. The purpose is to

[問題点を解決するための手段] 発明者らは、種々の考察および実験の結果、センサ部を
覆う断熱性カバーの外表面の温度と、加温部材を一定温
度に保持するだめの加熱電力とが比例関係(線形)にあ
る事実を見い出した。
[Means for Solving the Problem] As a result of various considerations and experiments, the inventors determined the temperature of the outer surface of the heat insulating cover that covers the sensor section and the heating power required to maintain the heating member at a constant temperature. We discovered that there is a proportional (linear) relationship between the two.

この発明は、上記事実に基づいてなされたもので、セン
サ部を覆う断熱性カバーの外表面の温度を検出し、−上
記カバーの温度に対する加温部材の加熱電力の変化率を
示す感度を外部からの操作で予め入力しておき、この感
度と、カバー温度と、加熱電力とから、カバー温度に関
して線形の演算式に基づいて上記加熱電力の温度補償を
行なうことにより、加熱電力のうち血流により奪われる
熱量を供給する血流加熱電力を算出するように構成して
いる。
This invention was made based on the above fact, and detects the temperature of the outer surface of the heat insulating cover that covers the sensor section, and detects the sensitivity indicating the rate of change in the heating power of the heating member with respect to the temperature of the cover. From this sensitivity, cover temperature, and heating power, temperature compensation for the above heating power is performed based on a linear calculation formula for the cover temperature. It is configured to calculate the blood flow heating power that supplies the amount of heat taken away by the blood flow.

[作用] 上記構成によれば、血流量測定の際の3つの誤差要因、
つまり、(イ)加温部材装着部付近の人体組織への静的
熱伝導による放熱、(ロ)加温部材を含むセンサ部から
空気中への放熱、および(ハ)センサ部と計測部とを接
続するセンサリード線から空気中への放熱による測定誤
差が、すべて補償Sれるので、正確な血流加熱電力、つ
まり血流量が得られる。また、カバーの加熱装置が不要
になる。しかも、血流加熱電力の計測部は、単純な演算
回路の組合せにより構成できる。
[Function] According to the above configuration, three error factors when measuring blood flow:
In other words, (a) heat dissipation due to static heat conduction to human tissue near the heating member attachment part, (b) heat dissipation from the sensor part including the heating member into the air, and (c) heat dissipation between the sensor part and the measurement part. Since all measurement errors due to heat radiation into the air from the sensor lead wire connecting the sensor are compensated for, an accurate blood flow heating power, that is, an accurate blood flow rate can be obtained. Further, a heating device for the cover becomes unnecessary. Furthermore, the blood flow heating power measurement section can be configured by a combination of simple arithmetic circuits.

[実施例] 以下、この発明の実施例を図面にしたがって説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は血流量のセンサを示すもので、11は被験者に
その皮膚表面12から熱を与える円柱状の熱伝導性の加
温部材で、銀、銅、アルミニウム、またはこれらの合金
等からなる。この加温部材11には、その外周の溝13
に、加温部材11を加熱するための電熱線からなる加熱
体14が巻装されるとともに、−1一部に、加温部材1
1の温度を検出する第1の温度検出素子15が装着され
ている。
Figure 1 shows a blood flow sensor, and 11 is a cylindrical thermally conductive heating member that applies heat to the subject from the skin surface 12, and is made of silver, copper, aluminum, or an alloy thereof. . This heating member 11 has grooves 13 on its outer periphery.
A heating body 14 made of a heating wire for heating the heating member 11 is wrapped around the heating member 11.
A first temperature detection element 15 that detects the temperature of 1 is attached.

上記加温部材11、加熱体14および第1の温度検出素
子15は、外形を整えるために、エポキシ系またはテフ
ロン等からなる整形体16でモールドされて、一体のセ
ンサ部17を形成しており、このセンサ部17の周囲が
、加温部材11の皮膚表面12との接触部11aを残し
て、ポリアセタール系の断熱性カバー18で覆われてい
る。
The heating member 11, the heating body 14, and the first temperature detection element 15 are molded with a shaped body 16 made of epoxy or Teflon to form an integrated sensor part 17 in order to shape the outer shape. The sensor portion 17 is surrounded by a polyacetal heat insulating cover 18, except for the contact portion 11a of the heating member 11 with the skin surface 12.

ここで、このカバー18とセンサ部17との間には、断
熱効果を向上させるために空気層19が設けられている
。上記カバー18は、はぼ円筒形であり、その上面に、
カバー18の外表面の温度を検出する第2の温度検出素
子21が装着されている。22は、センサ部17と計測
部23とを接続するセンサリード線である。
Here, an air layer 19 is provided between the cover 18 and the sensor section 17 in order to improve the heat insulation effect. The cover 18 has a substantially cylindrical shape, and on its upper surface,
A second temperature detection element 21 that detects the temperature of the outer surface of the cover 18 is attached. 22 is a sensor lead wire that connects the sensor section 17 and the measurement section 23.

上記第1の温度検出素子15および第2の温度検出素子
21は、サーミスタまたは白金抵抗体等からなる。
The first temperature detection element 15 and the second temperature detection element 21 are made of a thermistor, a platinum resistor, or the like.

測定時には、上記センサ部17とカバー18を、薄い両
面接着テープ22で皮膚表面12に装着する。
At the time of measurement, the sensor section 17 and cover 18 are attached to the skin surface 12 with a thin double-sided adhesive tape 22.

つぎに、この発明の測定原理について説明する。Next, the measurement principle of this invention will be explained.

まず、第1図のセンサを恒温槽の中に入れ、加温部材1
1を43°C144℃のそれぞれの温度に保ち、恒温槽
の温度を変化させたとき、つまり周囲温度を変化させた
ときの加温部材11の加熱に必要な加熱電力を測定した
。その結果を第2図に示す。同図より、周囲温度と加熱
電力との間には直線関係があり、加温部材11の設定温
度が変化しても、勾配は同じで、平行移動することがわ
かる。これは、一般に、高温体(センサ)から低温体(
周囲の空気)への熱伝達の量は、両者の温度差に比例す
ることから、容易に理解できる。
First, put the sensor shown in Fig. 1 into a thermostat, and heat the heating member 1.
The heating power required to heat the heating member 11 was measured when the temperature of the thermostatic oven was changed, that is, when the ambient temperature was changed while the heating member 11 was maintained at a temperature of 43° C. and 144° C., respectively. The results are shown in FIG. From the figure, it can be seen that there is a linear relationship between the ambient temperature and the heating power, and even if the set temperature of the heating member 11 changes, the slope remains the same and moves in parallel. This is generally a transition from a hot body (sensor) to a cold body (
It is easy to understand that the amount of heat transferred to the surrounding air is proportional to the temperature difference between the two.

つづいて、同一のセンサを手のひらに装着して恒温槽の
中に入れ、加温部材11を43℃に保って、恒温槽の温
度、つまり周囲温度を変化させ、そのときのカバー18
の温度と、定常血流状態および止血状態の加熱電力との
関係を調べた。その結果を第3図に示す。同図より、加
熱電力とカバー温度とが直線関係にあることがわかる。
Next, the same sensor was attached to the palm of the hand and placed in a thermostatic oven, the heating member 11 was kept at 43°C, the temperature of the thermostatic oven, that is, the ambient temperature was changed, and the cover 18 at that time was changed.
The relationship between temperature and heating power under steady blood flow and hemostatic conditions was investigated. The results are shown in FIG. From the figure, it can be seen that there is a linear relationship between heating power and cover temperature.

この事実が、この発明の重要な基礎である。上記直線関
係が得られたのは、第2図の結果と合せて考えて、カバ
ー18の温度と周囲温度とが比例関係にあるためと考え
られる。このような加熱電力とカバー温度とが比例直線
関係にあるセンサを用いて、カバー18の温度を測定す
れば、放熱による測定誤差を容易に修正できることにな
る。
This fact is an important basis of this invention. The reason why the above linear relationship was obtained is considered to be because the temperature of the cover 18 and the ambient temperature are in a proportional relationship, considering the results in FIG. 2 as well. If the temperature of the cover 18 is measured using a sensor in which the heating power and the cover temperature are in a proportional linear relationship, measurement errors due to heat radiation can be easily corrected.

そこで、加温部材11を一定温度に保つための加熱電力
をHとすると、Hは次式で表わされる。
Therefore, assuming that the heating power for keeping the heating member 11 at a constant temperature is H, H is expressed by the following equation.

H=−AT+B+H(f)      ・・・(1)A
:加熱電力の温度係数 B:温度O℃での空気中への放熱量 H(f):*流加熱電力 ここで、上記Aは、カバー温度に対する加熱電力の変化
率を示す感度に相当するものであり、その大きさは、人
体における加温部材装着部位の相違、および加温部材装
着部位近の人体組織への静的熱伝導による放熱量の個人
差により、ばらつきはあるものの、大体−6〜−8mw
/’Oである。このAは、センサをその被験者の皮膚表
面に装着して、異なる2つの周囲温度の下(たとえば室
内とこれより高い恒温槽内)で、加熱電力とカバー温度
とを測定し、その差の比、ΔH/ΔTから容易に求めら
れる。また、上記Bの空気中への放熱量は、先に述べた
、(ロ)センサ部17から吸気中への放熱量と、(ハ)
センサリード線22から吸気中への放熱量の両方を含ん
でいる。上記H(f)の血流加熱電力は、加熱電力のう
ち血流により奪われる電力をいう。
H=-AT+B+H(f)...(1)A
: Temperature coefficient of heating power B: Amount of heat dissipated into the air at a temperature of 0°C H (f): * Current heating power Here, A above corresponds to the sensitivity indicating the rate of change in heating power with respect to cover temperature. Although the size varies depending on the location of the heating member on the human body and individual differences in the amount of heat dissipated due to static heat conduction to the human tissue near the location on which the heating member is attached, it is approximately -6 ~-8mw
/'O. This A measures the heating power and cover temperature under two different ambient temperatures (for example, indoors and in a higher temperature oven) by attaching the sensor to the subject's skin surface, and then calculates the difference between the heating power and the cover temperature. , ΔH/ΔT. In addition, the amount of heat radiated into the air in B above is the previously mentioned (b) amount of heat radiated from the sensor section 17 into the intake air, and (c) the amount of heat radiated into the air.
It includes both the amount of heat released from the sensor lead wire 22 into the intake air. The blood flow heating power of H(f) above refers to the power taken away by the blood flow out of the heating power.

たとえば、ある周囲温度(たとえば室温)でのカバー温
度、化m状態の加熱電力を、それぞれTl、Hlとする
と、止血時はH(f)=Oであるから、(1)式は、 、)−1,=−AT、+H 故に、 B −A Tl + Hl これを(1)式に代入して、 H=−A  (T−TI) +H,+H(f)   ・
・・(2)また、上記周囲温度でのカバー温度、定常血
流状態の加熱電力および血流加熱温度を、それぞれT2
. H2,Hl(f) とすると、(1)式は、H2=
 −A Tl +H+ Hl(f )故に、 B = A T2+ H2−Hl(f)これを(1)式
に代入して、 H=−A (T−T2) +H2−H,(f) +H(
f)・・・(3) と表わされる。
For example, if the cover temperature at a certain ambient temperature (for example, room temperature) and the heating power in the chemical m state are Tl and Hl, respectively, then H(f) = O when hemostasis, so equation (1) is as follows. -1,=-AT, +H Therefore, B -A Tl + Hl Substituting this into equation (1), H=-A (T-TI) +H, +H(f) ・
...(2) Also, the cover temperature at the above ambient temperature, the heating power in the steady blood flow state, and the blood flow heating temperature are respectively T2
.. H2, Hl(f), equation (1) becomes H2=
-A Tl +H+ Hl(f) Therefore, B = A T2+ H2-Hl(f) Substituting this into equation (1), H=-A (T-T2) +H2-H, (f) +H(
f)...(3) It is expressed as follows.

故に、(2)式または(3)式を利用して、放熱による
測定誤差の補正、つまり、血流量測定の温度補償ができ
る。
Therefore, by using equation (2) or equation (3), it is possible to correct the measurement error due to heat radiation, that is, to compensate for the temperature of blood flow measurement.

第4図に、上記(2)式を用いて温度補償を行なう計測
部23の一例を示す。
FIG. 4 shows an example of the measuring section 23 that performs temperature compensation using the above equation (2).

同図において、加温部材11の温度を検出する第1の温
度検出素子15は温度に比例した抵抗変化を示す。この
抵抗変化から、周知の回路構成の測温ブリッジ31によ
って、加温部材11の温度Toが検出される。上記測温
ブリッジ31がらのToを表す温度検出信号を受けて、
加熱回路32の加熱制御回路33が制御信号を発生し、
駆動回路34を駆動して、上記温度Toが一定値に保た
れるように、加熱体14へ加熱電力を供給する。
In the figure, a first temperature detection element 15 that detects the temperature of the heating member 11 shows a resistance change proportional to the temperature. From this resistance change, the temperature To of the heating member 11 is detected by the temperature measuring bridge 31 having a well-known circuit configuration. Upon receiving a temperature detection signal representing To from the temperature measuring bridge 31,
A heating control circuit 33 of the heating circuit 32 generates a control signal;
The driving circuit 34 is driven to supply heating power to the heating body 14 so that the temperature To is kept at a constant value.

上記加熱制御回路33は、たとえば、駆動回路34を連
続的に制御する、いわゆるPID (Propor −
tional Integral Differer+
cial)制御方式により動作する。上記駆動回路34
が出力する加熱電力は、周知の回路構成の2乗増幅器か
らなる電力測定器35により検出される。
The heating control circuit 33 is, for example, a so-called PID (Propor-
tional Integral Differer+
cial) control system. The drive circuit 34
The heating power outputted by the power measuring device 35 is detected by a power measuring device 35 consisting of a square amplifier having a well-known circuit configuration.

一方、カバー18に装着された第2の温度検出素子21
の抵抗変化から、測温ブリッジ36および積分回路37
を経て、カバー18の温度Tが検出される。上記積分回
路37は、周囲温度変化に対する加熱電力の応答性と、
第2の温度検出素子21の応答性との差を補正するため
のものであす、一般に、第2の温度検出素子21の応答
時間の方が短いので、第2の温度検出素子21からの信
号の方に時定数を与えるために用いられている。
On the other hand, the second temperature detection element 21 attached to the cover 18
From the resistance change, the temperature measuring bridge 36 and the integrating circuit 37
After that, the temperature T of the cover 18 is detected. The integration circuit 37 determines the responsiveness of heating power to changes in ambient temperature;
This is to correct the difference in response from the second temperature detection element 21. Generally, the response time of the second temperature detection element 21 is shorter, so the signal from the second temperature detection element 21 It is used to give a time constant to

38は感度設定回路で、予め求めた感度(温度係数)A
を外部からのダイヤル操作で設定するものである。この
感度設定回路38と、上記積分回路37からの温度Tを
表わす温度検出信号とが、温度補償回路39の乗算回路
40へ入力され、ATを表わす信号が出力される。この
信号は、零点調整回路41へ入力される。
38 is a sensitivity setting circuit, which sets the sensitivity (temperature coefficient) A determined in advance.
is set using an external dial. The sensitivity setting circuit 38 and the temperature detection signal representing the temperature T from the integrating circuit 37 are input to a multiplier circuit 40 of the temperature compensation circuit 39, and a signal representing AT is output. This signal is input to the zero point adjustment circuit 41.

零点調整回路41では、外部からのダイヤル操作で、−
ATI−H,に相当するバイアスが発生し、この−AT
I−Hlを零点とするように調整される。
In the zero point adjustment circuit 41, -
A bias corresponding to ATI-H is generated, and this -AT
It is adjusted so that I-Hl is the zero point.

つまり、周囲温度母に対応した零点調整がなされる。 
したがって、零点調整回路41からは、A (T−Tl
)−H,を表わす信号が出力される。この信号は、補正
演算回路42に入力され、電力測定器35からの加熱電
力Hを表す信号に加算されて、H十A (T−TI) 
−HI(−H(f) )が得られる。
In other words, the zero point adjustment is performed in accordance with the ambient temperature.
Therefore, from the zero point adjustment circuit 41, A (T-Tl
)-H, is output. This signal is input to the correction calculation circuit 42 and added to the signal representing the heating power H from the power measuring device 35 to obtain H0A (T-TI).
-HI(-H(f)) is obtained.

こうして得られた血流加熱電力H(f)は血流量に正確
に対応している。
The blood flow heating power H(f) thus obtained corresponds accurately to the blood flow rate.

上記実施例とは異なり、(3)式を用いる場合には、調
整回路41のバイアス値が、 −ATユニーHλ+ H,(f) となるだけで、回路構成は全く同一でよい。
Unlike the above embodiment, when formula (3) is used, the bias value of the adjustment circuit 41 is simply -AT unity Hλ+ H, (f), and the circuit configuration may be completely the same.

この発明は以上のような構成であるから、っぎの利点が
ある。
Since the present invention has the above-described configuration, it has several advantages.

(1)無侵襲で、第1図の皮膚表面12にセンサ部17
を貼り付けるだけでよいから、簡単に、しかも、被験者
に苦痛を与えることなく、血流量の測定ができる (2)周囲温度に対応して放熱量が補正されるので、血
1ft、Mの測定が精度よくなされる。
(1) Non-invasively, the sensor part 17 is attached to the skin surface 12 in FIG.
Blood flow can be measured easily and without causing pain to the subject by simply pasting the is done with high precision.

(3)カバーを加熱して一定温度に温度制御するような
装置が不要なので、構造が簡単になる。
(3) Since there is no need for a device to heat the cover and control the temperature to a constant temperature, the structure is simplified.

(4)市販の経皮的血中酸素濃度センサ(特開昭55−
88749号公報参照)を、そのままセンサ部17とし
て用いることができるので、安価であり、しかも、血中
酸素濃度と血流量の同時測定が可能になる。
(4) Commercially available transcutaneous blood oxygen concentration sensor (Unexamined Japanese Patent Publication No. 1983-
88749) can be used as is as the sensor section 17, it is inexpensive, and it is possible to simultaneously measure blood oxygen concentration and blood flow.

(5)感度設定回路38に外部操作で入力する感度Aは
、前述のように、2つの周囲温度で加熱電力Hおよびカ
バー温度Tを予め測定しておくことにより、容易に求め
られるから、測定操作が簡単である。
(5) The sensitivity A input to the sensitivity setting circuit 38 by external operation can be easily determined by measuring the heating power H and the cover temperature T at two ambient temperatures in advance, as described above. Easy to operate.

[発明の効果コ 以上説明したように、この発明によれば、血流量の測定
が精度よくなされ、しかも構造が簡単で操作も容易であ
る。
[Effects of the Invention] As explained above, according to the present invention, blood flow can be measured with high precision, and the structure is simple and operation is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による血流計のセンサ部を
示す縦断面図、第2図および第3図は同実施例のセンサ
の温度特性を示す特性図、第4図は同実施例の全体構成
を示す系統図である。 11・・・加温部材、lla・・・接触部、12・・・
皮膚表面、工4・・・加熱体、15・・・第1の温度検
出素子、17・・・センサ部、18・・・断熱性のカバ
ー、21・・・第2の温度検出素子、22・・・センサ
リード線、23・・・計測部、32・・・加熱回路、3
5・・・電力測定器、38・・・感度設定回路、39・
・・温度補償回路、A・・・感度。
FIG. 1 is a longitudinal sectional view showing the sensor section of a blood flow meter according to an embodiment of the present invention, FIGS. 2 and 3 are characteristic diagrams showing the temperature characteristics of the sensor of the same embodiment, and FIG. FIG. 2 is a system diagram showing the overall configuration of an example. 11...Heating member, lla...Contact part, 12...
Skin surface, work 4... Heating body, 15... First temperature detection element, 17... Sensor section, 18... Heat insulating cover, 21... Second temperature detection element, 22 ...sensor lead wire, 23...measuring section, 32...heating circuit, 3
5... Power measuring device, 38... Sensitivity setting circuit, 39.
...Temperature compensation circuit, A...Sensitivity.

Claims (1)

【特許請求の範囲】[Claims] (1)被験者の皮膚表面に装着される熱伝導性の加温部
材と、この加温部材を加熱する加熱体と、上記加温部材
の皮膚表面との接触部を残して加温部材と加熱体とを覆
う断熱性のカバーと、上記加温部材の温度を検出する第
1の温度検出素子と、この第1の温度検出素子からの温
度検出信号を受けて上記加温部材を一定温度に保持する
ように上記加熱体に加熱電力を供給する加熱回路と、上
記電力を測定する電力測定器と、上記カバーの外表面の
温度を検出する第2の温度検出素子と、上記カバーの温
度に対する上記加熱電力の変化率を示す感度を外部から
の操作で設定する感度設定回路と、この感度設定回路か
らの感度信号、上記第2の温度検出素子からのカバー温
度信号、および上記電力測定器からの加熱電力信号を受
けて、上記カバー温度に関して線形の演算式に基づいて
上記加熱電力信号の温度補償を行なうことにより、加熱
電力のうち血流により奪われる熱量を供給する血流加熱
電力を算出する温度補償回路とを備えてなる加温式血流
計。
(1) A thermally conductive heating member attached to the skin surface of the subject, a heating body that heats this heating member, and heating the heating member with the heating member leaving a contact area with the skin surface. an insulating cover that covers the body; a first temperature detection element that detects the temperature of the heating member; and a temperature detection signal from the first temperature detection element to maintain the heating member at a constant temperature. a heating circuit that supplies heating power to the heating body so as to hold the heating body; a power measuring device that measures the power; a second temperature detection element that detects the temperature of the outer surface of the cover; A sensitivity setting circuit that sets the sensitivity indicating the rate of change in the heating power by external operation, a sensitivity signal from the sensitivity setting circuit, a cover temperature signal from the second temperature detection element, and a signal from the power measuring device. By receiving the heating power signal and performing temperature compensation on the heating power signal based on a linear calculation formula with respect to the cover temperature, the blood flow heating power that supplies the amount of heat taken away by the blood flow out of the heating power is calculated. A heating type blood flow meter equipped with a temperature compensation circuit.
JP61008561A 1986-01-17 1986-01-17 Heating type blood flowmeter Pending JPS62167532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008561A JPS62167532A (en) 1986-01-17 1986-01-17 Heating type blood flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008561A JPS62167532A (en) 1986-01-17 1986-01-17 Heating type blood flowmeter

Publications (1)

Publication Number Publication Date
JPS62167532A true JPS62167532A (en) 1987-07-23

Family

ID=11696500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008561A Pending JPS62167532A (en) 1986-01-17 1986-01-17 Heating type blood flowmeter

Country Status (1)

Country Link
JP (1) JPS62167532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512197A (en) * 2015-03-25 2018-05-17 エピサーム リミテッドEpitherm Limited Improved blood pressure measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512197A (en) * 2015-03-25 2018-05-17 エピサーム リミテッドEpitherm Limited Improved blood pressure measurement

Similar Documents

Publication Publication Date Title
US6499877B2 (en) Ambient and perfusion normalized temperature detector
US7479116B2 (en) Temperature measurement device
EP0077073B1 (en) Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
US7981046B2 (en) Temperature measurement device
US4488824A (en) Method and apparatus for precision temperature measurement
US3789831A (en) Thermoelectric probe apparatus for tissue fluid flow measurement
JPS61125329A (en) Heart pulse output measuring apparatus
WO1994002065A1 (en) Sensor for non-invasive, in vivo determination of an analyte and blood flow
EP0440155B1 (en) Flow-velocity sensor probe
JPS61120026A (en) Simple deep-part clinical thermometer
CN110375883A (en) Clinical thermometer and its temp measuring method based on active thermal flow control
JP2603004B2 (en) Temperature measuring device and method for providing temperature signal
US4166390A (en) Scanning radiometer apparatus
JPS62167532A (en) Heating type blood flowmeter
Moore et al. Noncontact tympanic thermometer
US3721001A (en) Method of making quick responding thermometer
JPS61120027A (en) Simple type clinical thermometer for deep part
JP3328408B2 (en) Surface temperature measurement method
JPS62207433A (en) Apparatus for simultaneously measuring blood oxygen concentration and blood flow amount
JP2642460B2 (en) Heat dissipation type level sensor
JPH0239229Y2 (en)
JPS62243533A (en) Blood stream measuring apparatus
JPS61288133A (en) Measuring instrument for radiation heating value
Dornette Thermometry in clinical practice
JPS60125534A (en) Surface temperature sensor